1
|
Luciani M, Garsia C, Beretta S, Cifola I, Peano C, Merelli I, Petiti L, Miccio A, Meneghini V, Gritti A. Human iPSC-derived neural stem cells displaying radial glia signature exhibit long-term safety in mice. Nat Commun 2024; 15:9433. [PMID: 39487141 PMCID: PMC11530573 DOI: 10.1038/s41467-024-53613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NSCs) hold promise for treating neurodegenerative and demyelinating disorders. However, comprehensive studies on their identity and safety remain limited. In this study, we demonstrate that hiPSC-NSCs adopt a radial glia-associated signature, sharing key epigenetic and transcriptional characteristics with human fetal neural stem cells (hfNSCs) while exhibiting divergent profiles from glioblastoma stem cells. Long-term transplantation studies in mice showed robust and stable engraftment of hiPSC-NSCs, with predominant differentiation into glial cells and no evidence of tumor formation. Additionally, we identified the Sterol Regulatory Element Binding Transcription Factor 1 (SREBF1) as a regulator of astroglial differentiation in hiPSC-NSCs. These findings provide valuable transcriptional and epigenetic reference datasets to prospectively define the maturation stage of NSCs derived from different hiPSC sources and demonstrate the long-term safety of hiPSC-NSCs, reinforcing their potential as a viable alternative to hfNSCs for clinical applications.
Collapse
Affiliation(s)
- Marco Luciani
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Garsia
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Ingrid Cifola
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), via F.lli Cervi 93, 20054 Segrate, Milan, Italy
| | - Clelia Peano
- Institute of Genetics and Biomedical Research, UoS of Milan, National Research Council, Rozzano, Milan, Italy
- Human Technopole, Via Rita Levi Montalcini 1, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Luca Petiti
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), via F.lli Cervi 93, 20054 Segrate, Milan, Italy
| | - Annarita Miccio
- IMAGINE Institute, Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Vasco Meneghini
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
2
|
Kielhold ML, Jacobs DS, Torrado-Pacheco A, Lebowitz JJ, Langdon AJ, Williams JT, Zweifel LS, Moghaddam B. Reductions of Grin2a in adolescent dopamine neurons confers aberrant salience and related psychosis phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620713. [PMID: 39554173 PMCID: PMC11565768 DOI: 10.1101/2024.10.28.620713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Psychosis is a hallmark of schizophrenia. It typically emerges in late adolescence and is associated with dopamine abnormalities and aberrant salience. Most genes associated with schizophrenia risk involve ubiquitous targets that may not explain delayed emergence of dopaminergic disruptions. This includes GRIN2A, the gene encoding the GluN2A subunit of the NMDA receptor. Both common and rare variants of GRIN2A are considered genetic risk factors for schizophrenia diagnosis. We find that Grin2a knockout in dopamine neurons during adolescence is sufficient to produce a behavioral phenotype that mirrors aspects of psychosis. These include disruptions in effort optimization, salience attribution, and ability to utilize feedback to guide behavior. We also find a selective effect of this manipulation on dopamine release during prediction error signaling. These data provide mechanistic insight into how variants of GRIN2A may lead to the latent presentation of aberrant salience and abnormalities in dopamine dynamics. This etiologically relevant model may aid future discovery of course altering treatments for schizophrenia.
Collapse
|
3
|
Hendricks EL, Linskey N, Smith IR, Liebl FLW. Kismet/CHD7/CHD8 and Amyloid Precursor Protein-like Regulate Synaptic Levels of Rab11 at the Drosophila Neuromuscular Junction. Int J Mol Sci 2024; 25:8429. [PMID: 39125997 PMCID: PMC11313043 DOI: 10.3390/ijms25158429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
The transmembrane protein β-amyloid precursor protein (APP) is central to the pathophysiology of Alzheimer's disease (AD). The β-amyloid hypothesis posits that aberrant processing of APP forms neurotoxic β-amyloid aggregates, which lead to the cognitive impairments observed in AD. Although numerous additional factors contribute to AD, there is a need to better understand the synaptic function of APP. We have found that Drosophila APP-like (APPL) has both shared and non-shared roles at the synapse with Kismet (Kis), a chromatin helicase binding domain (CHD) protein. Kis is the homolog of CHD7 and CHD8, both of which are implicated in neurodevelopmental disorders including CHARGE Syndrome and autism spectrum disorders, respectively. Loss of function mutations in kis and animals expressing human APP and BACE in their central nervous system show reductions in the glutamate receptor subunit, GluRIIC, the GTPase Rab11, and the bone morphogenetic protein (BMP), pMad, at the Drosophila larval neuromuscular junction (NMJ). Similarly, processes like endocytosis, larval locomotion, and neurotransmission are deficient in these animals. Our pharmacological and epistasis experiments indicate that there is a functional relationship between Kis and APPL, but Kis does not regulate appl expression at the larval NMJ. Instead, Kis likely influences the synaptic localization of APPL, possibly by promoting rab11 transcription. These data identify a potential mechanistic connection between chromatin remodeling proteins and aberrant synaptic function in AD.
Collapse
Affiliation(s)
| | | | | | - Faith L. W. Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, USA
| |
Collapse
|
4
|
Ruzicka WB, Mohammadi S, Fullard JF, Davila-Velderrain J, Subburaju S, Tso DR, Hourihan M, Jiang S, Lee HC, Bendl J, Voloudakis G, Haroutunian V, Hoffman GE, Roussos P, Kellis M. Single-cell multi-cohort dissection of the schizophrenia transcriptome. Science 2024; 384:eadg5136. [PMID: 38781388 DOI: 10.1126/science.adg5136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/21/2023] [Indexed: 05/25/2024]
Abstract
The complexity and heterogeneity of schizophrenia have hindered mechanistic elucidation and the development of more effective therapies. Here, we performed single-cell dissection of schizophrenia-associated transcriptomic changes in the human prefrontal cortex across 140 individuals in two independent cohorts. Excitatory neurons were the most affected cell group, with transcriptional changes converging on neurodevelopment and synapse-related molecular pathways. Transcriptional alterations included known genetic risk factors, suggesting convergence of rare and common genomic variants on neuronal population-specific alterations in schizophrenia. Based on the magnitude of schizophrenia-associated transcriptional change, we identified two populations of individuals with schizophrenia marked by expression of specific excitatory and inhibitory neuronal cell states. This single-cell atlas links transcriptomic changes to etiological genetic risk factors, contextualizing established knowledge within the human cortical cytoarchitecture and facilitating mechanistic understanding of schizophrenia pathophysiology and heterogeneity.
Collapse
Affiliation(s)
- W Brad Ruzicka
- Laboratory for Epigenomics in Human Psychopathology, McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shahin Mohammadi
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jose Davila-Velderrain
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Neurogenomics Research Center, Human Technopole, 20157 Milan, Italy
| | - Sivan Subburaju
- Laboratory for Epigenomics in Human Psychopathology, McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Reed Tso
- Laboratory for Epigenomics in Human Psychopathology, McLean Hospital, Belmont, MA 02478, USA
| | - Makayla Hourihan
- Laboratory for Epigenomics in Human Psychopathology, McLean Hospital, Belmont, MA 02478, USA
| | - Shan Jiang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hao-Chih Lee
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Neurogenomics Research Center, Human Technopole, 20157 Milan, Italy
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Nussinov R, Yavuz BR, Arici MK, Demirel HC, Zhang M, Liu Y, Tsai CJ, Jang H, Tuncbag N. Neurodevelopmental disorders, like cancer, are connected to impaired chromatin remodelers, PI3K/mTOR, and PAK1-regulated MAPK. Biophys Rev 2023; 15:163-181. [PMID: 37124926 PMCID: PMC10133437 DOI: 10.1007/s12551-023-01054-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) and cancer share proteins, pathways, and mutations. Their clinical symptoms are different. However, individuals with NDDs have higher probabilities of eventually developing cancer. Here, we review the literature and ask how the shared features can lead to different medical conditions and why having an NDD first can increase the chances of malignancy. To explore these vital questions, we focus on dysregulated PI3K/mTOR, a major brain cell growth pathway in differentiation, and MAPK, a critical pathway in proliferation, a hallmark of cancer. Differentiation is governed by chromatin organization, making aberrant chromatin remodelers highly likely agents in NDDs. Dysregulated chromatin organization and accessibility influence the lineage of specific cell brain types at specific embryonic development stages. PAK1, with pivotal roles in brain development and in cancer, also regulates MAPK. We review, clarify, and connect dysregulated pathways with dysregulated proliferation and differentiation in cancer and NDDs and highlight PAK1 role in brain development and MAPK regulation. Exactly how PAK1 activation controls brain development, and why specific chromatin remodeler components, e.g., BAF170 encoded by SMARCC2 in autism, await clarification.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Bengi Ruken Yavuz
- Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - M Kaan Arici
- Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Habibe Cansu Demirel
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, 34450 Istanbul, Turkey
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Nurcan Tuncbag
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, 34450 Istanbul, Turkey
- School of Medicine, Koc University, 34450 Istanbul, Turkey
| |
Collapse
|
6
|
The Intricate Epigenetic and Transcriptional Alterations in Pediatric High-Grade Gliomas: Targeting the Crosstalk as the Oncogenic Achilles’ Heel. Biomedicines 2022; 10:biomedicines10061311. [PMID: 35740334 PMCID: PMC9219798 DOI: 10.3390/biomedicines10061311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/01/2023] Open
Abstract
Pediatric high-grade gliomas (pHGGs) are a deadly and heterogenous subgroup of gliomas for which the development of innovative treatments is urgent. Advances in high-throughput molecular techniques have shed light on key epigenetic components of these diseases, such as K27M and G34R/V mutations on histone 3. However, modification of DNA compaction is not sufficient by itself to drive those tumors. Here, we review molecular specificities of pHGGs subcategories in the context of epigenomic rewiring caused by H3 mutations and the subsequent oncogenic interplay with transcriptional signaling pathways co-opted from developmental programs that ultimately leads to gliomagenesis. Understanding how transcriptional and epigenetic alterations synergize in each cellular context in these tumors could allow the identification of new Achilles’ heels, thereby highlighting new levers to improve their therapeutic management.
Collapse
|
7
|
Dong P, Ye G, Tu X, Luo Y, Cui W, Ma Y, Wei L, Tian X, Wang Q. Roles of ERRα and TGF-β signaling in stemness enhancement induced by 1 µM bisphenol A exposure via human neural stem cells. Exp Ther Med 2022; 23:164. [PMID: 35069845 PMCID: PMC8753968 DOI: 10.3892/etm.2021.11087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/06/2021] [Indexed: 11/06/2022] Open
Abstract
Bisphenol A (BPA) is a common industrial chemical widely used to produce various plastics and is known to impair neural stem cells (NSCs). However, the effects of low-dose BPA exposure on the stemness maintenance and differentiation fate of NSCs remain unclear in the infant brain. The present study demonstrated that 1 µM BPA promoted human NSC proliferation and stemness, without significantly increasing apoptosis. The Chip-seq experiments demonstrated that both the cell cycle and the TGF-β signaling pathway were accelerated after treatment with 1 µM BPA. Subsequently, estrogen-related receptor α (ERRα) gene knockout cell lines were constructed using CRISPR/Cas9. Further western blotting and chromatin immunoprecipitation-PCR experiments demonstrated that BPA maintained cell stemness by binding to an EERα receptor and activating the TGF-β1 signaling pathway, including the downstream factors Aurora kinases B and Id2. In conclusion, the stemness of NSCs could be maintained by BPA at 1 µM through the activation of the ERRα and TGF-β1 signaling pathways and could restrain the differentiation of NSCs into neurons. The present research further clarified the mechanism of BPA toxicity on NSCs from the novel perspective of ERRα and TGF-β1 signaling pathways regulated by BPA and provided insights into potential novel methods of prevention and therapy for neurogenic diseases.
Collapse
Affiliation(s)
- Panpan Dong
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Qilu Medical University, Zibo, Shandong 255213, P.R. China
| | - Ganghui Ye
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Qilu Medical University, Zibo, Shandong 255213, P.R. China
| | - Xinzhuo Tu
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Qilu Medical University, Zibo, Shandong 255213, P.R. China
| | - Ying Luo
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, Shandong 255300, P.R. China
| | - Weitong Cui
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Qilu Medical University, Zibo, Shandong 255213, P.R. China
| | - Yuxin Ma
- College of Sports and Health, Shandong Sport University, Jinan, Shandong 330013, P.R. China
| | - Lei Wei
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Qilu Medical University, Zibo, Shandong 255213, P.R. China
| | - Xuewen Tian
- College of Sports and Health, Shandong Sport University, Jinan, Shandong 330013, P.R. China
| | - Qinglu Wang
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Qilu Medical University, Zibo, Shandong 255213, P.R. China
- College of Sports and Health, Shandong Sport University, Jinan, Shandong 330013, P.R. China
| |
Collapse
|
8
|
Auto-qPCR; a python-based web app for automated and reproducible analysis of qPCR data. Sci Rep 2021; 11:21293. [PMID: 34716395 PMCID: PMC8556264 DOI: 10.1038/s41598-021-99727-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022] Open
Abstract
Quantifying changes in DNA and RNA levels is essential in numerous molecular biology protocols. Quantitative real time PCR (qPCR) techniques have evolved to become commonplace, however, data analysis includes many time-consuming and cumbersome steps, which can lead to mistakes and misinterpretation of data. To address these bottlenecks, we have developed an open-source Python software to automate processing of result spreadsheets from qPCR machines, employing calculations usually performed manually. Auto-qPCR is a tool that saves time when computing qPCR data, helping to ensure reproducibility of qPCR experiment analyses. Our web-based app (https://auto-q-pcr.com/) is easy to use and does not require programming knowledge or software installation. Using Auto-qPCR, we provide examples of data treatment, display and statistical analyses for four different data processing modes within one program: (1) DNA quantification to identify genomic deletion or duplication events; (2) assessment of gene expression levels using an absolute model, and relative quantification (3) with or (4) without a reference sample. Our open access Auto-qPCR software saves the time of manual data analysis and provides a more systematic workflow, minimizing the risk of errors. Our program constitutes a new tool that can be incorporated into bioinformatic and molecular biology pipelines in clinical and research labs.
Collapse
|
9
|
González-Ortega G, Llamas-Velasco S, Arteche-López A, Quesada-Espinosa JF, Puertas-Martín V, Gómez-Grande A, López-Álvarez J, Saiz Díaz RA, Lezana-Rosales JM, Villarejo-Galende A, González de la Aleja J. Early-Onset Dementia Associated with a Heterozygous, Nonsense, and de novo Variant in the MBD5 Gene. J Alzheimers Dis 2021; 84:73-78. [PMID: 34459404 DOI: 10.3233/jad-210648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The haploinsufficiency of the methyl-binding domain protein 5 (MBD5) gene has been identified as the determinant cause of the neuropsychiatric disorders grouped under the name MBD5-neurodevelopment disorders (MAND). MAND includes patients with intellectual disability, behavioral problems, and seizures with a static clinical course. However, a few reports have suggested regression. We describe a non-intellectually disabled female, with previous epilepsy and personality disorder, who developed early-onset dementia. The extensive etiologic study revealed a heterozygous nonsense de novo pathogenic variant in the MBD5 gene. This finding could support including the MBD5 gene in the study of patients with atypical early-onset dementia.
Collapse
Affiliation(s)
| | - Sara Llamas-Velasco
- Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain.,Biomedical Research Networking Center in Neurodegenerative diseases CIBERNED, Madrid, Spain
| | - Ana Arteche-López
- Department of Genetics, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Verónica Puertas-Martín
- Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Universidad Internacional de La Rioja (UNIR), Logroño, Spain
| | - Adolfo Gómez-Grande
- Department of Nuclear Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jorge López-Álvarez
- Department of Psychiatry, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Rosa Ana Saiz Díaz
- Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Medicine, School of Medicine, Complutense University, Madrid, Spain.,Epilepsy-EEG Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Alberto Villarejo-Galende
- Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain.,Biomedical Research Networking Center in Neurodegenerative diseases CIBERNED, Madrid, Spain.,Department of Medicine, School of Medicine, Complutense University, Madrid, Spain
| | - Jesús González de la Aleja
- Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Epilepsy-EEG Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
10
|
Chen CXQ, Abdian N, Maussion G, Thomas RA, Demirova I, Cai E, Tabatabaei M, Beitel LK, Karamchandani J, Fon EA, Durcan TM. A Multistep Workflow to Evaluate Newly Generated iPSCs and Their Ability to Generate Different Cell Types. Methods Protoc 2021; 4:mps4030050. [PMID: 34287353 PMCID: PMC8293472 DOI: 10.3390/mps4030050] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) derived from human somatic cells have created new opportunities to generate disease-relevant cells. Thus, as the use of patient-derived stem cells has become more widespread, having a workflow to monitor each line is critical. This ensures iPSCs pass a suite of quality-control measures, promoting reproducibility across experiments and between labs. With this in mind, we established a multistep workflow to assess our newly generated iPSCs. Our workflow tests four benchmarks: cell growth, genomic stability, pluripotency, and the ability to form the three germline layers. We also outline a simple test for assessing cell growth and highlight the need to compare different growth media. Genomic integrity in the human iPSCs is analyzed by G-band karyotyping and a qPCR-based test for the detection of common karyotypic abnormalities. Finally, we confirm that the iPSC lines can differentiate into a given cell type, using a trilineage assay, and later confirm that each iPSC can be differentiated into one cell type of interest, with a focus on the generation of cortical neurons. Taken together, we present a multistep quality-control workflow to evaluate newly generated iPSCs and detail the findings on these lines as they are tested within the workflow.
Collapse
Affiliation(s)
- Carol X.-Q. Chen
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
| | - Narges Abdian
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
| | - Gilles Maussion
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
| | - Rhalena A. Thomas
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
| | - Iveta Demirova
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
| | - Eddie Cai
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
| | - Mahdieh Tabatabaei
- The Neuro’s Clinical Biological Imaging and Genetic Repository (C-BIG), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (M.T.); (J.K.)
| | - Lenore K. Beitel
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
| | - Jason Karamchandani
- The Neuro’s Clinical Biological Imaging and Genetic Repository (C-BIG), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (M.T.); (J.K.)
| | - Edward A. Fon
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
| | - Thomas M. Durcan
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
- Correspondence: ; Tel.: +1-514-398-6933
| |
Collapse
|
11
|
Pooyan P, Karamzadeh R, Mirzaei M, Meyfour A, Amirkhan A, Wu Y, Gupta V, Baharvand H, Javan M, Salekdeh GH. The Dynamic Proteome of Oligodendrocyte Lineage Differentiation Features Planar Cell Polarity and Macroautophagy Pathways. Gigascience 2020; 9:giaa116. [PMID: 33128372 PMCID: PMC7601170 DOI: 10.1093/gigascience/giaa116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/22/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Generation of oligodendrocytes is a sophisticated multistep process, the mechanistic underpinnings of which are not fully understood and demand further investigation. To systematically profile proteome dynamics during human embryonic stem cell differentiation into oligodendrocytes, we applied in-depth quantitative proteomics at different developmental stages and monitored changes in protein abundance using a multiplexed tandem mass tag-based proteomics approach. FINDINGS Our proteome data provided a comprehensive protein expression profile that highlighted specific expression clusters based on the protein abundances over the course of human oligodendrocyte lineage differentiation. We identified the eminence of the planar cell polarity signalling and autophagy (particularly macroautophagy) in the progression of oligodendrocyte lineage differentiation-the cooperation of which is assisted by 106 and 77 proteins, respectively, that showed significant expression changes in this differentiation process. Furthermore, differentially expressed protein analysis of the proteome profile of oligodendrocyte lineage cells revealed 378 proteins that were specifically upregulated only in 1 differentiation stage. In addition, comparative pairwise analysis of differentiation stages demonstrated that abundances of 352 proteins differentially changed between consecutive differentiation time points. CONCLUSIONS Our study provides a comprehensive systematic proteomics profile of oligodendrocyte lineage cells that can serve as a resource for identifying novel biomarkers from these cells and for indicating numerous proteins that may contribute to regulating the development of myelinating oligodendrocytes and other cells of oligodendrocyte lineage. We showed the importance of planar cell polarity signalling in oligodendrocyte lineage differentiation and revealed the autophagy-related proteins that participate in oligodendrocyte lineage differentiation.
Collapse
Affiliation(s)
- Paria Pooyan
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
- Department of Brain and Cognitive Science, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
| | - Razieh Karamzadeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
- Department of Brain and Cognitive Science, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
| | - Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW 2109, Australia
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Daneshjoo Blv., Velenjak, Tehran 19839-63113, Iran
| | - Ardeshir Amirkhan
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yunqi Wu
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW 2109, Australia
| | - Vivek Gupta
- Department of Clinical Medicine, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
- Department of Brain and Cognitive Science, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
- Department of Developmental Biology, University of Science and Culture, Ashrafi Esfahani, Tehran 1461968151, Iran
| | - Mohammad Javan
- Department of Brain and Cognitive Science, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal AleAhmad, Tehran 14115-111, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| |
Collapse
|
12
|
Maussion G, Demirova I, Gorwood P, Ramoz N. Induced Pluripotent Stem Cells; New Tools for Investigating Molecular Mechanisms in Anorexia Nervosa. Front Nutr 2019; 6:118. [PMID: 31457016 PMCID: PMC6700384 DOI: 10.3389/fnut.2019.00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
Anorexia nervosa (AN) is a dramatic psychiatric disorder characterized by dysregulations in food intake and reward processing, involving molecular and cellular changes in several peripheral cell types and central neuronal networks. Genomic and epigenomic analyses have allowed the identification of multiple genetic and epigenetic modifications highlighting the complex pathophysiology of AN. Behavioral and genetic rodent models have been used to recapitulate and investigate, with some limitations, the cellular and molecular changes that potentially underlie eating disorders. In the last 5 years, the use of induced pluripotent stem cells (IPSCs), combined with CRISPR-Cas9 technology, has led to the generation of specific neuronal cell subtypes engineered from human somatic samples, representing a powerful tool to complement observations made in human samples and data collected from animal models. Systems biology using IPSCs has indeed proved to be a valuable approach for the study of metabolic disorders, in addition to neurodevelopmental and psychiatric disorders. The manuscript, while reviewing the main findings related to the genetic, epigenetic, and cellular bases of AN, will present how new studies published, or to be performed, in the field of IPSC-derived cells should improve our current understanding of the pathophysiology of AN and provide potential therapeutic strategies addressing specific endophenotypes.
Collapse
Affiliation(s)
- Gilles Maussion
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Iveta Demirova
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Philip Gorwood
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France.,Hôpital Sainte-Anne (CMME), University Paris-Descartes, Paris, France
| | - Nicolas Ramoz
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| |
Collapse
|
13
|
Loubiere V, Martinez AM, Cavalli G. Cell Fate and Developmental Regulation Dynamics by Polycomb Proteins and 3D Genome Architecture. Bioessays 2019; 41:e1800222. [PMID: 30793782 DOI: 10.1002/bies.201800222] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/22/2018] [Indexed: 12/14/2022]
Abstract
Targeted transitions in chromatin states at thousands of genes are essential drivers of eukaryotic development. Therefore, understanding the in vivo dynamics of epigenetic regulators is crucial for deciphering the mechanisms underpinning cell fate decisions. This review illustrates how, in addition to its cell memory function, the Polycomb group of transcriptional regulators orchestrates temporal, cell and tissue-specific expression of master genes during development. These highly sophisticated developmental transitions are dependent on the context- and tissue-specific assembly of the different types of Polycomb Group (PcG) complexes, which regulates their targeting and/or activities on chromatin. Here, an overview is provided of how PcG complexes function at multiple scales to regulate transcription, local chromatin environment, and higher order structures that support normal differentiation and are perturbed in tumorigenesis.
Collapse
Affiliation(s)
- Vincent Loubiere
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, 34396, Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, 34396, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, 34396, Montpellier, France
| |
Collapse
|
14
|
Increased expression of BDNF mRNA in the frontal cortex of autistic patients. Behav Brain Res 2019; 359:903-909. [DOI: 10.1016/j.bbr.2018.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 12/20/2022]
|
15
|
Zhou Y, Lutz PE, Wang YC, Ragoussis J, Turecki G. Global long non-coding RNA expression in the rostral anterior cingulate cortex of depressed suicides. Transl Psychiatry 2018; 8:224. [PMID: 30337518 PMCID: PMC6193959 DOI: 10.1038/s41398-018-0267-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/10/2018] [Accepted: 09/10/2018] [Indexed: 01/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are an emerging class of regulatory RNA that may be implicated in psychiatric disorders. Here we performed RNA-sequencing in the rostral anterior cingulate cortex of 26 depressed suicides and 24 matched controls. We first performed differential lncRNA expression analysis, and then conducted Weighted Gene Co-expression Network Analysis (WGCNA) to identify co-expression modules associating with depression and suicide. We identified 23 differentially expressed lncRNAs (FDR < 0.1) as well as their differentially expressed overlapping and antisense protein-coding genes. Several of these overlapping or antisense genes were associated with interferon signaling, which is a component of the innate immune response. Using WGCNA, we identified modules of highly co-expressed genes associated with depression and suicide and found protein-coding genes highly connected to differentially expressed lncRNAs within these modules. These protein-coding genes were located distal to their associated lncRNAs and were found to be part of several GO terms enriched in the significant modules, which include: cytoskeleton organization, plasma membrane, cell adhesion, nucleus, DNA-binding, and regulation of dendrite development and morphology. Altogether, we report that lncRNAs are differentially expressed in the brains of depressed individuals who died by suicide and may represent regulators of important molecular functions and biological processes.
Collapse
Grants
- R01 DA033684 NIDA NIH HHS
- Dr. G. Turecki holds a Canada Research Chair (Tier 1), FRQS Chercheur National salary award and a NARSAD Distinguished Investigator Award; he is supported by grants FDN148374, MOP93775, MOP11260, MOP119429, and MOP119430 from CIHR, by NIH grant 1R01DA033684, by the FRQS through the Quebec Network on Suicide, Mood Disorders, and Related Disorders, and through an investigator-initiated research grant from Pfizer
- Scholarships from the Fondation Fyssen, the Fondation Bettencourt-Schueller, the Canadian Institutes of Health Research, the American Foundation of Suicide Prevention, the Fondation Deniker and the Fondation pour la Recherche Médicale.
- CFI grant number 32557 and Genome Canada Genome Innovation Node awards.
Collapse
Affiliation(s)
- Yi Zhou
- McGill Group for Suicide Studies, McGill University, 6875 LaSalle Boulevard, Montreal, QC, H4H 1R3, Canada
| | - Pierre-Eric Lutz
- McGill Group for Suicide Studies, McGill University, 6875 LaSalle Boulevard, Montreal, QC, H4H 1R3, Canada
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Yu Chang Wang
- McGill University and Génome Québec Innovation Centre, 740 Dr. Penfield Avenue, Room 7104, Montréal, QC, H3A 0G1, Canada
| | - Jiannis Ragoussis
- McGill University and Génome Québec Innovation Centre, 740 Dr. Penfield Avenue, Room 7104, Montréal, QC, H3A 0G1, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, McGill University, 6875 LaSalle Boulevard, Montreal, QC, H4H 1R3, Canada.
| |
Collapse
|
16
|
A Dual Noradrenergic Mechanism for the Relief of Neuropathic Allodynia by the Antidepressant Drugs Duloxetine and Amitriptyline. J Neurosci 2018; 38:9934-9954. [PMID: 30249798 DOI: 10.1523/jneurosci.1004-18.2018] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/27/2018] [Accepted: 07/22/2018] [Indexed: 12/21/2022] Open
Abstract
In addition to treating depression, antidepressant drugs are also a first-line treatment for neuropathic pain, which is pain secondary to lesion or pathology of the nervous system. Despite the widespread use of these drugs, the mechanism underlying their therapeutic action in this pain context remains partly elusive. The present study combined data collected in male and female mice from a model of neuropathic pain and data from the clinical setting to understand how antidepressant drugs act. We show two distinct mechanisms by which the selective inhibitor of serotonin and noradrenaline reuptake duloxetine and the tricyclic antidepressant amitriptyline relieve neuropathic allodynia. One of these mechanisms is acute, central, and requires descending noradrenergic inhibitory controls and α2A adrenoceptors, as well as the mu and delta opioid receptors. The second mechanism is delayed, peripheral, and requires noradrenaline from peripheral sympathetic endings and β2 adrenoceptors, as well as the delta opioid receptors. We then conducted a transcriptomic analysis in dorsal root ganglia, which suggested that the peripheral component of duloxetine action involves the inhibition of neuroimmune mechanisms accompanying nerve injury, including the downregulation of the TNF-α-NF-κB signaling pathway. Accordingly, immunotherapies against either TNF-α or Toll-like receptor 2 (TLR2) provided allodynia relief. We also compared duloxetine plasma levels in the animal model and in patients and we observed that patients' drug concentrations were compatible with those measured in animals under chronic treatment involving the peripheral mechanism. Our study highlights a peripheral neuroimmune component of antidepressant drugs that is relevant to their delayed therapeutic action against neuropathic pain.SIGNIFICANCE STATEMENT In addition to treating depression, antidepressant drugs are also a first-line treatment for neuropathic pain, which is pain secondary to lesion or pathology of the nervous system. However, the mechanism by which antidepressant drugs can relieve neuropathic pain remained in part elusive. Indeed, preclinical studies led to contradictions concerning the anatomical and molecular substrates of this action. In the present work, we overcame these apparent contradictions by highlighting the existence of two independent mechanisms. One is rapid and centrally mediated by descending controls from the brain to the spinal cord and the other is delayed, peripheral, and relies on the anti-neuroimmune action of chronic antidepressant treatment.
Collapse
|
17
|
Kelaï S, Ramoz N, Moalic JM, Noble F, Mechawar N, Imbeaud S, Turecki G, Simonneau M, Gorwood P, Maussion G. Netrin G1: its downregulation in the nucleus accumbens of cocaine-conditioned mice and genetic association in human cocaine dependence. Addict Biol 2018; 23:448-460. [PMID: 28074533 DOI: 10.1111/adb.12485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/03/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022]
Abstract
Netrin G1 is a presynaptic ligand involved in axonal projection. Although molecular mechanisms underlying cocaine addiction are still poorly understood, Netrin G1 might have a role as a regulator of anxiety, fear and spatial memory, behavioural traits impaired in the context of cocaine exposure. In this study, the Netrin G1 (Ntng1) expression was investigated in the nucleus accumbens of mice primarily conditioned to cocaine using a place preference paradigm. A genetic association study was then conducted on 146 multiplex families of the Collaborative study on Genetics of Alcoholism, in which seven single nucleotide polymorphisms located in the NTNG1 gene were genotyped. NTNG1 expression levels were also quantified in BA10, BA46 and the cerebellum of healthy controls (with no Axis 1 psychopathology). Decreased Ntng1 expression was initially observed in the nucleus accumbens of mice conditioned to cocaine. Significant genetic family-based associations were detected between NTNG1 polymorphisms and cocaine dependence. NTNG1 expression in BA10, BA46 and the cerebellum, however, were not significantly associated with any allele or haplotype of this gene. These results confirm that Ntng1 expression is disturbed in the nucleus accumbens of mice, after cocaine conditioning. A haplotype of NTNG1 was found to constitute a vulnerability factor for cocaine use disorder in patients, although none of its single nucleotide polymorphisms were associated with a differential expression pattern in healthy controls. The data suggest that change in the Ntng1 expression is a consequence of cocaine exposure, and that some of its genetic markers are associated with a greater risk for cocaine use disorder.
Collapse
Affiliation(s)
- Sabah Kelaï
- INSERM U894, Centre de Psychiatrie & Neurosciences; University Paris Descartes; Paris France
| | - Nicolas Ramoz
- INSERM U894, Centre de Psychiatrie & Neurosciences; University Paris Descartes; Paris France
| | - Jean-Marie Moalic
- INSERM U894, Centre de Psychiatrie & Neurosciences; University Paris Descartes; Paris France
| | - Florence Noble
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche; France
- Institut national de la santé et de la recherche médicale; Paris France
- Université Paris Descartes, Laboratoire de Neuropsychopharmacologie des Addictions; France
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute; McGill University; Canada
| | - Sandrine Imbeaud
- Centre de Génétique Moléculaire, FRE 3144, CNRS and Gif/Orsay DNA Microarray Platform (GODMAP); France
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute; McGill University; Canada
| | - Michel Simonneau
- INSERM U894, Centre de Psychiatrie & Neurosciences; University Paris Descartes; Paris France
| | - Philip Gorwood
- INSERM U894, Centre de Psychiatrie & Neurosciences; University Paris Descartes; Paris France
- Hôpital Sainte-Anne (CMME); University Paris Descartes; France
| | - Gilles Maussion
- INSERM U894, Centre de Psychiatrie & Neurosciences; University Paris Descartes; Paris France
- McGill Group for Suicide Studies, Douglas Mental Health University Institute; McGill University; Canada
| |
Collapse
|
18
|
Parween S, Varghese DS, Ardah MT, Prabakaran AD, Mensah-Brown E, Emerald BS, Ansari SA. Higher O-GlcNAc Levels Are Associated with Defects in Progenitor Proliferation and Premature Neuronal Differentiation during in-Vitro Human Embryonic Cortical Neurogenesis. Front Cell Neurosci 2017; 11:415. [PMID: 29311838 PMCID: PMC5742625 DOI: 10.3389/fncel.2017.00415] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/12/2017] [Indexed: 11/13/2022] Open
Abstract
The nutrient responsive O-GlcNAcylation is a dynamic post-translational protein modification found on several nucleocytoplasmic proteins. Previous studies have suggested that hyperglycemia induces the levels of total O-GlcNAcylation inside the cells. Hyperglycemia mediated increase in protein O-GlcNAcylation has been shown to be responsible for various pathologies including insulin resistance and Alzheimer's disease. Since maternal hyperglycemia during pregnancy is associated with adverse neurodevelopmental outcomes in the offspring, it is intriguing to identify the effect of increased protein O-GlcNAcylation on embryonic neurogenesis. Herein using human embryonic stem cells (hESCs) as model, we show that increased levels of total O-GlcNAc is associated with decreased neural progenitor proliferation and premature differentiation of cortical neurons, reduced AKT phosphorylation, increased apoptosis and defects in the expression of various regulators of embryonic corticogenesis. As defects in proliferation and differentiation during neurodevelopment are common features of various neurodevelopmental disorders, increased O-GlcNAcylation could be one mechanism responsible for defective neurodevelopmental outcomes in metabolically compromised pregnancies such as diabetes.
Collapse
Affiliation(s)
- Shama Parween
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Divya S Varghese
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mustafa T Ardah
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ashok D Prabakaran
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Eric Mensah-Brown
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Suraiya A Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
19
|
Korytina GF, Akhmadishina LZ, Kochetova OV, Aznabaeva YG, Zagidullin SZ, Victorova TV. Polymorphic variants of glutamate receptor (GRIK5, GRIN2B) and serotonin receptor (HTR2A) genes are associated with chronic. Mol Biol 2017. [DOI: 10.1134/s0026893317040124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
20
|
Dysregulation of Th1, Th2, Th17, and T regulatory cell-related transcription factor signaling in children with autism. Mol Neurobiol 2016; 54:4390-4400. [PMID: 27344332 DOI: 10.1007/s12035-016-9977-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
Autism is a neurodevelopmental disorder characterized by stereotypic repetitive behaviors, impaired social interactions, and communication deficits. Numerous immune system abnormalities have been described in individuals with autism including abnormalities in the ratio of Th1/Th2/Th17 cells; however, the expression of the transcription factors responsible for the regulation and differentiation of Th1/Th2/Th17/Treg cells has not previously been evaluated. Peripheral blood mononuclear cells (PBMCs) from children with autism (AU) or typically developing (TD) control children were stimulated with phorbol-12-myristate 13-acetate (PMA) and ionomycin in the presence of brefeldin A. The expressions of Foxp3, RORγt, STAT-3, T-bet, and GATA-3 mRNAs and proteins were then assessed. Our study shows that children with AU displayed altered immune profiles and function, characterized by a systemic deficit of Foxp3+ T regulatory (Treg) cells and increased RORγt+, T-bet+, GATA-3+, and production by CD4+ T cells as compared to TD. This was confirmed by real-time PCR (RT-PCR) and western blot analyses. Our results suggest that autism impacts transcription factor signaling, which results in an immunological imbalance. Therefore, the restoration of transcription factor signaling may have a great therapeutic potential in the treatment of autistic disorders.
Collapse
|
21
|
Kloet SL, Makowski MM, Baymaz HI, van Voorthuijsen L, Karemaker ID, Santanach A, Jansen PWTC, Di Croce L, Vermeulen M. The dynamic interactome and genomic targets of Polycomb complexes during stem-cell differentiation. Nat Struct Mol Biol 2016; 23:682-690. [PMID: 27294783 PMCID: PMC4939079 DOI: 10.1038/nsmb.3248] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/17/2016] [Indexed: 12/16/2022]
Abstract
Although the core subunits of Polycomb group (PcG) complexes are well characterized, little is known about the dynamics of these protein complexes during cellular differentiation. We used quantitative interaction proteomics and genome-wide profiling to study PcG proteins in mouse embryonic stem cells (ESCs) and neural progenitor cells (NPCs). We found that the stoichiometry and genome-wide binding of PRC1 and PRC2 were highly dynamic during neural differentiation. Intriguingly, we observed a downregulation and loss of PRC2 from chromatin marked with trimethylated histone H3 K27 (H3K27me3) during differentiation, whereas PRC1 was retained at these sites. Additionally, we found PRC1 at enhancer and promoter regions independently of PRC2 binding and H3K27me3. Finally, overexpression of NPC-specific PRC1 interactors in ESCs led to increased Ring1b binding to, and decreased expression of, NPC-enriched Ring1b-target genes. In summary, our integrative analyses uncovered dynamic PcG subcomplexes and their widespread colocalization with active chromatin marks during differentiation.
Collapse
Affiliation(s)
- Susan L Kloet
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | - Matthew M Makowski
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | - H Irem Baymaz
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | - Lisa van Voorthuijsen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | - Ino D Karemaker
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | - Alexandra Santanach
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Biomedical Genetics, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Biomedical Genetics, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands.,Cancer GenomiCs.nl (CGC.nl) Consortium, Center for Molecular Medicine, UMC Utrecht, The Netherlands
| |
Collapse
|
22
|
Mühlebner A, Iyer AM, van Scheppingen J, Anink JJ, Jansen FE, Veersema TJ, Braun KP, Spliet WGM, van Hecke W, Söylemezoğlu F, Feucht M, Krsek P, Zamecnik J, Bien CG, Polster T, Coras R, Blümcke I, Aronica E. Specific pattern of maturation and differentiation in the formation of cortical tubers in tuberous sclerosis omplex (TSC): evidence from layer-specific marker expression. J Neurodev Disord 2016; 8:9. [PMID: 27042238 PMCID: PMC4818922 DOI: 10.1186/s11689-016-9142-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/08/2016] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a multisystem disorder that results from mutations in the TSC1 or TSC2 genes, leading to constitutive activation of the mammalian target of rapamycin (mTOR) signaling pathway. Cortical tubers represent typical lesions of the central nervous system (CNS) in TSC. The pattern of cortical layering disruption observed in brain tissue of TSC patients is not yet fully understood, and little is known about the origin and phenotype of individual abnormal cell types recognized in tubers. METHODS In the present study, we aimed to characterize dysmorphic neurons (DNs) and giant cells (GCs) of cortical tubers using neocortical layer-specific markers (NeuN, SMI32, Tbr1, Satb2, Cux2, ER81, and RORβ) and to compare the features with the histo-morphologically similar focal cortical dysplasia (FCD) type IIb. We studied a cohort of nine surgically resected cortical tubers, five FCD type IIb, and four control samples using immunohistochemistry and in situ hybridization. RESULTS Cortical tuber displayed a prominent cell loss in all cortical layers. Moreover, we observed altered proportions of layer-specific markers within the dysplastic region. DNs, in both tubers and FCD type IIb, were found positive for different cortical layer markers, regardless of their laminar location, and their immunophenotype resembles that of cortical projection neurons. CONCLUSIONS These findings demonstrate that, similar to FCD type IIb, cortical layering is markedly disturbed in cortical tubers of TSC patients. Distribution of these disturbances is comparable in all tubers and suggests a dysmaturation affecting early and late migratory patterns, with a more severe impairment of the late stage of maturation.
Collapse
Affiliation(s)
- Angelika Mühlebner
- Department of (Neuro) Pathology, Academic Medical Center, Amsterdam, The Netherlands ; Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - Anand M Iyer
- Department of (Neuro) Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Jasper J Anink
- Department of (Neuro) Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Floor E Jansen
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tim J Veersema
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kees P Braun
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wim G M Spliet
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wim van Hecke
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Figen Söylemezoğlu
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Martha Feucht
- Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - Pavel Krsek
- Department of Neurology, Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
| | - Josef Zamecnik
- Department of Pathology and Molecular Medicine, Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
| | | | - Tilman Polster
- Epilepsy Centre Bethel, Krankenhaus Mara, Bielefeld, Germany
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Academic Medical Center, Amsterdam, The Netherlands ; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands ; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|