1
|
AlAbdi L, Maddirevula S, Aljamal B, Hamid H, Almulhim A, Hashem MO, Algoos Y, Alqahtani M, Albaloshi S, Alghamdi M, Alduaylij M, Shamseldin HE, Nadeef S, Patel N, Abdulwahab F, Abouyousef O, Alshidi T, Jaafar A, Abouelhoda M, Alhazzani A, Alfares A, Qudair A, Alsulaiman A, Alhashem A, Khan AO, Chedrawi A, Alebdi B, AlAjlan F, Alotaibi F, Alzaidan H, Banjar H, Abdelraouf H, Alkuraya H, Abumansour I, Alfayez K, Tulbah M, Alowain M, Alqahtani M, El-Kalioby M, Shboul M, Sulaiman R, Al Tala S, Khan S, Coskun S, Mrouge S, Alenazi W, Rahbeeni Z, Alkuraya FS. Arab founder variants: Contributions to clinical genomics and precision medicine. MED 2025; 6:100528. [PMID: 39504961 DOI: 10.1016/j.medj.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/16/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Founder variants are ancestral variants shared by individuals who are not closely related. The large effect size of some of these variants in the context of Mendelian disorders offers numerous precision medicine opportunities. METHODS Using one of the largest datasets on Mendelian disorders in the Middle East, we identified 2,908 medically relevant founder variants derived from 18,360 exomes and genomes and investigated their contribution to the clinical annotation of the human genome. FINDINGS Strikingly, ∼34% of Arab founder variants are absent in gnomAD. We found a strong contribution of Arab founder variants to the identification of novel gene-disease links (n = 224) and the support/dispute (n = 81 support, n = 101 dispute) of previously reported candidate gene-disease links. The powerful segregation evidence generated by Arab founder variants allowed many ClinVar and Human Gene Mutation Database variants to be reclassified. Overall, 39.5% of diagnostic reports from our clinical lab are based on founder variants, and 19.41% of tested individuals carry at least one pathogenic founder variant. The presumptive loss-of-function mechanism that typically underlies autosomal recessive diseases means that Arab founder variants also offer unique opportunities in "druggable genome" research. Arab founder variants were also informative of migration patterns in the Middle East consistent with documented historical accounts. CONCLUSIONS We highlight the contribution of founder variants from an under-represented population group to precision medicine and inform future prevention programs. Our study also sheds light on the added value of these variants in supplementing other lines of research in tracing population history. FUNDING There is no funding for this work.
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Clinical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Bayan Aljamal
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Halima Hamid
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - Aisha Almulhim
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Yusra Algoos
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mashael Alqahtani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Shahad Albaloshi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohammed Alghamdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohammed Alduaylij
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Hanan E Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Seba Nadeef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Nisha Patel
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Omar Abouyousef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Tarfa Alshidi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Amal Jaafar
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohamed Abouelhoda
- Department of Computational Science, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Adel Alhazzani
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Ahmed Alfares
- Department of Clinical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Ahmad Qudair
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia
| | - Ahood Alsulaiman
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Amal Alhashem
- Department of Pediatrics, Prince Sultan Military Medical Center, Riyadh 12233, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Seha Virtual Hospital, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Arif O Khan
- Eye Institute, Cleveland Clinic, Abu Dhabi, UAE; Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Aziza Chedrawi
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Basel Alebdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Fahad AlAjlan
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Fawaz Alotaibi
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Hamad Alzaidan
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Hanaa Banjar
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Hanem Abdelraouf
- Department of Pediatrics, Prince Sultan Military Medical Center, Riyadh 12233, Saudi Arabia
| | - Hisham Alkuraya
- Global Eye Care, Specialized Medical Center Hospital, Riyadh 13215, Saudi Arabia
| | - Iman Abumansour
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia; Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Khowlah Alfayez
- Department of Pediatrics, Prince Sultan Military Medical Center, Riyadh 12233, Saudi Arabia
| | - Maha Tulbah
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohammed Alowain
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Mohammed Alqahtani
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohammed El-Kalioby
- Department of Computational Science, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohammad Shboul
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Raashda Sulaiman
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Saed Al Tala
- Department of Pediatrics, Armed Forces Hospital, Khamis Mushayt 62413, Saudi Arabia
| | - Sameena Khan
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Serdar Coskun
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center and College of Medicine, Riyadh 11564, Saudi Arabia
| | - Sobaihi Mrouge
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia
| | - Walaa Alenazi
- Department of Computational Science, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; Department of Pediatrics, Prince Sultan Military Medical Center, Riyadh 12233, Saudi Arabia.
| |
Collapse
|
2
|
Previdi A, Jordan P, Egloff C, Coussement A, Ahmed-Eli S, Tudal L, Bienvenu T, Picone O, Dupont JM. Prenatal diagnosis of a 15q24.1 microdeletion in a fetus with cerebral and urogenital abnormalities. Clin Genet 2024; 106:537-544. [PMID: 39012202 DOI: 10.1111/cge.14592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/21/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
15q24.1 microdeletion syndrome is a recently described condition often resulting from non-allelic homologous recombination (NAHR). Typical clinical features include pre and post-natal growth retardation, facial dysmorphism, developmental delay and intellectual disability. Nonspecific urogenital, skeletal, and digit abnormalities may be present, although other congenital malformations are less frequent. Consequently, only one case was reported prenatally, complicating the genotype-phenotype correlation and the genetic counseling. We identified prenatally a second case, presenting with cerebral abnormalities including hydrocephaly, macrocephaly, cerebellum hypoplasia, vermis hypoplasia, rhombencephalosynapsis, right kidney agenesis with left kidney duplication and micropenis. Genome-wide aCGH assay allowed a diagnosis at 26 weeks of amenorrhea revealing a 1.6 Mb interstitial deletion on the long arm of chromosome 15 at 15q24.1-q24.2 (arr[GRCh37] 15q24.1q24.2(74,399,112_76,019,966)x1). A deep review of the literature was undertaken to further delineate the prenatal clinical features and the candidate genes involved in the phenotype. Cerebral malformations are typically nonspecific, but microcephaly appears to be the most frequent in postnatal cases. Our case is the first reported with a frank cerebellar involvement.
Collapse
Affiliation(s)
- Anaïk Previdi
- APHP.Centre-Université Paris Cité, Site Hôpital Cochin, Service de Médecine Génomique des Maladies de Système et d'Organe, Paris, France
| | - Pénélope Jordan
- APHP.Centre-Université Paris Cité, Site Hôpital Cochin, Service de Médecine Génomique des Maladies de Système et d'Organe, Paris, France
| | - Charles Egloff
- AP-HP.Nord-Université Paris Cité, Site Hôpital Louis Mourier, Service de Gynécologie Obstétrique, Colombes, France
| | - Aurélie Coussement
- APHP.Centre-Université Paris Cité, Site Hôpital Cochin, Service de Médecine Génomique des Maladies de Système et d'Organe, Paris, France
| | - Samira Ahmed-Eli
- APHP.Centre-Université Paris Cité, Site Hôpital Cochin, Service de Médecine Génomique des Maladies de Système et d'Organe, Paris, France
| | - Laure Tudal
- AP-HP.Nord-Université Paris Cité, Site Hôpital Louis Mourier, Service de Gynécologie Obstétrique, Colombes, France
| | - Thierry Bienvenu
- APHP.Centre-Université Paris Cité, Site Hôpital Cochin, Service de Médecine Génomique des Maladies de Système et d'Organe, Paris, France
| | - Olivier Picone
- AP-HP.Nord-Université Paris Cité, Site Hôpital Louis Mourier, Service de Gynécologie Obstétrique, Colombes, France
| | - Jean-Michel Dupont
- APHP.Centre-Université Paris Cité, Site Hôpital Cochin, Service de Médecine Génomique des Maladies de Système et d'Organe, Paris, France
| |
Collapse
|
3
|
Vignolle GA, Bauerstätter P, Schönthaler S, Nöhammer C, Olischar M, Berger A, Kasprian G, Langs G, Vierlinger K, Goeral K. Predicting Outcomes of Preterm Neonates Post Intraventricular Hemorrhage. Int J Mol Sci 2024; 25:10304. [PMID: 39408633 PMCID: PMC11477204 DOI: 10.3390/ijms251910304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Intraventricular hemorrhage (IVH) in preterm neonates presents a high risk for developing posthemorrhagic ventricular dilatation (PHVD), a severe complication that can impact survival and long-term outcomes. Early detection of PHVD before clinical onset is crucial for optimizing therapeutic interventions and providing accurate parental counseling. This study explores the potential of explainable machine learning models based on targeted liquid biopsy proteomics data to predict outcomes in preterm neonates with IVH. In recent years, research has focused on leveraging advanced proteomic technologies and machine learning to improve prediction of neonatal complications, particularly in relation to neurological outcomes. Machine learning (ML) approaches, combined with proteomics, offer a powerful tool to identify biomarkers and predict patient-specific risks. However, challenges remain in integrating large-scale, multiomic datasets and translating these findings into actionable clinical tools. Identifying reliable, disease-specific biomarkers and developing explainable ML models that clinicians can trust and understand are key barriers to widespread clinical adoption. In this prospective longitudinal cohort study, we analyzed 1109 liquid biopsy samples from 99 preterm neonates with IVH, collected at up to six timepoints over 13 years. Various explainable ML techniques-including statistical, regularization, deep learning, decision trees, and Bayesian methods-were employed to predict PHVD development and survival and to discover disease-specific protein biomarkers. Targeted proteomic analyses were conducted using serum and urine samples through a proximity extension assay capable of detecting low-concentration proteins in complex biofluids. The study identified 41 significant independent protein markers in the 1600 calculated ML models that surpassed our rigorous threshold (AUC-ROC of ≥0.7, sensitivity ≥ 0.6, and selectivity ≥ 0.6), alongside gestational age at birth, as predictive of PHVD development and survival. Both known biomarkers, such as neurofilament light chain (NEFL), and novel biomarkers were revealed. These findings underscore the potential of targeted proteomics combined with ML to enhance clinical decision-making and parental counseling, though further validation is required before clinical implementation.
Collapse
Affiliation(s)
- Gabriel A. Vignolle
- Center for Health & Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (G.A.V.); (P.B.); (S.S.); (C.N.); (K.V.)
| | - Priska Bauerstätter
- Center for Health & Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (G.A.V.); (P.B.); (S.S.); (C.N.); (K.V.)
| | - Silvia Schönthaler
- Center for Health & Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (G.A.V.); (P.B.); (S.S.); (C.N.); (K.V.)
| | - Christa Nöhammer
- Center for Health & Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (G.A.V.); (P.B.); (S.S.); (C.N.); (K.V.)
| | - Monika Olischar
- Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Intensive Care and Neuropediatrics, Medical University of Vienna, 1090 Vienna, Austria; (M.O.); (A.B.)
| | - Angelika Berger
- Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Intensive Care and Neuropediatrics, Medical University of Vienna, 1090 Vienna, Austria; (M.O.); (A.B.)
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Neuro- and Musculosceletal Radiology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Georg Langs
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria;
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Klemens Vierlinger
- Center for Health & Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (G.A.V.); (P.B.); (S.S.); (C.N.); (K.V.)
| | - Katharina Goeral
- Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Intensive Care and Neuropediatrics, Medical University of Vienna, 1090 Vienna, Austria; (M.O.); (A.B.)
| |
Collapse
|
4
|
Carter SWD, Fee EL, Usuda H, Oguz G, Ramasamy A, Amin Z, Agnihotri B, Wei Q, Xiawen L, Takahashi T, Takahashi Y, Ikeda H, Kumagai Y, Saito Y, Saito M, Mattar C, Evans MI, Illanes SE, Jobe AH, Choolani M, Kemp MW. Antenatal steroids elicited neurodegenerative-associated transcriptional changes in the hippocampus of preterm fetal sheep independent of lung maturation. BMC Med 2024; 22:338. [PMID: 39183288 PMCID: PMC11346182 DOI: 10.1186/s12916-024-03542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Antenatal steroid therapy for fetal lung maturation is routinely administered to women at risk of preterm delivery. There is strong evidence to demonstrate benefit from antenatal steroids in terms of survival and respiratory disease, notably in infants delivered at or below 32 weeks' gestation. However, dosing remains unoptimized and lung benefits are highly variable. Current treatment regimens generate high-concentration, pulsatile fetal steroid exposures now associated with increased risk of childhood neurodevelopmental diseases. We hypothesized that damage-associated changes in the fetal hippocampal transcriptome would be independent of preterm lung function. METHODS Date-mated ewes carrying a single fetus at 122 ± 2dGA (term = 150dGA) were randomized into 4 groups: (i) Saline Control Group, 4×2ml maternal saline intramuscular(IM) injections at 12hr intervals (n = 11); or (ii) Dex High Group, 2×12mg maternal IM dexamethasone phosphate injections at 12hr intervals followed by 2×2ml IM saline injections at 12hr intervals (n = 12; representing a clinical regimen used in Singapore); or (iii) Dex Low Group, 4×1.5mg maternal IM dexamethasone phosphate injections 12hr intervals (n = 12); or (iv) Beta-Acetate Group, 1×0.125mg/kg maternal IM betamethasone acetate injection followed by 3×2ml IM sterile normal saline injections 12hr intervals (n = 8). Lambs were surgically delivered 48hr after first maternal injection at 122-125dGA, ventilated for 30min to establish lung function, and euthanised for necropsy and tissue collection. RESULTS Preterm lambs from the Dex Low and Beta-Acetate Groups had statistically and biologically significant lung function improvements (measured by gas exchange, lung compliance). Compared to the Saline Control Group, hippocampal transcriptomic data identified 879 differentially significant expressed genes (at least 1.5-fold change and FDR < 5%) in the steroid-treated groups. Pulsatile dexamethasone-only exposed groups (Dex High and Dex Low) had three common positively enriched differentially expressed pathways related in part to neurodegeneration ("Prion Disease", "Alzheimer's Disease", "Arachidonic Acid metabolism"). Adverse changes were independent of respiratory function during ventilation. CONCLUSIONS Our data suggests that exposure to antenatal steroid therapy is an independent cause of damage- associated transcriptomic changes in the brain of preterm, fetal sheep. These data highlight an urgent need for careful reconsideration and balancing of how antenatal steroids are used, both for patient selection and dosing regimens.
Collapse
Affiliation(s)
- Sean W D Carter
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore.
| | - Erin L Fee
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
| | - Haruo Usuda
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Gokce Oguz
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, Singapore, 138632, Republic of Singapore
| | - Adaikalavan Ramasamy
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, Singapore, 138632, Republic of Singapore
| | - Zubair Amin
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Neonatology Khoo Teck Puat, National University Children's Medical Institute, National University Hospital, Singapore, Singapore
| | - Biswas Agnihotri
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Neonatology Khoo Teck Puat, National University Children's Medical Institute, National University Hospital, Singapore, Singapore
| | - Qin Wei
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Liu Xiawen
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Tsukasa Takahashi
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yuki Takahashi
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Hideyuki Ikeda
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yusaku Kumagai
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yuya Saito
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Masatoshi Saito
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Citra Mattar
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Mark I Evans
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Fetal Medicine Foundation of America, New York, NY, USA
| | - Sebastián E Illanes
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Reproductive Biology Program, Center for Biomedical Research and Innovation, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Alan H Jobe
- Centre for Pulmonary Biology, Cincinnati Children's Hospital Medical Centre, Cincinnati, OH, USA
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Matthew W Kemp
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
- Women and Infants Research Foundation, Perth, WA, Australia
| |
Collapse
|
5
|
Kamalian A, Shirzadeh Barough S, Ho SG, Albert M, Luciano MG, Yasar S, Moghekar A. Molecular signatures of normal pressure hydrocephalus: a large-scale proteomic analysis of cerebrospinal fluid. Fluids Barriers CNS 2024; 21:64. [PMID: 39118132 PMCID: PMC11312837 DOI: 10.1186/s12987-024-00561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Given the persistent challenge of differentiating idiopathic Normal Pressure Hydrocephalus (iNPH) from similar clinical entities, we conducted an in-depth proteomic study of cerebrospinal fluid (CSF) in 28 shunt-responsive iNPH patients, 38 Mild Cognitive Impairment (MCI) due to Alzheimer's disease, and 49 healthy controls. Utilizing the Olink Explore 3072 panel, we identified distinct proteomic profiles in iNPH that highlight significant downregulation of synaptic markers and cell-cell adhesion proteins. Alongside vimentin and inflammatory markers upregulation, these results suggest ependymal layer and transependymal flow dysfunction. Moreover, downregulation of multiple proteins associated with congenital hydrocephalus (e.g., L1CAM, PCDH9, ISLR2, ADAMTSL2, and B4GAT1) points to a possible shared molecular foundation between congenital hydrocephalus and iNPH. Through orthogonal partial least squares discriminant analysis (OPLS-DA), a panel comprising 13 proteins has been identified as potential diagnostic biomarkers of iNPH, pending external validation. These findings offer novel insights into the pathophysiology of iNPH, with implications for improved diagnosis.
Collapse
Affiliation(s)
- Aida Kamalian
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | | | - Sara G Ho
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Mark G Luciano
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Sevil Yasar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA.
| |
Collapse
|
6
|
Kamalian A, Barough SS, Ho SG, Albert M, Luciano MG, Yasar S, Moghekar A. Molecular Signatures of Normal Pressure Hydrocephalus: A Largescale Proteomic Analysis of Cerebrospinal Fluid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.583014. [PMID: 38496536 PMCID: PMC10942380 DOI: 10.1101/2024.03.01.583014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Given the persistent challenge of differentiating idiopathic Normal Pressure Hydrocephalus (iNPH) from similar clinical entities, we conducted an in-depth proteomic study of cerebrospinal fluid (CSF) in 28 shunt-responsive iNPH patients, 38 Mild Cognitive Impairment (MCI) due to Alzheimer's disease, and 49 healthy controls. Utilizing the Olink Explore 3072 panel, we identified distinct proteomic profiles in iNPH that highlight significant downregulation of synaptic markers and cell-cell adhesion proteins. Alongside vimentin and inflammatory markers upregulation, these results suggest ependymal layer and transependymal flow dysfunction. Moreover, downregulation of multiple proteins associated with congenital hydrocephalus (e.g., L1CAM, PCDH9, ISLR2, ADAMTSL2, and B4GAT1) points to a possible shared molecular foundation between congenital hydrocephalus and iNPH. Through orthogonal partial least squares discriminant analysis (OPLS-DA), a panel comprising 13 proteins has been identified as potential diagnostic biomarkers of iNPH, pending external validation. These findings offer novel insights into the pathophysiology of iNPH, with implications for improved diagnosis.
Collapse
Affiliation(s)
- Aida Kamalian
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | - Sara G. Ho
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Mark G. Luciano
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Sevil Yasar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
7
|
Hale AT, Boudreau H, Devulapalli R, Duy PQ, Atchley TJ, Dewan MC, Goolam M, Fieggen G, Spader HL, Smith AA, Blount JP, Johnston JM, Rocque BG, Rozzelle CJ, Chong Z, Strahle JM, Schiff SJ, Kahle KT. The genetic basis of hydrocephalus: genes, pathways, mechanisms, and global impact. Fluids Barriers CNS 2024; 21:24. [PMID: 38439105 PMCID: PMC10913327 DOI: 10.1186/s12987-024-00513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Hydrocephalus (HC) is a heterogenous disease characterized by alterations in cerebrospinal fluid (CSF) dynamics that may cause increased intracranial pressure. HC is a component of a wide array of genetic syndromes as well as a secondary consequence of brain injury (intraventricular hemorrhage (IVH), infection, etc.) that can present across the age spectrum, highlighting the phenotypic heterogeneity of the disease. Surgical treatments include ventricular shunting and endoscopic third ventriculostomy with or without choroid plexus cauterization, both of which are prone to failure, and no effective pharmacologic treatments for HC have been developed. Thus, there is an urgent need to understand the genetic architecture and molecular pathogenesis of HC. Without this knowledge, the development of preventive, diagnostic, and therapeutic measures is impeded. However, the genetics of HC is extraordinarily complex, based on studies of varying size, scope, and rigor. This review serves to provide a comprehensive overview of genes, pathways, mechanisms, and global impact of genetics contributing to all etiologies of HC in humans.
Collapse
Affiliation(s)
- Andrew T Hale
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK.
| | - Hunter Boudreau
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK
| | - Rishi Devulapalli
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Travis J Atchley
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK
| | - Michael C Dewan
- Division of Pediatric Neurosurgery, Monroe Carell Jr. Children's Hospital, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mubeen Goolam
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Graham Fieggen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Pediatric Neurosurgery, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Heather L Spader
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Anastasia A Smith
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Jeffrey P Blount
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - James M Johnston
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Brandon G Rocque
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Curtis J Rozzelle
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Zechen Chong
- Heflin Center for Genomics, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Jennifer M Strahle
- Division of Pediatric Neurosurgery, St. Louis Children's Hospital, Washington University in St. Louis, St. Louis, MO, USA
| | - Steven J Schiff
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Almannai M, AlAbdi L, Maddirevula S, Alotaibi M, Alsaleem BM, Aljadhai YI, Alsaif HS, Abukhalid M, Alkuraya FS. KIF26A is mutated in the syndrome of congenital hydrocephalus with megacolon. Hum Genet 2023; 142:399-405. [PMID: 36564622 DOI: 10.1007/s00439-022-02513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Human disorders of the enteric nervous system (ENS), e.g., Hirschsprung's disease, are rarely associated with major central nervous system involvement. We describe two families each segregating a different homozygous truncating variant in KIF26A with a unique constellation of severe megacolon that resembles Hirschsprung's disease but lacks aganglionosis as well as brain malformations that range from severe to mild. The intestinal phenotype bears a striking resemblance to that observed in Kif26a-/- mice where KIF26A deficiency was found to cause abnormal GDNF-Ret signaling resulting in failure to establish normal neuronal networks despite myenteric neuronal hyperplasia. Very recently, a range of brain developmental phenotypes were described in patients and mice with KIF26A deficiency and were found to result from abnormal radial migration and increased apoptosis. Our report, therefore, reveals a recognizable autosomal-recessive human KIF26A deficiency phenotype characterized by severe ENS dysfunction and a range of brain malformations.
Collapse
Affiliation(s)
- Mohammed Almannai
- Genetics and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia. .,Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia. .,College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | - Lama AlAbdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Zoology, Collage of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Maha Alotaibi
- Department of Genetics, King Saud Medical City, Riyadh, Saudi Arabia
| | - Badr M Alsaleem
- Gastroenterology Division, Intestinal Failure Rehabilitation Program, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Yaser I Aljadhai
- Department of Neuroimaging and Intervention, Medical Imaging Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hessa S Alsaif
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Musaad Abukhalid
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
9
|
McKnight I, Hart C, Park IH, Shim JW. Genes causing congenital hydrocephalus: Their chromosomal characteristics of telomere proximity and DNA compositions. Exp Neurol 2021; 335:113523. [PMID: 33157092 PMCID: PMC7750280 DOI: 10.1016/j.expneurol.2020.113523] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/10/2020] [Accepted: 10/30/2020] [Indexed: 01/06/2023]
Abstract
Congenital hydrocephalus (CH) is caused by genetic mutations, but whether factors impacting human genetic mutations are disease-specific remains elusive. Given two factors associated with high mutation rates, we reviewed how many disease-susceptible genes match with (i) proximity to telomeres or (ii) high adenine and thymine (A + T) content in human CH as compared to other disorders of the central nervous system (CNS). We extracted genomic information using a genome data viewer. Importantly, 98 of 108 genes causing CH satisfied (i) or (ii), resulting in >90% matching rate. However, such a high accordance no longer sustained as we checked two factors in Alzheimer's disease (AD) and/or familial Parkinson's disease (fPD), resulting in 84% and 59% matching, respectively. A disease-specific matching of telomere proximity or high A + T content predicts causative genes of CH much better than neurodegenerative diseases and other CNS conditions, likely due to sufficient number of known causative genes (n = 108) and precise determination and classification of the genotype and phenotype. Our analysis suggests a need for identifying genetic basis of both factors before human clinical studies, to prioritize putative genes found in preclinical models into the likely (meeting at least one) and more likely candidate (meeting both), which predisposes human genes to mutations.
Collapse
Affiliation(s)
- Ian McKnight
- Department of Biomedical Engineering, Marshall University, Huntington, WV 25755, USA
| | - Christoph Hart
- Department of Biomedical Engineering, Marshall University, Huntington, WV 25755, USA
| | - In-Hyun Park
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Joon W Shim
- Department of Biomedical Engineering, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|