1
|
Patel PA, LaConte LEW, Liang C, Cecere T, Rajan D, Srivastava S, Mukherjee K. Genetic evidence for splicing-dependent structural and functional plasticity in CASK protein. J Med Genet 2024; 61:759-768. [PMID: 38670634 PMCID: PMC11290809 DOI: 10.1136/jmg-2023-109747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Pontocerebellar hypoplasia (PCH) may present with supratentorial phenotypes and is often accompanied by microcephaly. Damaging mutations in the X-linked gene CASK produce self-limiting microcephaly with PCH in females but are often lethal in males. CASK deficiency leads to early degeneration of cerebellar granule cells but its role in other regions of the brain remains uncertain. METHOD We generated a conditional Cask knockout mice and deleted Cask ubiquitously after birth at different times. We examined the clinical features in several subjects with damaging mutations clustered in the central part of the CASK protein. We have performed phylogenetic analysis and RT-PCR to assess the splicing pattern within the same protein region and performed in silico structural analysis to examine the effect of splicing on the CASK's structure. RESULT We demonstrate that deletion of murine Cask after adulthood does not affect survival but leads to cerebellar degeneration and ataxia over time. Intriguingly, damaging hemizygous CASK mutations in boys who display microcephaly and cerebral dysfunction but without PCH are known. These mutations are present in two vertebrate-specific CASK exons. These exons are subject to alternative splicing both in forebrain and hindbrain. Inclusion of these exons differentially affects the molecular structure and hence possibly the function/s of the CASK C-terminus. CONCLUSION Loss of CASK function disproportionately affects the cerebellum. Clinical data, however, suggest that CASK may have additional vertebrate-specific function/s that play a role in the mammalian forebrain. Thus, CASK has an ancient function shared between invertebrates and vertebrates as well as novel vertebrate-specific function/s.
Collapse
Affiliation(s)
- Paras A Patel
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
| | - Leslie E W LaConte
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Chen Liang
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
| | - Thomas Cecere
- Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Deepa Rajan
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarika Srivastava
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- Department of Genetics, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- Department of Genetics, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Liu X, Qin H, Liu Y, Ma J, Li Y, He Y, Zhu H, Mao L. The biological functions and pathological mechanisms of CASK in various diseases. Heliyon 2024; 10:e28863. [PMID: 38638974 PMCID: PMC11024568 DOI: 10.1016/j.heliyon.2024.e28863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
Background As a scaffold protein, calcium/calmodulin-dependent serine protein kinase (CASK) has been extensively studied in a variety of tissues throughout the body. The Cask gene is ubiquitous in several tissues, such as the neurons, islets, heart, kidneys and sperm, and is mostly localised in the cytoplasm adjacent to the basement membrane. CASK binds to a variety of proteins through its domains to exerting its biological activity. Scope of review Here, we discuss the role of CASK in multiple tissues throughout the body. The role of different CASK domains in regulating neuronal development, neurotransmitter release and synaptic vesicle secretion was emphasised; the regulatory mechanism of CASK on the function of pancreatic islet β cells was analysed; the role of CASK in cardiac physiology, kidney and sperm development was discussed; and the role of CASK in different tumours was compared. Finally, we clarify the importance of the Cask gene in the body, and how deletion or mutation of the Cask gene can have adverse consequences. Major conclusions CASK is a conserved gene with similar roles in various tissues. The function of the Cask gene in the nervous system is mainly involved in the development of the nervous system and the release of neurotransmitters. In the endocrine system, an involvement of CASK has been reported in the process of insulin vesicle transport. CASK is also involved in cardiomyocyte ion channel regulation, kidney and sperm development, and tumour proliferation. CASK is an indispensable gene for the whole body, and CASK mutations can cause foetal malformations or death at birth. In this review, we summarise the biological functions and pathological mechanisms of CASK in various systems, thereby providing a basis for further in-depth studies of CASK functions.
Collapse
Affiliation(s)
- Xingjing Liu
- Department of Endocrinology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Haonan Qin
- Department of Orthopedics, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Yuanyuan Liu
- Department of Endocrinology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Jingjing Ma
- Department of Endocrinology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Yiming Li
- Department of Endocrinology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Yu He
- Department of Endocrinology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Huimin Zhu
- Department of Electrophysiology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Li Mao
- Department of Endocrinology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| |
Collapse
|
3
|
Tello JA, Jiang L, Zohar Y, Restifo LL. Drosophila CASK regulates brain size and neuronal morphogenesis, providing a genetic model of postnatal microcephaly suitable for drug discovery. Neural Dev 2023; 18:6. [PMID: 37805506 PMCID: PMC10559581 DOI: 10.1186/s13064-023-00174-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND CASK-related neurodevelopmental disorders are untreatable. Affected children show variable severity, with microcephaly, intellectual disability (ID), and short stature as common features. X-linked human CASK shows dosage sensitivity with haploinsufficiency in females. CASK protein has multiple domains, binding partners, and proposed functions at synapses and in the nucleus. Human and Drosophila CASK show high amino-acid-sequence similarity in all functional domains. Flies homozygous for a hypomorphic CASK mutation (∆18) have motor and cognitive deficits. A Drosophila genetic model of CASK-related disorders could have great scientific and translational value. METHODS We assessed the effects of CASK loss of function on morphological phenotypes in Drosophila using established genetic, histological, and primary neuronal culture approaches. NeuronMetrics software was used to quantify neurite-arbor morphology. Standard nonparametric statistics methods were supplemented by linear mixed effects modeling in some cases. Microfluidic devices of varied dimensions were fabricated and numerous fluid-flow parameters were used to induce oscillatory stress fields on CNS tissue. Dissociation into viable neurons and neurite outgrowth in vitro were assessed. RESULTS We demonstrated that ∆18 homozygous flies have small brains, small heads, and short bodies. When neurons from developing CASK-mutant CNS were cultured in vitro, they grew small neurite arbors with a distinctive, quantifiable "bushy" morphology that was significantly rescued by transgenic CASK+. As in humans, the bushy phenotype showed dosage-sensitive severity. To overcome the limitations of manual tissue trituration for neuronal culture, we optimized the design and operation of a microfluidic system for standardized, automated dissociation of CNS tissue into individual viable neurons. Neurons from CASK-mutant CNS dissociated in the microfluidic system recapitulate the bushy morphology. Moreover, for any given genotype, device-dissociated neurons grew larger arbors than did manually dissociated neurons. This automated dissociation method is also effective for rodent CNS. CONCLUSIONS These biological and engineering advances set the stage for drug discovery using the Drosophila model of CASK-related disorders. The bushy phenotype provides a cell-based assay for compound screening. Nearly a dozen genes encoding CASK-binding proteins or transcriptional targets also have brain-development mutant phenotypes, including ID. Hence, drugs that improve CASK phenotypes might also benefit children with disorders due to mutant CASK partners.
Collapse
Affiliation(s)
- Judith A Tello
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
- Department of Neurology, University of Arizona Health Sciences, 1501 N. Campbell Ave, Tucson, AZ, 85724-5023, USA
- Present address: Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
- BIO5 Interdisciplinary Research Institute, University of Arizona, Tucson, AZ, 85721, USA
| | - Linda L Restifo
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Neurology, University of Arizona Health Sciences, 1501 N. Campbell Ave, Tucson, AZ, 85724-5023, USA.
- BIO5 Interdisciplinary Research Institute, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Cellular & Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ, 85724, USA.
| |
Collapse
|
4
|
Mori T, Zhou M, Tabuchi K. Diverse Clinical Phenotypes of CASK-Related Disorders and Multiple Functional Domains of CASK Protein. Genes (Basel) 2023; 14:1656. [PMID: 37628707 PMCID: PMC10454856 DOI: 10.3390/genes14081656] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
CASK-related disorders are a form of rare X-linked neurological diseases and most of the patients are females. They are characterized by several symptoms, including microcephaly with pontine and cerebellar hypoplasia (MICPCH), epilepsy, congenital nystagmus, and neurodevelopmental disorders. Whole-genome sequencing has identified various mutations, including nonsense and missense mutations, from patients with CASK-related disorders, revealing correlations between specific mutations and clinical phenotypes. Notably, missense mutations associated with epilepsy and intellectual disability were found throughout the whole region of the CASK protein, while missense mutations related to microcephaly and MICPCH were restricted in certain domains. To investigate the pathophysiology of CASK-related disorders, research groups have employed diverse methods, including the generation of CASK knockout mice and the supplementation of CASK to rescue the phenotypes. These approaches have yielded valuable insights into the identification of functional domains of the CASK protein associated with a specific phenotype. Additionally, recent advancements in the AI-based prediction of protein structure, such as AlphaFold2, and the application of genome-editing techniques to generate CASK mutant mice carrying missense mutations from patients with CASK-related disorders, allow us to understand the pathophysiology of CASK-related disorders in more depth and to develop novel therapeutic methods for the fundamental treatment of CASK-related disorders.
Collapse
Affiliation(s)
- Takuma Mori
- Department of Neuroinnovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan;
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
| | - Mengyun Zhou
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
| | - Katsuhiko Tabuchi
- Department of Neuroinnovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan;
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
| |
Collapse
|
5
|
Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Cells 2023; 12:2054. [PMID: 37626864 PMCID: PMC10453029 DOI: 10.3390/cells12162054] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
SRC homology 3 (SH3) domains are fundamental modules that enable the assembly of protein complexes through physical interactions with a pool of proline-rich/noncanonical motifs from partner proteins. They are widely studied modular building blocks across all five kingdoms of life and viruses, mediating various biological processes. The SH3 domains are also implicated in the development of human diseases, such as cancer, leukemia, osteoporosis, Alzheimer's disease, and various infections. A database search of the human proteome reveals the existence of 298 SH3 domains in 221 SH3 domain-containing proteins (SH3DCPs), ranging from 13 to 720 kilodaltons. A phylogenetic analysis of human SH3DCPs based on their multi-domain architecture seems to be the most practical way to classify them functionally, with regard to various physiological pathways. This review further summarizes the achievements made in the classification of SH3 domain functions, their binding specificity, and their significance for various diseases when exploiting SH3 protein modular interactions as drug targets.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
- Center for Interdisciplinary Biosciences, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| |
Collapse
|
6
|
Guo Q, Kouyama-Suzuki E, Shirai Y, Cao X, Yanagawa T, Mori T, Tabuchi K. Structural Analysis Implicates CASK-Liprin-α2 Interaction in Cerebellar Granular Cell Death in MICPCH Syndrome. Cells 2023; 12:cells12081177. [PMID: 37190086 DOI: 10.3390/cells12081177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Microcephaly with pontine and cerebellar hypoplasia (MICPCH) syndrome is a neurodevelopmental disorder caused by the deficiency of the X-chromosomal gene CASK. However, the molecular mechanisms by which CASK deficiency causes cerebellar hypoplasia in this syndrome remain elusive. In this study, we used CASK knockout (KO) mice as models for MICPCH syndrome and investigated the effect of CASK mutants. Female CASK heterozygote KO mice replicate the progressive cerebellar hypoplasia observed in MICPCH syndrome. CASK KO cultured cerebellar granule (CG) cells show progressive cell death that can be rescued by co-infection with lentivirus expressing wild-type CASK. Rescue experiments with CASK deletion mutants identify that the CaMK, PDZ, and SH3, but not L27 and guanylate kinase domains of CASK are required for the survival of CG cells. We identify missense mutations in the CaMK domain of CASK derived from human patients that fail to rescue the cell death of cultured CASK KO CG cells. Machine learning-based structural analysis using AlphaFold 2.2 predicts that these mutations disrupt the structure of the binding interface with Liprin-α2. These results suggest that the interaction with Liprin-α2 via the CaMK domain of CASK may be involved in the pathophysiology of cerebellar hypoplasia in MICPCH syndrome.
Collapse
Affiliation(s)
- Qi Guo
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Emi Kouyama-Suzuki
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Yoshinori Shirai
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, China
| | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Takuma Mori
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Department of NeuroHealth Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Department of NeuroHealth Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
7
|
Shirokova O, Zaborskaya O, Pchelin P, Kozliaeva E, Pershin V, Mukhina I. Genetic and Epigenetic Sexual Dimorphism of Brain Cells during Aging. Brain Sci 2023; 13:brainsci13020195. [PMID: 36831738 PMCID: PMC9954625 DOI: 10.3390/brainsci13020195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
In recent years, much of the attention paid to theoretical and applied biomedicine, as well as neurobiology, has been drawn to various aspects of sexual dimorphism due to the differences that male and female brain cells demonstrate during aging: (a) a dimorphic pattern of response to therapy for neurodegenerative disorders, (b) different age of onset and different degrees of the prevalence of such disorders, and (c) differences in their symptomatic manifestations in men and women. The purpose of this review is to outline the genetic and epigenetic differences in brain cells during aging in males and females. As a result, we hereby show that the presence of brain aging patterns in males and females is due to a complex of factors associated with the effects of sex chromosomes, which subsequently entails a change in signal cascades in somatic cells.
Collapse
Affiliation(s)
- Olesya Shirokova
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Correspondence:
| | - Olga Zaborskaya
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
| | - Pavel Pchelin
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Avenue, Nizhny Novgorod 603002, Russia
| | - Elizaveta Kozliaeva
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
| | - Vladimir Pershin
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Avenue, Nizhny Novgorod 603002, Russia
| | - Irina Mukhina
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Avenue, Nizhny Novgorod 603002, Russia
| |
Collapse
|
8
|
Yang K, Lin L, Yuan F, Li X, Liu Z, Lan X, Wang Y, Ren Y, Li J, Chen Y. Two heterozygous mutations in the calcium/calmodulin-dependent serine protein kinase gene (CASK) in cases with developmental disorders. Mol Genet Genomic Med 2022; 10:e2065. [PMID: 36168867 PMCID: PMC9651610 DOI: 10.1002/mgg3.2065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The calcium/calmodulin-dependent serine protein kinase gene (CASK) is an essential gene in mammals, critical for neurodevelopment. The purpose of this study is to expand the understanding of the diagnosis of CASK-linked disorders. MATERIALS/METHODS From clinical and genetic mutational analyses, relevant data in 2 Han Chinese patients were collected and analyzed. Real-time quantitative PCR (RT-qPCR) was performed to investigate the CASK expression levels in the patients. The X-chromosome inactivation (XCI) patterns of the patients and their nuclear families were tested by quantitation of methylation of the polymorphic human androgen receptor (HUMARA) locus. RESULTS Two Han Chinese patients both presented with intellectual disability (ID), microcephaly with pontine and cerebellar hypoplasia (MICPCH). Two de novo mutations of c.82C>T (p.Arg28*) and c.846C>G (p.Tyr282*) in CASK have been investigated and predicted to be deleterious, which have produced truncated proteins. The functional protein association network of STRING (http://string-db.org) generated three-dimensional (3D) atomic models based on protein sequences in CASK and two Arg28 and Tyr282 residues were marked. RT-qPCR showed lower copy numbers of CASK expression in the patients than in their parents, as well as the sex- and age- matched control groups. Patient 1 showed a skewed XCI pattern, while no related changes noted in patient 2. CONCLUSIONS Patients carrying different nonsense variants may have different degrees of different clinical phenotypes. This study expands the spectrum of genotype and phenotype correlations of CASK-linked disorders in the Han Chinese ethnicity and provides new insights into the molecular mechanism.
Collapse
Affiliation(s)
- Kunfang Yang
- Department of Neurology, Shanghai Children's Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Longlong Lin
- Department of Neurology, Shanghai Children's Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Fang Yuan
- Department of Neurology, Shanghai Children's Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoguang Li
- Department of EmergencyShanghai United Family HospitalShanghaiChina
| | - Zhiping Liu
- Department of Neurology, Shanghai Children's Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoping Lan
- Department of Neurology, Shanghai Children's Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Yilin Wang
- Department of Neurology, Shanghai Children's Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Yun Ren
- Department of Neurology, Shanghai Children's Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jiaoyan Li
- Department of PediatricsShanghai United Family HospitalShanghaiChina
| | - Yucai Chen
- Department of Neurology, Shanghai Children's Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
9
|
Xie G, Zhang Y, Yang W, Yang L, Wang R, Xu M, Sun L, Zhang B, Cui X. Case report: A novel CASK mutation in a Chinese female child with microcephaly with pontine and cerebellar hypoplasia. Front Genet 2022; 13:856636. [PMID: 36159992 PMCID: PMC9490368 DOI: 10.3389/fgene.2022.856636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Microcephaly with pontine and cerebellar hypoplasia (MICPCH) is a rare X-linked dominant genetic disease, and most MICPCHs are ascribed to CASK mutations, while few are revealed in Chinese patients. This study aims to identify the pathogenic mutation in a Chinese proband with MICPCH. Methods: A 3-year-old female Chinese proband with MICPCH and her parents were included. Clinical data were collected from the medical records and recalled by the proband's mother. Whole genome sequencing and Sanger sequencing were used to find the pathogenic mutation of MICPCH. Results: The proband presented with postnatal progressive microcephaly, cerebellar hypoplasia, intellectual disability, motor and language development retardation and limb hypertonia. Genetic analysis indicated that there was a novel compound heterozygote nonsynonymous mutation, c.755T>C(p.Leu252Pro) in exon8 of CASK gene in the proband, but not in her parents. This CASK mutation has not been reported in other databases. Conclusion: This study broadens the mutation spectrum of the CASK gene and is of great value for precise prenatal diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Guilan Xie
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yan Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenfang Yang
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Liren Yang
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Ruiqi Wang
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Mengmeng Xu
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Landi Sun
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Boxing Zhang
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xiaoyi Cui
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Peking University Health Science Center, Beijing, China
| |
Collapse
|
10
|
Dubbs H, Ortiz-Gonzalez X, Marsh ED. Pathogenic variants in CASK: Expanding the genotype-phenotype correlations. Am J Med Genet A 2022; 188:2617-2626. [PMID: 35670295 DOI: 10.1002/ajmg.a.62863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 01/24/2023]
Abstract
Pathogenic variants in CASK, an X-linked gene that plays a role in brain development and synaptic function, are the cause of both microcephaly with pontine and cerebellar hypoplasia (MICPCH), and X-linked intellectual disability (XLID) with or without nystagmus. MICPCH is caused by loss of function variants in CASK, typically affects females, and is associated with moderate-to-severe intellectual disability (ID). Additional findings, present in about one-third of individuals, include feeding difficulties, ophthalmologic issues, hypertonicity, epilepsy, and sensorineural hearing loss. Only a few affected males with MICPCH phenotype have been reported and most have had profound developmental disability and intractable epilepsy. The XLID phenotype is typically caused by missense variants and most often manifests in males; carrier females are mildly affected or unaffected. Nystagmus is often present. In total, over 175 patients have been reported in the literature. We now report an additional 11 patients with pathogenic variants in CASK that expand these phenotypes and reported genotype-phenotype correlations.
Collapse
Affiliation(s)
- Holly Dubbs
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Xilma Ortiz-Gonzalez
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eric D Marsh
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Zhang R, Jia P, Yao Y, Zhu F. Case Report: Identification of a novel CASK missense variant in a Chinese family with MICPCH. Front Genet 2022; 13:933785. [PMID: 36092876 PMCID: PMC9452731 DOI: 10.3389/fgene.2022.933785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Mental retardation and microcephaly with pontine and cerebellar hypoplasia (MICPCH) is a rare genetic disorder that results in varying levels of pontocerebellar hypoplasia, microcephaly, and severe intellectual disabilities. Prior genetic analyses have identified the CASK gene as a driver of MICPCH. Herein, we analyzed a Chinese family with MICPCH. The index patient was an 8-year-old male. He and his 3-year-old brother suffered from microcephaly, pontocerebellar hypoplasia, serious mental retardation, ataxia, gait disorder, and inability to speak. Through a combination of whole-exome sequencing and subsequent Sanger sequencing, a novel X-linked missense mutation, c.1882G>C (p.D628H) in the CASK gene, was identified in two siblings, as well as their mother and grandmother, who exhibited mild mental retardation. Other family members with negative genetic testing were normal. In silico analyses indicated that this missense mutation was predicted to reduce CASK protein stability, disrupt the SRC homology 3 (SH3) domain, and abolish its function. In summary, we identified a novel missense variate in CASK associated with MICPCH. Our work facilitates the diagnosis of the disease in this family and broadens the gene variant spectrum of the CASK in MICPCH patients.
Collapse
Affiliation(s)
- Runfeng Zhang
- College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Peng Jia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanyi Yao
- Medical Genetic Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
- *Correspondence: Feng Zhu, ; Yanyi Yao,
| | - Feng Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Feng Zhu, ; Yanyi Yao,
| |
Collapse
|
12
|
Wu S, Jiang C, Li J, Zhang G, Shen Y, Wang J. A novel missense variant in the CASK gene causes intellectual developmental disorder and microcephaly with pontine and cerebellar hypoplasia. BMC Med Genomics 2022; 15:127. [PMID: 35668446 PMCID: PMC9169347 DOI: 10.1186/s12920-022-01275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variants in the CASK gene result in a wide range of observed phenotypes in humans, such as FG Syndrome 4 and intellectual disabilities. Intellectual developmental disorder with microcephaly and pontine and cerebellar hypoplasia (MICPCH) is an X-linked disorder that affects females and is characterized by severely impaired intellectual development and variable degrees of pontocerebellar hypoplasia. Variants in CASK are the main genetic cause of MICPCH. Variants in CASK can explain most patients with MICPCH, but there are still some patients whose disease aetiology cannot be explained. CASE PRESENTATION An 11-month-old female diagnosed with MICPCH exhibited general developmental delays, microcephaly, and cerebellar hypoplasia. Whole-exome sequencing (WES) was used to find a novel heterozygous missense variant (NM_003688.3: c.638T>G) of CASK in this patient. Strikingly, this variant reduced the expression of CASK at the protein level but not at the mRNA level. By using protein structure prediction analysis, this study found that the amino acid change caused by the variant resulted in further changes in the stability of the protein structure, and these changes caused the downregulation of protein expression and loss of protein function. CONCLUSION In this study, we first reported a novel heterozygous pathogenic variant and a causative mechanism of MICPCH. The amino acid change cause by this variant led to changes in the protein structure and a decrease in its stability, which caused a loss of protein function. This study could be helpful to the genetic diagnosis of this disease.
Collapse
Affiliation(s)
- Sixian Wu
- Joint Laboratory of Reproductive Medicine, Gynaecology and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Chuan Jiang
- Joint Laboratory of Reproductive Medicine, Gynaecology and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jiaman Li
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Guohui Zhang
- Joint Laboratory of Reproductive Medicine, Gynaecology and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ying Shen
- Joint Laboratory of Reproductive Medicine, Gynaecology and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Jing Wang
- Department of Obstetrics and Gynaecology, West China Second University Hospital of Sichuan University and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
13
|
Zhang Y, Nie Y, Mu Y, Zheng J, Xu X, Zhang F, Shu J, Liu Y. A de novo variant in CASK gene causing intellectual disability and brain hypoplasia: a case report and literature review. Ital J Pediatr 2022; 48:73. [PMID: 35550617 PMCID: PMC9097383 DOI: 10.1186/s13052-022-01248-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/17/2022] [Indexed: 12/02/2022] Open
Abstract
Background The pathogenic variation of CASK gene can cause CASK related mental disorders. The main clinical manifestations are microcephaly with pontine and cerebellar hypoplasia, X-linked mental disorders with or without nystagmus and FG syndrome. The main pathogenic mechanism is the loss of function of related protein caused by variant. We reported a Chinese male newborn with a de novo variant in CASK gene. Case presentation We present an 18-day-old baby with growth retardation and brain hypoplasia. Whole-exome sequencing was performed, which detected a hemizygous missense variant c.764G > A of CASK gene. The variant changed the 255th amino acid from Arg to His. Software based bioinformatics analyses were conducted to infer its functional effect. Conclusions In this paper, a de novo variant of CASK gene was reported. Moreover, a detailed description of all the cases described in the literature is reported. CASK variants cause a variety of clinical phenotypes. Its diagnosis is difficult due to the lack of typical clinical symptoms. Genetic testing should be performed as early as possible if this disease is suspected. This case provides an important reference for the diagnosis and treatment of future cases.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Neonatology, Tianjin Children's Hospital (Tianjin University Children's Hospital), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China.,Graduate College of Tianjin Medical University, Tianjin, China
| | - Yanyan Nie
- Department of Neonatology, Tianjin Children's Hospital (Tianjin University Children's Hospital), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Yu Mu
- Department of Neonatology, Tianjin Children's Hospital (Tianjin University Children's Hospital), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Jie Zheng
- Graduate College of Tianjin Medical University, Tianjin, China
| | - Xiaowei Xu
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China.,Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Fang Zhang
- Department of Neonatology, Tianjin Children's Hospital (Tianjin University Children's Hospital), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Jianbo Shu
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China. .,Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China.
| | - Yang Liu
- Department of Neonatology, Tianjin Children's Hospital (Tianjin University Children's Hospital), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China.
| |
Collapse
|
14
|
Mukherjee K, LaConte LEW, Srivastava S. The Non-Linear Path from Gene Dysfunction to Genetic Disease: Lessons from the MICPCH Mouse Model. Cells 2022; 11:1131. [PMID: 35406695 PMCID: PMC8997851 DOI: 10.3390/cells11071131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/09/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Most human disease manifests as a result of tissue pathology, due to an underlying disease process (pathogenesis), rather than the acute loss of specific molecular function(s). Successful therapeutic strategies thus may either target the correction of a specific molecular function or halt the disease process. For the vast majority of brain diseases, clear etiologic and pathogenic mechanisms are still elusive, impeding the discovery or design of effective disease-modifying drugs. The development of valid animal models and their proper characterization is thus critical for uncovering the molecular basis of the underlying pathobiological processes of brain disorders. MICPCH (microcephaly and pontocerebellar hypoplasia) is a monogenic condition that results from variants of an X-linked gene, CASK (calcium/calmodulin-dependent serine protein kinase). CASK variants are associated with a wide range of clinical presentations, from lethality and epileptic encephalopathies to intellectual disabilities, microcephaly, and autistic traits. We have examined CASK loss-of-function mutations in model organisms to simultaneously understand the pathogenesis of MICPCH and the molecular function/s of CASK. Our studies point to a highly complex relationship between the potential molecular function/s of CASK and the phenotypes observed in model organisms and humans. Here we discuss the implications of our observations from the pathogenesis of MICPCH as a cautionary narrative against oversimplifying molecular interpretations of data obtained from genetically modified animal models of human diseases.
Collapse
Affiliation(s)
- Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA; (L.E.W.L.); (S.S.)
- Department of Psychiatry, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Leslie E. W. LaConte
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA; (L.E.W.L.); (S.S.)
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Sarika Srivastava
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA; (L.E.W.L.); (S.S.)
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
15
|
Patel PA, Hegert JV, Cristian I, Kerr A, LaConte LEW, Fox MA, Srivastava S, Mukherjee K. Complete loss of the X-linked gene CASK causes severe cerebellar degeneration. J Med Genet 2022; 59:1044-1057. [PMID: 35149592 DOI: 10.1136/jmedgenet-2021-108115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/13/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Heterozygous loss of X-linked genes like CASK and MeCP2 (Rett syndrome) causes developmental delay in girls, while in boys, loss of the only allele of these genes leads to epileptic encephalopathy. The mechanism for these disorders remains unknown. CASK-linked cerebellar hypoplasia is presumed to result from defects in Tbr1-reelin-mediated neuronal migration. METHOD Here we report clinical and histopathological analyses of a deceased 2-month-old boy with a CASK-null mutation. We next generated a mouse line where CASK is completely deleted (hemizygous and homozygous) from postmigratory neurons in the cerebellum. RESULT The CASK-null human brain was smaller in size but exhibited normal lamination without defective neuronal differentiation, migration or axonal guidance. The hypoplastic cerebellum instead displayed astrogliosis and microgliosis, which are markers for neuronal loss. We therefore hypothesise that CASK loss-induced cerebellar hypoplasia is the result of early neurodegeneration. Data from the murine model confirmed that in CASK loss, a small cerebellum results from postdevelopmental degeneration of cerebellar granule neurons. Furthermore, at least in the cerebellum, functional loss from CASK deletion is secondary to degeneration of granule cells and not due to an acute molecular functional loss of CASK. Intriguingly, female mice with heterozygous deletion of CASK in the cerebellum do not display neurodegeneration. CONCLUSION We suggest that X-linked neurodevelopmental disorders like CASK mutation and Rett syndrome are pathologically neurodegenerative; random X-chromosome inactivation in heterozygous mutant girls, however, results in 50% of cells expressing the functional gene, resulting in a non-progressive pathology, whereas complete loss of the only allele in boys leads to unconstrained degeneration and encephalopathy.
Collapse
Affiliation(s)
- Paras A Patel
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
| | - Julia V Hegert
- Department of Pathology, Orlando Health, Orlando, Florida, USA
| | | | - Alicia Kerr
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
| | | | - Michael A Fox
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA.,School of Neuroscience, Blacksburg, Virginia, USA
| | - Sarika Srivastava
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA.,Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA .,Department of Psychiatry, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| |
Collapse
|
16
|
Catusi I, Garzo M, Capra AP, Briuglia S, Baldo C, Canevini MP, Cantone R, Elia F, Forzano F, Galesi O, Grosso E, Malacarne M, Peron A, Romano C, Saccani M, Larizza L, Recalcati MP. 8p23.2-pter Microdeletions: Seven New Cases Narrowing the Candidate Region and Review of the Literature. Genes (Basel) 2021; 12:652. [PMID: 33925474 PMCID: PMC8146486 DOI: 10.3390/genes12050652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
To date only five patients with 8p23.2-pter microdeletions manifesting a mild-to-moderate cognitive impairment and/or developmental delay, dysmorphisms and neurobehavioral issues were reported. The smallest microdeletion described by Wu in 2010 suggested a critical region (CR) of 2.1 Mb including several genes, out of which FBXO25, DLGAP2, CLN8, ARHGEF10 and MYOM2 are the main candidates. Here we present seven additional patients with 8p23.2-pter microdeletions, ranging from 71.79 kb to 4.55 Mb. The review of five previously reported and nine Decipher patients confirmed the association of the CR with a variable clinical phenotype characterized by intellectual disability/developmental delay, including language and speech delay and/or motor impairment, behavioral anomalies, autism spectrum disorder, dysmorphisms, microcephaly, fingers/toes anomalies and epilepsy. Genotype analysis allowed to narrow down the 8p23.3 candidate region which includes only DLGAP2, CLN8 and ARHGEF10 genes, accounting for the main signs of the broad clinical phenotype associated to 8p23.2-pter microdeletions. This region is more restricted compared to the previously proposed CR. Overall, our data favor the hypothesis that DLGAP2 is the actual strongest candidate for neurodevelopmental/behavioral phenotypes. Additional patients will be necessary to validate the pathogenic role of DLGAP2 and better define how the two contiguous genes, ARHGEF10 and CLN8, might contribute to the clinical phenotype.
Collapse
Affiliation(s)
- Ilaria Catusi
- Istituto Auxologico Italiano, IRCCS, Laboratory of Medical Cytogenetics and Molecular Genetics, 20145 Milan, Italy; (M.G.); (L.L.); (M.P.R.)
| | - Maria Garzo
- Istituto Auxologico Italiano, IRCCS, Laboratory of Medical Cytogenetics and Molecular Genetics, 20145 Milan, Italy; (M.G.); (L.L.); (M.P.R.)
| | - Anna Paola Capra
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98100 Messina, Italy; (A.P.C.); (S.B.)
| | - Silvana Briuglia
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98100 Messina, Italy; (A.P.C.); (S.B.)
| | - Chiara Baldo
- UOC Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (C.B.); (M.M.)
| | - Maria Paola Canevini
- Child Neuropsychiatry Unit—Epilepsy Center, Department of Health Sciences, ASST Santi Paolo e Carlo, San Paolo Hospital, Università Degli Studi di Milano, 20142 Milan, Italy; (M.P.C.); (A.P.); (M.S.)
| | - Rachele Cantone
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy; (R.C.); (E.G.)
| | - Flaviana Elia
- Unit of Psychology, Oasi Research Institute-IRCCS, 94018 Troina, Italy;
| | - Francesca Forzano
- Clinical Genetics Department, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 9RT, UK;
| | - Ornella Galesi
- Laboratory of Medical Genetics, Oasi Research Institute-IRCCS, 94018 Troina, Italy;
| | - Enrico Grosso
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy; (R.C.); (E.G.)
| | - Michela Malacarne
- UOC Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (C.B.); (M.M.)
| | - Angela Peron
- Child Neuropsychiatry Unit—Epilepsy Center, Department of Health Sciences, ASST Santi Paolo e Carlo, San Paolo Hospital, Università Degli Studi di Milano, 20142 Milan, Italy; (M.P.C.); (A.P.); (M.S.)
- Human Pathology and Medical Genetics, ASST Santi Paolo e Carlo, San Paolo Hospital, 20142 Milan, Italy
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Corrado Romano
- Unit of Pediatrics and Medical Genetics, Oasi Research Institute-IRCCS, 94018 Troina, Italy;
| | - Monica Saccani
- Child Neuropsychiatry Unit—Epilepsy Center, Department of Health Sciences, ASST Santi Paolo e Carlo, San Paolo Hospital, Università Degli Studi di Milano, 20142 Milan, Italy; (M.P.C.); (A.P.); (M.S.)
| | - Lidia Larizza
- Istituto Auxologico Italiano, IRCCS, Laboratory of Medical Cytogenetics and Molecular Genetics, 20145 Milan, Italy; (M.G.); (L.L.); (M.P.R.)
| | - Maria Paola Recalcati
- Istituto Auxologico Italiano, IRCCS, Laboratory of Medical Cytogenetics and Molecular Genetics, 20145 Milan, Italy; (M.G.); (L.L.); (M.P.R.)
| |
Collapse
|
17
|
CASK related disorder: Epilepsy and developmental outcome. Eur J Paediatr Neurol 2021; 31:61-69. [PMID: 33640666 DOI: 10.1016/j.ejpn.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE CASK pathogenic variants are associated with variable features, as intellectual disability, optic atrophy, brainstem/cerebellar hypoplasia, and epileptic encephalopathy. Few studies describe the electroclinical features of epilepsy in patients with CASK pathogenic variants and their relationship with developmental delay. METHODS this national multicentre cohort included genetically confirmed patients with different CASK pathogenic variants. Our findings were compared with cohorts reported in the literature. RESULTS we collected 34 patients (29 females) showing from moderate (4 patients) to severe (22) and profound (8) developmental delay; all showed pontine and cerebellar hypoplasia, all except three with microcephaly. Seventeen out of 34 patients (50%) suffered from epileptic seizures, including spasms (11 patients, 32.3%), generalized (5) or focal seizures (1). In 8/17 individuals (47.1%), epilepsy started at or beyond the age of 24 months. Seven (3 males) out of the 11 children with spasms showed EEG features and a course supporting the diagnosis of a developmental and epileptic encephalopathy (DEE). Drug resistance was frequent in our cohort (52.9% of patients with epilepsy). EEG abnormalities included poorly organized background activity with diffuse or multifocal epileptiform abnormalities and sleep-activation, with possible appearance over the follow-up period. Developmental delay degree was not statistically different among patients with or without seizures but feeding difficulties were more frequent in patients with epilepsy. CONCLUSIONS epilepsy is a frequent comorbidity with a high incidence of spasms and drug resistance. Overall developmental disability does not seem to be more severe in the group of patients with epilepsy nor to be linked to specific epilepsy/EEG characteristics. A childhood onset of epilepsy is frequent, with possible worsening over time, so that serial and systematic monitoring is mandatory.
Collapse
|
18
|
Nishio Y, Kidokoro H, Takeo T, Narita H, Sawamura F, Narita K, Kawano Y, Nakata T, Muramatsu H, Hara S, Kaname T, Natsume J. The eldest case of MICPCH with CASK mutation exhibiting gross motor regression. Brain Dev 2021; 43:459-463. [PMID: 33272775 DOI: 10.1016/j.braindev.2020.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/02/2020] [Accepted: 11/15/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND MICPCH is manifested as microcephaly associated with pontocerebellar hypoplasia and global developmental delay but developmental regression has never been reported. We describe the detailed clinical history of a woman with intellectual disability and microcephaly with pontine and cerebellar hypoplasia (MICPCH) with a CASK mutation who exhibited gross motor regression after adolescence. CASE The patient experienced severe motor and intellectual developmental delay with microcephaly from infancy. The initial diagnosis was Rett syndrome based on her clinical features, including hand stereotypes and the absence of structural abnormality on magnetic resonance imaging (MRI) performed at the age of 5 years. Although gross motor abilities developed slowly and she could walk independently, she never acquired speech or understanding of languages. After adolescence, her motor ability gradually regressed so that she was unable to stand without support and moved with a wheelchair. At the age of 31 years, because of her atypical clinical course for Rett syndrome, whole exome sequencing was performed, which revealed a de novo heterozygous c.2068 + 1G > A mutation in the CASK gene (NM_001126055). Brain MRI revealed mild pontocerebellar hypoplasia compatible with the clinical phenotype of MICPCH. DISCUSSION This case suggests that MICPCH with a CASK mutation might cause developmental regression after adolescence and might be regarded as a neurodegenerative disorder.
Collapse
Affiliation(s)
- Yosuke Nishio
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Pediatrics, TOYOTA Memorial Hospital, Toyota, Japan
| | - Hiroyuki Kidokoro
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Toshiki Takeo
- Department of Pediatrics, TOYOTA Memorial Hospital, Toyota, Japan
| | - Hajime Narita
- Department of Pediatrics, TOYOTA Memorial Hospital, Toyota, Japan
| | - Fumi Sawamura
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kotaro Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiko Kawano
- Department of Pediatrics, TOYOTA Memorial Hospital, Toyota, Japan
| | - Tomohiko Nakata
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinya Hara
- Department of Pediatrics, TOYOTA Memorial Hospital, Toyota, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Jun Natsume
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Disability Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
19
|
Zhao J, Hou M, Wang H, Liu Q, Sun D, Wei W. Microcephaly, disproportionate pontine, and cerebellar hypoplasia syndrome: Two novel mutations in the CASK gene were discovered in Chinese females. Int J Dev Neurosci 2021; 81:277-284. [PMID: 33629417 DOI: 10.1002/jdn.10100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/08/2021] [Accepted: 02/21/2021] [Indexed: 11/10/2022] Open
Abstract
Microcephaly, disproportionate pontine and cerebellar hypoplasia (MICPCH) syndrome is a rare and genetic disorder, which is mainly caused by mutations in the CASK gene. We described four variations in the CASK gene in Chinese female patients with MICPCH, who presented with microcephaly, developmental delay, and motor disorder. The CASK mutations were identified using NGS (the next-generation sequencing), copy number variation sequencing. Two novel variations in the CASK gene were revealed including a frameshift mutation c.1000_1001insG (p.Asp334GlyfsTer32) and a nonsense mutation c.2110A > T (p.Lys704Ter). Two other aberrations were c.316C > T (p.Arg106Ter) and Xp11.4-p11.3 (41,700,001-44,660,000) × 1 loss. We provided clinical manifestations and neuroimaging findings of the four patients. The genetic variation spectrum of MICPCH caused by CASK was updated. Furthermore, we expounded on the molecular mechanism of the disease and noticed that it was not possible to relate the magnitude of the genetic alteration to a particular phenotype.
Collapse
Affiliation(s)
- Jianhui Zhao
- Department of Neurology & Rehabilitation, Qingdao Women and Children's Hospital, Qingdao, P.R. China
| | - Mei Hou
- Department of Neurology & Rehabilitation, Qingdao Women and Children's Hospital, Qingdao, P.R. China
| | - Haiqiao Wang
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Qiuyan Liu
- Department of Neurology & Rehabilitation, Qingdao Women and Children's Hospital, Qingdao, P.R. China
| | - Dianrong Sun
- Department of Neurology & Rehabilitation, Qingdao Women and Children's Hospital, Qingdao, P.R. China
| | - Wei Wei
- Kangso Medical Inspection Co, Ltd., Beijing, P.R. China
| |
Collapse
|
20
|
Pan YE, Tibbe D, Harms FL, Reißner C, Becker K, Dingmann B, Mirzaa G, Kattentidt-Mouravieva AA, Shoukier M, Aggarwal S, Missler M, Kutsche K, Kreienkamp HJ. Missense mutations in CASK, coding for the calcium-/calmodulin-dependent serine protein kinase, interfere with neurexin binding and neurexin-induced oligomerization. J Neurochem 2020; 157:1331-1350. [PMID: 33090494 DOI: 10.1111/jnc.15215] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022]
Abstract
Mutations in the X-linked gene coding for the calcium-/calmodulin-dependent serine protein kinase (CASK) are associated with severe neurological disorders ranging from intellectual disability (in males) to mental retardation and microcephaly with pontine and cerebellar hypoplasia. CASK is involved in transcription control, in the regulation of trafficking of the post-synaptic NMDA and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, and acts as a presynaptic scaffolding protein. For CASK missense mutations, it is mostly unclear which of CASK's molecular interactions and cellular functions are altered and contribute to patient phenotypes. We identified five CASK missense mutations in male patients affected by neurodevelopmental disorders. These and five previously reported mutations were systematically analysed with respect to interaction with CASK interaction partners by co-expression and co-immunoprecipitation. We show that one mutation in the L27 domain interferes with binding to synapse-associated protein of 97 kDa. Two mutations in the guanylate kinase (GK) domain affect binding of CASK to the nuclear factors CASK-interacting nucleosome assembly protein (CINAP) and T-box, brain, 1 (Tbr1). A total of five mutations in GK as well as PSD-95/discs large/ZO-1 (PDZ) domains affect binding of CASK to the pre-synaptic cell adhesion molecule Neurexin. Upon expression in neurons, we observe that binding to Neurexin is not required for pre-synaptic localization of CASK. We show by bimolecular fluorescence complementation assay that Neurexin induces oligomerization of CASK, and that mutations in GK and PDZ domains interfere with the Neurexin-induced oligomerization of CASK. Our data are supported by molecular modelling, where we observe that the cooperative activity of PDZ, SH3 and GK domains is required for Neurexin binding and oligomerization of CASK.
Collapse
Affiliation(s)
- Yingzhou Edward Pan
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Debora Tibbe
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frederike Leonie Harms
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Reißner
- Institut für Anatomie und Molekulare Neurobiologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | - Bri Dingmann
- Medical Genetics Department, Seattle Children's Hospital, Seattle, Washington, DC, USA
| | - Ghayda Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, DC, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, DC, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | | | - Moneef Shoukier
- Pränatal-Medizin München, Frauenärzte und Humangenetiker MVZ, München, Germany
| | - Shagun Aggarwal
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Markus Missler
- Institut für Anatomie und Molekulare Neurobiologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Kerstin Kutsche
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Presynaptic dysfunction in CASK-related neurodevelopmental disorders. Transl Psychiatry 2020; 10:312. [PMID: 32929080 PMCID: PMC7490425 DOI: 10.1038/s41398-020-00994-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
CASK-related disorders are genetically defined neurodevelopmental syndromes. There is limited information about the effects of CASK mutations in human neurons. Therefore, we sought to delineate CASK-mutation consequences and neuronal effects using induced pluripotent stem cell-derived neurons from two mutation carriers. One male case with autism spectrum disorder carried a novel splice-site mutation and a female case with intellectual disability carried an intragenic tandem duplication. We show reduction of CASK protein in maturing neurons from the mutation carriers, which leads to significant downregulation of genes involved in presynaptic development and of CASK protein interactors. Furthermore, CASK-deficient neurons showed decreased inhibitory presynapse size as indicated by VGAT staining, which may alter the excitatory-inhibitory (E/I) balance in developing neural circuitries. Using in vivo magnetic resonance spectroscopy quantification of GABA in the male mutation carrier, we further highlight the possibility to validate in vitro cellular data in the brain. Our data show that future pharmacological and clinical studies on targeting presynapses and E/I imbalance could lead to specific treatments for CASK-related disorders.
Collapse
|
22
|
Mukherjee K, Patel PA, Rajan DS, LaConte LEW, Srivastava S. Survival of a male patient harboring CASK Arg27Ter mutation to adolescence. Mol Genet Genomic Med 2020; 8:e1426. [PMID: 32696595 PMCID: PMC7549553 DOI: 10.1002/mgg3.1426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background CASK is an X‐linked gene in mammals and its deletion in males is incompatible with life. CASK heterozygous mutations in female patients associate with intellectual disability, microcephaly, pontocerebellar hypoplasia, and optic nerve hypoplasia, whereas CASK hemizygous mutations in males manifest as early infantile epileptic encephalopathy with a grim prognosis. Here, we report a rare case of survival of a male patient harboring a CASK null mutation to adolescent age. Methods Trio whole exome sequencing analysis was performed from blood genomic DNA. Magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and electroencephalogram (EEG) analyses were performed to determine anomalies in brain development, metabolite concentrations, and electrical activity, respectively. Results Trio‐WES analysis identified a de novo c.79C>T (p.Arginine27Ter) mutation in CASK causing a premature translation termination at the very N‐terminus of the protein. The 17‐years, and 11‐month‐old male patient displayed profound intellectual disability, microcephaly, dysmorphism, ponto‐cerebellar hypoplasia, and intractable epilepsy. His systemic symptoms included overall reduced somatic growth, dysautonomia, ventilator and G tube dependence, and severe osteopenia. Brain MRI revealed a severe cerebellar and brain stem hypoplasia with progressive cerebral atrophy. EEG spectral analysis revealed a global functional defect with generalized background slowing and delta waves dominating even in the awake state. Conclusion This case study is the first to report survival of a male patient carrying a CASK loss‐of‐function mutation to adolescence and highlights that improved palliative care could extend survival. Moreover, the genomic position encoding Arg27 in CASK may possess an increased susceptibility to mutations.
Collapse
Affiliation(s)
- Konark Mukherjee
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Paras A Patel
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Deepa S Rajan
- Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leslie E W LaConte
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Sarika Srivastava
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA.,Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| |
Collapse
|
23
|
Patel PA, Liang C, Arora A, Vijayan S, Ahuja S, Wagley PK, Settlage R, LaConte LEW, Goodkin HP, Lazar I, Srivastava S, Mukherjee K. Haploinsufficiency of X-linked intellectual disability gene CASK induces post-transcriptional changes in synaptic and cellular metabolic pathways. Exp Neurol 2020; 329:113319. [PMID: 32305418 DOI: 10.1016/j.expneurol.2020.113319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/04/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022]
Abstract
Heterozygous mutations in the X-linked gene CASK are associated with intellectual disability, microcephaly, pontocerebellar hypoplasia, optic nerve hypoplasia and partially penetrant seizures in girls. The Cask+/- heterozygous knockout female mouse phenocopies the human disorder and exhibits postnatal microencephaly, cerebellar hypoplasia and optic nerve hypoplasia. It is not known if Cask+/- mice also display seizures, nor is known the molecular mechanism by which CASK haploinsufficiency produces the numerous documented phenotypes. 24-h video electroencephalography demonstrates that despite sporadic seizure activity, the overall electrographic patterns remain unaltered in Cask+/- mice. Additionally, seizure threshold to the commonly used kindling agent, pentylenetetrazol, remains unaltered in Cask+/- mice, indicating that even in mice the seizure phenotype is only partially penetrant and may have an indirect mechanism. RNA sequencing experiments on Cask+/- mouse brain uncovers a very limited number of changes, with most differences arising in the transcripts of extracellular matrix proteins and the transcripts of a group of nuclear proteins. In contrast to limited changes at the transcript level, quantitative whole-brain proteomics using iTRAQ quantitative mass-spectrometry reveals major changes in synaptic, metabolic/mitochondrial, cytoskeletal, and protein metabolic pathways. Unbiased protein-protein interaction mapping using affinity chromatography demonstrates that CASK may form complexes with proteins belonging to the same functional groups in which altered protein levels are observed. We discuss the mechanism of the observed changes in the context of known molecular function/s of CASK. Overall, our data indicate that the phenotypic spectrum of female Cask+/- mice includes sporadic seizures and thus closely parallels that of CASK haploinsufficient girls; the Cask+/- mouse is thus a face-validated model for CASK-related pathologies. We therefore surmise that CASK haploinsufficiency is likely to affect brain structure and function due to dysregulation of several cellular pathways including synaptic signaling and cellular metabolism.
Collapse
Affiliation(s)
- P A Patel
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - C Liang
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - A Arora
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - S Vijayan
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - S Ahuja
- Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - P K Wagley
- Neurology, University of Virginia, Charlottesville, VA, USA
| | - R Settlage
- Advanced Research Computing, Virginia Tech, Blacksburg, VA, United States
| | - L E W LaConte
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - H P Goodkin
- Neurology, University of Virginia, Charlottesville, VA, USA
| | - I Lazar
- Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - S Srivastava
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - K Mukherjee
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States; Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States; Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States.
| |
Collapse
|
24
|
Kerr A, Patel PA, LaConte LEW, Liang C, Chen CK, Shah V, Fox MA, Mukherjee K. Non-Cell Autonomous Roles for CASK in Optic Nerve Hypoplasia. Invest Ophthalmol Vis Sci 2019; 60:3584-3594. [PMID: 31425583 PMCID: PMC6701874 DOI: 10.1167/iovs.19-27197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose Heterozygous mutations in the essential X-linked gene CASK associate with optic nerve hypoplasia (ONH) and other retinal disorders in girls. CASK+/− heterozygous knockout mice with mosaic CASK expression exhibit ONH with a loss of retinal ganglion cells (RGCs) but no changes in retinal morphology. It remains unclear if CASK deficiency selectively affects RGCs or also affects other retinal cells. Furthermore, it is not known if CASK expression in RGCs is critical for optic nerve (ON) development and maintenance. Methods The visual behavior of CASK+/− mice was assessed and electroretinography (ERG) was performed. Using a mouse line with a floxed CASK gene that expresses approximately 40% CASK globally in all cells (hypomorph) under hemizygous and homozygous conditions, we investigated effects of CASK reduction on the retina and ON. CASK then was completely deleted from RGCs to examine its cell-autonomous role. Finally, for the first time to our knowledge, we describe a hemizygous CASK missense mutation in a boy with ONH. Results CASK+/− heterozygous mutant mice display reduced visual contrast sensitivity, but ERG is indistinguishable from wildtype. CASK hypomorph mice exhibit ONH, but deletion of CASK from RGCs in this background does not exacerbate the condition. The boy with ONH harbors a missense mutation (p.Pro673Leu) that destabilizes CASK and weakens the crucial CASK–neurexin interaction. Conclusions Our results demonstrate that mosaic or global reduction in CASK expression and/or function disproportionately affects RGCs. CASK expression in RGCs does not appear critical for cell survival, indicating a noncell autonomous role for CASK in the development of ON.
Collapse
Affiliation(s)
- Alicia Kerr
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, United States
| | - Paras A Patel
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, United States
| | - Leslie E W LaConte
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States.,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, United States
| | - Chen Liang
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
| | - Ching-Kang Chen
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Veeral Shah
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States.,Texas Children's Hospital, Houston, Texas, United States
| | - Michael A Fox
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States.,Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, United States
| | - Konark Mukherjee
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States.,Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, United States
| |
Collapse
|
25
|
Studtmann C, LaConte LEW, Mukherjee K. Comments on: A de novo in-frame deletion of CASK gene causes early onset infantile spasms and supratentorial cerebral malformation in a female patient. Am J Med Genet A 2019; 179:2514-2516. [PMID: 31532018 DOI: 10.1002/ajmg.a.61358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/02/2019] [Accepted: 08/27/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Carleigh Studtmann
- Fralin Biomedical Research Institute, Roanoke, Virginia.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia
| | | | | |
Collapse
|
26
|
LaConte LEW, Chavan V, DeLuca S, Rubin K, Malc J, Berry S, Gail Summers C, Mukherjee K. An N-terminal heterozygous missense CASK mutation is associated with microcephaly and bilateral retinal dystrophy plus optic nerve atrophy. Am J Med Genet A 2018; 179:94-103. [PMID: 30549415 DOI: 10.1002/ajmg.a.60687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/26/2018] [Accepted: 10/17/2018] [Indexed: 11/08/2022]
Abstract
Heterozygous loss-of-function mutations in the X-linked gene CASK are associated with mental retardation and microcephaly with pontine and cerebellar hypoplasia (MICPCH) and ophthalmological disorders including optic nerve atrophy (ONA) and optic nerve hypoplasia (ONH). Recently, we have demonstrated that CASK(+/-) mice display ONH with 100% penetrance but exhibit no change in retinal lamination or structure. It is not clear if CASK loss-of-function predominantly affects retinal ganglion cells, or if other retinal cells like photoreceptors are also involved. Here, we report a heterozygous missense mutation in the N-terminal calcium/calmodulin-dependent kinase (CaMK) domain of the CASK protein in which a highly conserved leucine is mutated to the cyclic amino acid proline. In silico analysis suggests that the mutation may produce destabilizing structural changes. Experimentally, we observe pronounced misfolding and insolubility of the CASKL209P protein. Interestingly, the remaining soluble mutant protein fails to interact with Mint1, which specifically binds to CASK's CaMK domain, suggesting a mechanism for the phenotypes observed with the CASKL209P mutation. In addition to microcephaly, cerebellar hypoplasia and delayed development, the subject with the L209P mutation also presented with bilateral retinal dystrophy and ONA. Electroretinography indicated that rod photoreceptors are the most prominently affected cells. Our data suggest that the CASK interactions mediated by the CaMK domain may play a crucial role in retinal function, and thus, in addition to ONH, individuals with mutations in the CASK gene may exhibit other retinal disorders, depending on the nature of mutation.
Collapse
Affiliation(s)
| | - Vrushali Chavan
- Virginia Tech Carilion Research Institute, Roanoke, Virginia
| | | | - Karol Rubin
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota
| | - Jessica Malc
- Virginia Tech Carilion Research Institute, Roanoke, Virginia
| | - Susan Berry
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.,Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota
| | - C Gail Summers
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.,Department of Ophthalmology & Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota
| | | |
Collapse
|
27
|
Zhang L, Mubarak T, Chen Y, Lee T, Pollock A, Sun T. Counter-Balance Between Gli3 and miR-7 Is Required for Proper Morphogenesis and Size Control of the Mouse Brain. Front Cell Neurosci 2018; 12:259. [PMID: 30210296 PMCID: PMC6121149 DOI: 10.3389/fncel.2018.00259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/30/2018] [Indexed: 12/25/2022] Open
Abstract
Brain morphogenesis requires precise regulation of multiple genes to control specification of distinct neural progenitors (NPs) and neuronal production. Dysregulation of these genes results in severe brain malformation such as macrocephaly and microcephaly. Despite studies of the effect of individual pathogenic genes, the counter-balance between multiple factors in controlling brain size remains unclear. Here we show that cortical deletion of Gli3 results in enlarged brain and folding structures in the cortical midline at the postnatal stage, which is mainly caused by the increased percentage of intermediate progenitors (IPs) and newborn neurons. In addition, dysregulation of neuronal migration also contributes to the folding defects in the cortical midline region. Knockdown of microRNA (miRNA) miR-7 can rescue abnormal brain morphology in Gli3 knockout mice by recovering progenitor specification, neuronal production and migration through a counter-balance of the Gli3 activity. Moreover, miR-7 likely exerts its function through silencing target gene Pax6. Our results indicate that proper brain morphogenesis is an outcome of interactive regulations of multiple molecules such as Gli3 and miR-7. Because miRNAs are easy to synthesize and deliver, miR-7 could be a potential therapeutic means to macrocephaly caused by Gli3-deficiency.
Collapse
Affiliation(s)
- Longbin Zhang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Taufif Mubarak
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Yase Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Trevor Lee
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Andrew Pollock
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|