1
|
Urlić I, Jovičić MŠ, Ostojić K, Ivković A. Cellular and Genetic Background of Osteosarcoma. Curr Issues Mol Biol 2023; 45:4344-4358. [PMID: 37232745 DOI: 10.3390/cimb45050276] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Osteosarcoma describes a tumor of mesenchymal origin with an annual incidence rate of four to five people per million. Even though chemotherapy treatment has shown success in non-metastatic osteosarcoma, metastatic disease still has a low survival rate of 20%. A targeted therapy approach is limited due to high heterogeneity of tumors, and different underlying mutations. In this review, we will summarize new advances obtained by new technologies, such as next generation sequencing and single-cell sequencing. These new techniques have enabled better assessment of cell populations within osteosarcoma, as well as an understanding of the molecular pathogenesis. We also discuss the presence and properties of osteosarcoma stem cells-the cell population within the tumor that is responsible for metastasis, recurrence, and drug resistance.
Collapse
Affiliation(s)
- Inga Urlić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Marijana Šimić Jovičić
- Department of Paediatric Orthopaedics, Children's Hospital Zagreb, 10000 Zagreb, Croatia
| | - Karla Ostojić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Alan Ivković
- Department of Orthopaedics and Traumatology, University Hospital Sveti Duh, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Professional Study in Physiotherapy, University of Applied Health Sciences, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Mota A, Oltra SS, Selenica P, Moiola CP, Casas-Arozamena C, López-Gil C, Diaz E, Gatius S, Ruiz-Miro M, Calvo A, Rojo-Sebastián A, Hurtado P, Piñeiro R, Colas E, Gil-Moreno A, Reis-Filho JS, Muinelo-Romay L, Abal M, Matias-Guiu X, Weigelt B, Moreno-Bueno G. Intratumor genetic heterogeneity and clonal evolution to decode endometrial cancer progression. Oncogene 2022; 41:1835-1850. [PMID: 35145232 PMCID: PMC8956509 DOI: 10.1038/s41388-022-02221-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
Analyzing different tumor regions by next generation sequencing allows the assessment of intratumor genetic heterogeneity (ITGH), a phenomenon that has been studied widely in some tumor types but has been less well explored in endometrial carcinoma (EC). In this study, we sought to characterize the spatial and temporal heterogeneity of 9 different ECs using whole-exome sequencing, and by performing targeted sequencing validation of the 42 primary tumor regions and 30 metastatic samples analyzed. In addition, copy number alterations of serous carcinomas were assessed by comparative genomic hybridization arrays. From the somatic mutations, identified by whole-exome sequencing, 532 were validated by targeted sequencing. Based on these data, the phylogenetic tree reconstructed for each case allowed us to establish the tumors’ evolution and correlate this to tumor progression, prognosis, and the presence of recurrent disease. Moreover, we studied the genetic landscape of an ambiguous EC and the molecular profile obtained was used to guide the selection of a potential personalized therapy for this patient, which was subsequently validated by preclinical testing in patient-derived xenograft models. Overall, our study reveals the impact of analyzing different tumor regions to decipher the ITGH in ECs, which could help make the best treatment decision.
Collapse
Affiliation(s)
- Alba Mota
- MD Anderson International Foundation, 28033, Madrid, Spain.,Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPaz, 28029, Madrid, Spain
| | - Sara S Oltra
- MD Anderson International Foundation, 28033, Madrid, Spain.,Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPaz, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Cristian P Moiola
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.,Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Carlos Casas-Arozamena
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Carlos López-Gil
- Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Eva Diaz
- MD Anderson International Foundation, 28033, Madrid, Spain
| | - Sonia Gatius
- Department of Pathology, Hospital U Arnau de Vilanova, University of Lleida, IRBLLEIDA, Lleida, Spain
| | | | - Ana Calvo
- Department of Gynecology, Hospital U Arnau de Vilanova, IRBLLEIDA, Lleida, Spain
| | - Alejandro Rojo-Sebastián
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.,Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain.,MD Anderson Cancer Center, Madrid, Spain
| | - Pablo Hurtado
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Roberto Piñeiro
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Eva Colas
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.,Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Antonio Gil-Moreno
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.,Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain.,Gynaecological Department, Vall Hebron University Hospital, 08035, Barcelona, Spain
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Laura Muinelo-Romay
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.,Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Miguel Abal
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.,Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Xavier Matias-Guiu
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.,Department of Pathology, Hospital U Arnau de Vilanova, University of Lleida, IRBLLEIDA, Lleida, Spain.,Departments of Pathology, Hospital U. de Bellvitge, Universities of Lleida and Barcelona, IDIBELL Lleida and Barcelona, Spain
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Gema Moreno-Bueno
- MD Anderson International Foundation, 28033, Madrid, Spain. .,Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPaz, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
| |
Collapse
|
3
|
Single-cell sequencing technology in tumor research. Clin Chim Acta 2021; 518:101-109. [PMID: 33766554 DOI: 10.1016/j.cca.2021.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022]
Abstract
Tumor heterogeneity is a key characteristic of malignant tumors and a significant obstacle in cancer treatment and research. Although bulk tissue sequencing has wide coverage and high accuracy, it can only represent the dominant cell signal information of each sample, while masking the unique gene expression of rare cells; therefore it cannot represent genes that are unstable within a subgroup, but unchanged in a majority of cells. With the progress of genomic technology, the emergence of single-cell sequencing (SCS) has effectively solved the above problem. Genetic, transcriptomic and epigenetic sequencing at the single-cell level provides an important basis for us to correctly classify the cell subsets of heterogeneous tumor populations and to reveal the process of complex changes in tumor cells at the molecular level. Single-cell sequencing technology has been applied to the field of cancer, revealing exciting discoveries in the potential mechanisms of tumor driver gene mutation, clonal evolution, invasion and metastasis. It also provides favorable conditions for developing new tumor biomarkers and providing more accurate and individualized targeted tumor therapy. Herein, we review the steps and methods of single-cell sequencing and highlight the application of SCS in tumor diagnosis and clinical treatment.
Collapse
|
4
|
Zhang M, Xiao R, Liu G, Huang Y. Genotoxins exaggerate the stressed state of aneuploid embryonic stem cells via activation of autophagy. SCIENCE CHINA. LIFE SCIENCES 2020; 63:1026-1036. [PMID: 31872377 DOI: 10.1007/s11427-019-9666-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/01/2019] [Indexed: 01/19/2023]
Abstract
The cellular consequences of aneuploidy are largely dependent on the cell types examined. Aneuploid yeasts and mouse embryonic fibroblasts exhibit cell proliferation defects and can be selectively inhibited by compounds that cause proteotoxic or energy stress. By contrast, most aneuploid pluripotent stem cells proliferate rapidly and reach higher saturation densities. The responses of aneuploid pluripotent stem cells to the stress-inducing compounds remain uncharacterized. Here, we tested the response of aneuploid embryonic stem cells to several compounds that caused proteotoxic, energy and genotoxic stress using previously established mouse embryonic stem cell lines trisomic for chromosome 6, 8, 11, or 15. Not all trisomic embryonic stem cells were selectively inhibited by compounds that cause proteotoxic or energy stress. However, most of these cells exhibited increased sensitivity to genotoxins. They displayed elevated DNA damage response as characterized by increased γH2A.X foci under genotoxic stress. Further investigations indicated that elevated autophagy levels might contribute to the increased cytotoxic effects of genotoxins on trisomic embryonic stem cells. Our study laid the foundation for eliminating aneuploidy that might be an effective approach for controlling cancer progression.
Collapse
Affiliation(s)
- Meili Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China. .,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| | - Rong Xiao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Guang Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yue Huang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China. .,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
5
|
Clonal selection confers distinct evolutionary trajectories in BRAF-driven cancers. Nat Commun 2019; 10:5143. [PMID: 31723142 PMCID: PMC6853924 DOI: 10.1038/s41467-019-13161-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 10/18/2019] [Indexed: 12/25/2022] Open
Abstract
Molecular determinants governing the evolution of tumor subclones toward phylogenetic branches or fixation remain unknown. Using sequencing data, we model the propagation and selection of clones expressing distinct categories of BRAF mutations to estimate their evolutionary trajectories. We show that strongly activating BRAF mutations demonstrate hard sweep dynamics, whereas mutations with less pronounced activation of the BRAF signaling pathway confer soft sweeps or are subclonal. We use clonal reconstructions to estimate the strength of "driver" selection in individual tumors. Using tumors cells and human-derived murine xenografts, we show that tumor sweep dynamics can significantly affect responses to targeted inhibitors of BRAF/MEK or DNA damaging agents. Our study uncovers patterns of distinct BRAF clonal evolutionary dynamics and nominates therapeutic strategies based on the identity of the BRAF mutation and its clonal composition.
Collapse
|
6
|
Gorodetska I, Kozeretska I, Dubrovska A. BRCA Genes: The Role in Genome Stability, Cancer Stemness and Therapy Resistance. J Cancer 2019; 10:2109-2127. [PMID: 31205572 PMCID: PMC6548160 DOI: 10.7150/jca.30410] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Carcinogenesis is a multistep process, and tumors frequently harbor multiple mutations regulating genome integrity, cell division and death. The integrity of cellular genome is closely controlled by the mechanisms of DNA damage signaling and DNA repair. The association of breast cancer susceptibility genes BRCA1 and BRCA2 with breast and ovarian cancer development was first demonstrated over 20 years ago. Since then the germline mutations within these genes were linked to genomic instability and increased risk of many other cancer types. Genomic instability is an engine of the oncogenic transformation of non-tumorigenic cells into tumor-initiating cells and further tumor evolution. In this review we discuss the biological functions of BRCA1 and BRCA2 genes and the role of BRCA mutations in tumor initiation, regulation of cancer stemness, therapy resistance and tumor progression.
Collapse
Affiliation(s)
- Ielizaveta Gorodetska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Iryna Kozeretska
- Department of General and Medical Genetics, ESC "The Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), Partner site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
7
|
Oh BY, Shin HT, Yun JW, Kim KT, Kim J, Bae JS, Cho YB, Lee WY, Yun SH, Park YA, Park YH, Im YH, Lee J, Joung JG, Kim HC, Park WY. Intratumor heterogeneity inferred from targeted deep sequencing as a prognostic indicator. Sci Rep 2019; 9:4542. [PMID: 30872730 PMCID: PMC6418103 DOI: 10.1038/s41598-019-41098-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 02/28/2019] [Indexed: 12/28/2022] Open
Abstract
Tumor genetic heterogeneity may underlie poor clinical outcomes because diverse subclones could be comprised of metastatic and drug resistant cells. Targeted deep sequencing has been used widely as a diagnostic tool to identify actionable mutations in cancer patients. In this study, we evaluated the clinical utility of estimating tumor heterogeneity using targeted panel sequencing data. We investigated the prognostic impact of a tumor heterogeneity (TH) index on clinical outcomes, using mutational profiles from targeted deep sequencing data acquired from 1,352 patients across 8 cancer types. The TH index tended to be increased in high pathological stage disease in several cancer types, indicating clonal expansion of cancer cells as tumor progression proceeds. In colorectal cancer patients, TH index values also correlated significantly with clinical prognosis. Integration of the TH index with genomic and clinical features could improve the power of risk prediction for clinical outcomes. In conclusion, deep sequencing to determine the TH index could serve as a promising prognostic indicator in cancer patients.
Collapse
Affiliation(s)
- Bo Young Oh
- Department of Colorectal Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Hyun-Tae Shin
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Jae Won Yun
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | | | - Jinho Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Joon Seol Bae
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute of Science and Health Technology, Sungkyunkwan University, Seoul, Korea
| | - Woo Yong Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute of Science and Health Technology, Sungkyunkwan University, Seoul, Korea
| | - Seong Hyeon Yun
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoon Ah Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeon Hee Park
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young-Hyuck Im
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeeyun Lee
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.
| | - Hee Cheol Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute of Science and Health Technology, Sungkyunkwan University, Seoul, Korea.
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea.
- GENINUS Inc., Seoul, Korea.
| |
Collapse
|
8
|
Tang Y, Cui Y, Zhang S, Zhang L. The sensitivity and specificity of serum glycan-based biomarkers for cancer detection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:121-140. [PMID: 30905445 DOI: 10.1016/bs.pmbts.2019.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Most of clinically used serum biomarkers for cancer detection were established in early 1980s when the Nobel Prize in physiology or medicine was awarded for the "discovery of the principle for the production of monoclonal antibodies." Using this "Nobel" technology, various monoclonal antibodies were obtained when different types of cancer cells were injected into mice and the ligands on the cancer cell surface were characterized. Both aberrant glycan structures and aberrant glycan-associated glycoproteins were revealed as a common feature of cancer cell surfaces through the specific interactions with the monoclonal antibodies. These results indicate that the biosynthesis of the environment-sensitive glycan structures goes awry in cancer cells, which is beyond genetic mutations. Later on, the glycan-related biomarkers were detected in the sera of cancer patients and then developed into serum biomarkers, such as CA125, CA153, CA195, CA199, CA242, CA27.29, CA50, and CA724, which are still in clinical use as of today. During the past 30 years, even with the advancement of different OMICS technologies not limited to genomics, epigenomics, proteomics, glycomics, lipidomics, and metabolomics, very few serum biomarkers have been introduced into clinical practice. The reason is that most of the newly discovered cancer biomarkers are inferior in terms of sensitivity and specificity to these biomarkers. We will summarize the reported sensitivity and specificity of currently used cancer biomarkers, especially the glycan-related biomarkers, in the forms of tables and radar plots and discuss the pros and cons of currently used cancer biomarkers.
Collapse
Affiliation(s)
- Yang Tang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yidi Cui
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Shufeng Zhang
- College of Chemistry, Tianjin Normal University, Tianjin, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
| |
Collapse
|
9
|
Wang Y, Liu H, Hou Y, Zhou X, Liang L, Zhang Z, Shi H, Xu S, Hu P, Zheng Z, Liu R, Tang T, Ye F, Liang Z, Bu H. Performance validation of an amplicon-based targeted next-generation sequencing assay and mutation profiling of 648 Chinese colorectal cancer patients. Virchows Arch 2018; 472:959-968. [PMID: 29705968 DOI: 10.1007/s00428-018-2359-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/01/2018] [Accepted: 04/08/2018] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing (NGS) has become a promising approach for tumor somatic mutation detection. However, stringent validation is required for its application on clinical specimens, especially for low-quality formalin-fixed paraffin-embedded (FFPE) tissues. Here, we validated the performance of an amplicon-based targeted NGS assay, OncoAim™ DNA panel, on both commercial reference FFPE samples and clinical FFPE samples of Chinese colorectal cancer (CRC) patients. Then we profiled the mutation spectrum of 648 Chinese CRC patients in a multicenter study to explore its clinical utility. This NGS assay achieved 100% test specificity and 95-100% test sensitivity for variants with mutant allele frequency (MAF) ≥ 5% when median read depth ≥ 500×. The orthogonal methods including amplification refractory mutation system (ARMS)-PCR and Sanger sequencing validated that NGS generated three false negatives (FNs) but no false positives (FPs) among 516 clinical samples for KRAS aberration detection. Genomic profiling of Chinese CRC patients with this assay revealed that 63.3% of the tumors harbored clinically actionable alterations. Besides the commonly mutated genes including TP53 (52.82%), KRAS (46.68%), APC (24.09%), PIK3CA (18.94%), SMAD4 (9.47%), BRAF (6.15%), FBXW7 (5.32%), and NRAS (4.15%), other less frequently mutated genes were also identified. Statistically significant association of specific mutated genes with certain clinicopathological features was detected, e.g., both BRAF and PIK3CA were more prevalent in right-side CRC (p < 0.001 and p = 0.002, respectively). We concluded this targeted NGS assay is qualified for clinical practice, and our findings could help the diagnosis and prognosis of Chinese CRC patients.
Collapse
Affiliation(s)
- Yajian Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China.,Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haijing Liu
- Department of Pathology, Peking University Third Hospital, Beijing, 100000, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoyan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Li Liang
- Huayin Laboratory, Southern Medical University, Guangzhou, 510515, China
| | - Zhihong Zhang
- Department of Pathology, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Huaiyin Shi
- Department of Pathology, Chinese PLA General Hospital and Chinese PLA Medical School, Beijing, 100000, China
| | - Sanpeng Xu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peizhen Hu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zuyu Zheng
- Singlera Genomics Inc., Shanghai, 201318, China
| | - Rui Liu
- Singlera Genomics Inc., Shanghai, 201318, China
| | | | - Feng Ye
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China.,Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China.,Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
10
|
Vodák D, Lorenz S, Nakken S, Aasheim LB, Holte H, Bai B, Myklebost O, Meza-Zepeda LA, Hovig E. Sample-Index Misassignment Impacts Tumour Exome Sequencing. Sci Rep 2018; 8:5307. [PMID: 29593270 PMCID: PMC5871786 DOI: 10.1038/s41598-018-23563-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/15/2018] [Indexed: 12/11/2022] Open
Abstract
Sample pooling enabled by dedicated indexes is a common strategy for cost-effective and robust high-throughput sequencing. Index misassignment leading to mutual contamination between pooled samples has however been described as a general problem of the latest Illumina sequencing instruments utilizing exclusion amplification. Using real-life data from multiple tumour sequencing projects, we demonstrate that index misassignment can induce artefactual variant calls closely resembling true, high-quality somatic variants. These artefactual calls potentially impact cancer applications utilizing low allelic frequencies, such as in clonal analysis of tumours. We discuss the available countermeasures with an emphasis on improved library indexing methods, and provide software that can assist in the identification of variants that may be consequences of index misassignment.
Collapse
Affiliation(s)
- Daniel Vodák
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Norwegian Cancer Genomics Consortium, Institute for Cancer Research, The Norwegian Radium Hospital/Oslo University Hospital, Oslo, Norway.,Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital/Oslo University Hospital, Oslo, Norway
| | - Susanne Lorenz
- Norwegian Cancer Genomics Consortium, Institute for Cancer Research, The Norwegian Radium Hospital/Oslo University Hospital, Oslo, Norway.,Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital/Oslo University Hospital, Oslo, Norway.,Department of Core Facilities, Institute for Cancer Research, The Norwegian Radium Hospital/Oslo University Hospital, Oslo, Norway
| | - Sigve Nakken
- Norwegian Cancer Genomics Consortium, Institute for Cancer Research, The Norwegian Radium Hospital/Oslo University Hospital, Oslo, Norway.,Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital/Oslo University Hospital, Oslo, Norway
| | - Lars Birger Aasheim
- Norwegian Cancer Genomics Consortium, Institute for Cancer Research, The Norwegian Radium Hospital/Oslo University Hospital, Oslo, Norway
| | - Harald Holte
- Norwegian Cancer Genomics Consortium, Institute for Cancer Research, The Norwegian Radium Hospital/Oslo University Hospital, Oslo, Norway.,Department of Oncology, Cancer Clinic, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Baoyan Bai
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ola Myklebost
- Norwegian Cancer Genomics Consortium, Institute for Cancer Research, The Norwegian Radium Hospital/Oslo University Hospital, Oslo, Norway.,Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital/Oslo University Hospital, Oslo, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Leonardo A Meza-Zepeda
- Norwegian Cancer Genomics Consortium, Institute for Cancer Research, The Norwegian Radium Hospital/Oslo University Hospital, Oslo, Norway.,Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital/Oslo University Hospital, Oslo, Norway.,Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, The Norwegian Radium Hospital/Oslo University Hospital, Oslo, Norway
| | - Eivind Hovig
- Norwegian Cancer Genomics Consortium, Institute for Cancer Research, The Norwegian Radium Hospital/Oslo University Hospital, Oslo, Norway. .,Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital/Oslo University Hospital, Oslo, Norway. .,Department of Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway. .,Department of Informatics, University of Oslo, Oslo, Norway.
| |
Collapse
|
11
|
Pannuti A, Filipovic A, Hicks C, Lefkowitz E, Ptacek T, Stebbing J, Miele L. Novel putative drivers revealed by targeted exome sequencing of advanced solid tumors. PLoS One 2018; 13:e0194790. [PMID: 29570743 PMCID: PMC5865730 DOI: 10.1371/journal.pone.0194790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 03/10/2018] [Indexed: 12/12/2022] Open
Abstract
Next generation sequencing (NGS) is becoming increasingly integrated into oncological practice and clinical research. NGS methods have also provided evidence for clonal evolution of cancers during disease progression and treatment. The number of variants associated with response to specific therapeutic agents keeps increasing. However, the identification of novel driver mutations as opposed to passenger (phenotypically silent or clinically irrelevant) mutations remains a major challenge. We conducted targeted exome sequencing of advanced solid tumors from 44 pre-treated patients with solid tumors including breast, colorectal and lung carcinomas, neuroendocrine tumors, sarcomas and others. We catalogued established driver mutations and putative new drivers as predicted by two distinct algorithms. The established drivers we detected were consistent with published observations. However, we also detected a significant number of mutations with driver potential never described before in each tumor type we studied. These putative drivers belong to key cell fate regulatory networks, including potentially druggable pathways. Should our observations be confirmed, they would support the hypothesis that new driver mutations are selected by treatment in clinically aggressive tumors, and indicate a need for longitudinal genomic testing of solid tumors to inform second line cancer treatment.
Collapse
Affiliation(s)
- Antonio Pannuti
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | | | - Chindo Hicks
- Department of Genetics, Louisiana State University School of Medicine, New Orleans, Louisiana, United States of America
- Biomedical Informatics Key Component, Louisiana Clinical and Translational Sciences Center, Baton Rouge, Louisiana, United States of America
| | - Elliot Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
- Informatics Institute, Center for Clinical and Translational Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Travis Ptacek
- Department of Microbiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
- Informatics Institute, Center for Clinical and Translational Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Justin Stebbing
- Department of Oncology, Imperial College of Medicine, London, United Kingdom
- * E-mail: (JS); (LM)
| | - Lucio Miele
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Genetics, Louisiana State University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail: (JS); (LM)
| |
Collapse
|
12
|
Kusano-Arai O, Iwanari H, Kudo S, Kikuchi C, Yui A, Akiba H, Matsusaka K, Kaneda A, Fukayama M, Tsumoto K, Hamakubo T. Synergistic Cytotoxic Effect on Gastric Cancer Cells of an Immunotoxin Cocktail in Which Antibodies Recognize Different Epitopes on CDH17. Monoclon Antib Immunodiagn Immunother 2018; 37:1-11. [DOI: 10.1089/mab.2017.0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Osamu Kusano-Arai
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
- Institute of Immunology Co. Ltd., Tokyo, Japan
| | - Hiroko Iwanari
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shota Kudo
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Chika Kikuchi
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Anna Yui
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Hiroki Akiba
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Keisuke Matsusaka
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kouhei Tsumoto
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Gomez K, Miura S, Huuki LA, Spell BS, Townsend JP, Kumar S. Somatic evolutionary timings of driver mutations. BMC Cancer 2018; 18:85. [PMID: 29347918 PMCID: PMC5774140 DOI: 10.1186/s12885-017-3977-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A unified analysis of DNA sequences from hundreds of tumors concluded that the driver mutations primarily occur in the earliest stages of cancer formation, with relatively few driver mutation events detected in the late-arising subclones. However, emerging evidence from the sequencing of multiple tumors and tumor regions per individual suggests that late-arising subclones with additional driver mutations are underestimated in single-sample analyses. METHODS To test whether driver mutations generally map to early tumor development, we examined multi-regional tumor sequencing data from 101 individuals reported in 11 published studies. Following previous studies, we annotated mutations as early-arising when all tumors/regions had those mutations (ubiquitous). We then inferred the fraction of mutations occurring early and compared it with late-arising mutations that were found in only single tumors/regions. RESULTS While a large fraction of driver mutations in tumors occurred relatively early in cancers, later driver mutations occurred at least as frequently as the early drivers in a substantial number of patients. This result was robust to many different approaches to annotate driver mutations. The relative frequency of early and late driver mutations varied among patients of the same cancer type and in different cancer types. We found that previous reports of the preponderance of early driver mutations were primarily informed by analysis of single tumor variant allele profiles, with which it is challenging to clearly distinguish between early and late drivers. CONCLUSIONS The origin and preponderance of new driver mutations are not limited to early stages of tumor evolution, with different tumors and regions showing distinct driver mutations and, consequently, distinct characteristics. Therefore, tumors with extensive intratumor heterogeneity appear to have many newly acquired drivers.
Collapse
Affiliation(s)
- Karen Gomez
- Institute for Genomics and Evolutionary Medicine, Sudhir Kumar, SERC 602A, 1925 N. 12th Street, Philadelphia, PA 19122 USA
- Department of Biology, Temple University, Philadelphia, PA 19122 USA
| | - Sayaka Miura
- Institute for Genomics and Evolutionary Medicine, Sudhir Kumar, SERC 602A, 1925 N. 12th Street, Philadelphia, PA 19122 USA
- Department of Biology, Temple University, Philadelphia, PA 19122 USA
| | - Louise A. Huuki
- Institute for Genomics and Evolutionary Medicine, Sudhir Kumar, SERC 602A, 1925 N. 12th Street, Philadelphia, PA 19122 USA
| | - Brianna S. Spell
- Institute for Genomics and Evolutionary Medicine, Sudhir Kumar, SERC 602A, 1925 N. 12th Street, Philadelphia, PA 19122 USA
- Department of Biology, Temple University, Philadelphia, PA 19122 USA
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut 06510 USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06511 USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06511 USA
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Sudhir Kumar, SERC 602A, 1925 N. 12th Street, Philadelphia, PA 19122 USA
- Department of Biology, Temple University, Philadelphia, PA 19122 USA
- Center for Genomic Medicine and Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Theodossiou TA, Olsen CE, Jonsson M, Kubin A, Hothersall JS, Berg K. The diverse roles of glutathione-associated cell resistance against hypericin photodynamic therapy. Redox Biol 2017; 12:191-197. [PMID: 28254657 PMCID: PMC5333531 DOI: 10.1016/j.redox.2017.02.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 12/27/2022] Open
Abstract
The diverse responses of different cancers to treatments such as photodynamic therapy of cancer (PDT) have fueled a growing need for reliable predictive markers for treatment outcome. In the present work we have studied the differential response of two phenotypically and genotypically different breast adenocarcinoma cell lines, MCF7 and MDA-MB-231, to hypericin PDT (HYP-PDT). MDA-MB-231 cells were 70% more sensitive to HYP PDT than MCF7 cells at LD50. MCF7 were found to express a substantially higher level of glutathione peroxidase (GPX4) than MDA-MB-231, while MDA-MB-231 differentially expressed glutathione-S-transferase (GSTP1), mainly used for xenobiotic detoxification. Eighty % reduction of intracellular glutathione (GSH) by buthionine sulfoximine (BSO), largely enhanced the sensitivity of the GSTP1 expressing MDA-MB-231 cells to HYP-PDT, but not in MCF7 cells. Further inhibition of the GSH reduction however by carmustine (BCNU) resulted in an enhanced sensitivity of MCF7 to HYP-PDT. HYP loading studies suggested that HYP can be a substrate of GSTP for GSH conjugation as BSO enhanced the cellular HYP accumulation by 20% in MDA-MB-231 cells, but not in MCF7 cells. Studies in solutions showed that L-cysteine can bind the GSTP substrate CDNB in the absence of GSTP. This means that the GSTP-lacking MCF7 may use L-cysteine for xenobiotic detoxification, especially during GSH synthesis inhibition, which leads to L-cysteine build-up. This was confirmed by the lowered accumulation of HYP in both cell lines in the presence of BSO and the L-cysteine source NAC. NAC reduced the sensitivity of MCF7, but not MDA-MB-231, cells to HYP PDT which is in accordance with the antioxidant effects of L-cysteine and its potential as a GSTP substrate. As a conclusion we have herein shown that the different GSH based cell defense mechanisms can be utilized as predictive markers for the outcome of PDT and as a guide for selecting optimal combination strategies.
Collapse
Affiliation(s)
- Theodossis A Theodossiou
- Department of Radiation Biology, Institute for cancer Research, Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway.
| | - Cathrine E Olsen
- Department of Radiation Biology, Institute for cancer Research, Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Marte Jonsson
- Department of Radiation Biology, Institute for cancer Research, Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Andreas Kubin
- PLANTA Naturstoffe Vertriebs GmbH, A-1120 Wien, Austria
| | - John S Hothersall
- Department of Radiation Biology, Institute for cancer Research, Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Kristian Berg
- Department of Radiation Biology, Institute for cancer Research, Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| |
Collapse
|
15
|
Peitzsch C, Tyutyunnykova A, Pantel K, Dubrovska A. Cancer stem cells: The root of tumor recurrence and metastases. Semin Cancer Biol 2017; 44:10-24. [DOI: 10.1016/j.semcancer.2017.02.011] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022]
|
16
|
Kulasingam V, Prassas I, Diamandis EP. Towards personalized tumor markers. NPJ Precis Oncol 2017; 1:17. [PMID: 29872704 PMCID: PMC5871887 DOI: 10.1038/s41698-017-0021-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 01/06/2023] Open
Abstract
The cancer biomarker discovery pipeline is progressing slowly. The difficulties of finding novel and effective biomarkers for diagnosis and management of cancer patients are well-known. We speculate that it is unlikely to discover new serological biomarkers characterized by high sensitivity and specificity. This projection is supported by recent findings that cancers are genetically highly heterogeneous. Here, we propose a new way of improving the landscape of cancer biomarker research. There are currently hundreds, if not thousands, of described biomarkers which perform at high specificity (> 90%), but at relatively low sensitivity (< 30%). We call these “rare tumor markers.” Borrowing from the principles of precision medicine, we advocate that among these low sensitivity markers, some may be useful to specific patients. We suggest screening new patients for hundreds to thousands of cancer biomarkers to identify a few that are informative, and then use them clinically. This is similar to what we currently do with genomics to identify personalized therapies. We further suggest that this approach may explain as to why some biomarkers are elevated in only a small group of patients. It is likely that these differences in expression are linked to specific genomic alterations, which could then be found with genomic sequencing.
Collapse
Affiliation(s)
- Vathany Kulasingam
- 1Department of Clinical Biochemistry, University Health Network, Toronto, ON Canada.,2Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - Ioannis Prassas
- 3Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON Canada
| | - Eleftherios P Diamandis
- 1Department of Clinical Biochemistry, University Health Network, Toronto, ON Canada.,2Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada.,3Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON Canada
| |
Collapse
|
17
|
Pan Y, Bush EC, Toonen JA, Ma Y, Solga AC, Sims PA, Gutmann DH. Whole tumor RNA-sequencing and deconvolution reveal a clinically-prognostic PTEN/PI3K-regulated glioma transcriptional signature. Oncotarget 2017; 8:52474-52487. [PMID: 28881745 PMCID: PMC5581044 DOI: 10.18632/oncotarget.17193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/30/2017] [Indexed: 12/29/2022] Open
Abstract
The concept that solid tumors are maintained by a productive interplay between neoplastic and non-neoplastic elements has gained traction with the demonstration that stromal fibroblasts and immune system cells dictate cancer development and progression. While less studied, brain tumor (glioma) biology is likewise influenced by non-neoplastic immune system cells (macrophages and microglia) which interact with neoplastic glioma cells to create a unique physiological state (glioma ecosystem) distinct from that found in the normal tissue. To explore this neoplastic ground state, we leveraged several preclinical mouse models of neurofibromatosis type 1 (NF1) optic glioma, a low-grade astrocytoma whose formation and maintenance requires productive interactions between non-neoplastic and neoplastic cells, and employed whole tumor RNA-sequencing and mathematical deconvolution strategies to characterize this low-grade glioma ecosystem as an aggregate of cellular and acellular elements. Using this approach, we demonstrate that optic gliomas generated by altering the germline Nf1 gene mutation, the glioma cell of origin, or the presence of co-existing genetic alterations represent molecularly-distinct tumors. However, these optic glioma tumors share a 25-gene core signature, not found in normal optic nerve, that is normalized by microglia inhibition (minocycline), but not conventional (carboplatin) or molecularly-targeted (rapamycin) chemotherapy. Lastly, we identify a genetic signature conferred by Pten reduction and corrected by PI3K inhibition. This signature predicts progression-free survival in patients with either low-grade or high-grade glioma. Collectively, these findings support the concept that gliomas are composite ecological systems whose biology and response to therapy may be best defined by examining the tumor as a whole.
Collapse
Affiliation(s)
- Yuan Pan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Erin C Bush
- Departments of Systems Biology and of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY, USA
| | - Joseph A Toonen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yu Ma
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anne C Solga
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter A Sims
- Departments of Systems Biology and of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
18
|
Brown HK, Tellez-Gabriel M, Heymann D. Cancer stem cells in osteosarcoma. Cancer Lett 2016; 386:189-195. [PMID: 27894960 DOI: 10.1016/j.canlet.2016.11.019] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022]
Abstract
Osteosarcoma is the most common primary bone tumour in children and adolescents and advanced osteosarcoma patients with evidence of metastasis share a poor prognosis. Osteosarcoma frequently gains resistance to standard therapies highlighting the need for improved treatment regimens and identification of novel therapeutic targets. Cancer stem cells (CSC) represent a sub-type of tumour cells attributed to critical steps in cancer including tumour propagation, therapy resistance, recurrence and in some cases metastasis. Recent published work demonstrates evidence of cancer stem cell phenotypes in osteosarcoma with links to drug resistance and tumorigenesis. In this review we will discuss the commonly used isolation techniques for cancer stem cells in osteosarcoma as well as the identified biochemical and molecular markers.
Collapse
Affiliation(s)
- Hannah K Brown
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, S10 2RX, Sheffield, UK; European Associated Laboratory, INSERM-University of Sheffield, Sarcoma Research Unit, Medical School, S10 2RX, Sheffield, UK.
| | - Marta Tellez-Gabriel
- Laboratotio Hematologia Oncologica y de Transplantes, Institut Investigacions Biomèdiques (IBB) Sant Pau, Hospital de la Santa Creui Sant Pau, 08025, Barcelona, Spain
| | - Dominique Heymann
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, S10 2RX, Sheffield, UK; European Associated Laboratory, INSERM-University of Sheffield, Sarcoma Research Unit, Medical School, S10 2RX, Sheffield, UK; INSERM, UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Equipe Ligue 2012, University of Nantes, Faculty of Medicine, 44035, Nantes, France.
| |
Collapse
|
19
|
Paysan L, Piquet L, Saltel F, Moreau V. Rnd3 in Cancer: A Review of the Evidence for Tumor Promoter or Suppressor. Mol Cancer Res 2016; 14:1033-1044. [PMID: 27555595 DOI: 10.1158/1541-7786.mcr-16-0164] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/19/2016] [Accepted: 08/10/2016] [Indexed: 11/16/2022]
Abstract
Rho-GTPases are members of the Ras superfamily of small GTPases and are general modulators of important cellular processes in tumor biology such as migration and proliferation. Among these proteins, Rnd3/RhoE, an atypical Rho-GTPase devoid of GTP hydrolytic activity, has recently been studied for its putative role in tumorigenesis. Indeed, Rnd3 is implicated in processes, such as proliferation and migration, whose deregulation is linked to cancer development and metastasis. The aim of this review is to provide an overview of the data surrounding Rnd3 deregulation in cancers, its origin, and consequences. Presented here is a comprehensive account of the expression status and biological output obtained in prostate, liver, stomach, colon, lung, and brain cancers as well as in melanoma and squamous cell carcinoma. Although there appears to be no general consensus about Rnd3 expression in cancers as this protein is differently altered according to the tumor context, these alterations overwhelmingly favor a protumorigenic role. Thus, depending on the tumor type, it may behave either as a tumor suppressor or as a tumor promoter. Importantly, the deregulation of Rnd3, in most cases, is linked to patient poor outcome. IMPLICATIONS Rnd3 has prognostic marker potential as exemplified in lung cancers and Rnd3 or Rnd3-associated signaling pathways may represent a new putative therapeutic target. Mol Cancer Res; 14(11); 1033-44. ©2016 AACR.
Collapse
Affiliation(s)
- Lisa Paysan
- INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France.,Univ. Bordeaux, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Léo Piquet
- INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France.,Univ. Bordeaux, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Frédéric Saltel
- INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France.,Univ. Bordeaux, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Violaine Moreau
- INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France. .,Univ. Bordeaux, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| |
Collapse
|