1
|
Karl S, Grünig E, Shaukat M, Held M, Apitz C, von Scheidt F, Geiger R, Halank M, Olsson KM, Hoeper MM, Kamp JC, Kovacs G, Olschewski H, Seyfarth HJ, Milger K, Ewert R, Klose H, Egenlauf B, Xanthouli P, Hinderhofer K, Eichstaedt CA. Pathogenic SMAD6 variants in patients with idiopathic and complex congenital heart disease associated pulmonary arterial hypertension. NPJ Genom Med 2025; 10:28. [PMID: 40133303 PMCID: PMC11937313 DOI: 10.1038/s41525-025-00484-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/28/2025] [Indexed: 03/27/2025] Open
Abstract
In patients with complex congenital heart disease (CHD) pathogenic SMAD6 variants have been described previously. The aim of this study was to analyze if pathogenic SMAD6 variants also occur in patients with CHD associated with pulmonary arterial hypertension (CHD-APAH) or idiopathic PAH. A PAH gene panel with up to 64 genes including SMAD6 was used to sequence 311 patients with idiopathic PAH (IPAH) and 32 with CHD-APAH. In 4 of 32 (12.5%) CHD-APAH and in 2 out of 311 (0.64%) IPAH patients we identified likely pathogenic or rare SMAD6 missense variants. All CHD-APAH patients with a rare SMAD6 variant had complex CHD. One patient had bi-allelic SMAD6 variants, combined pulmonary valve defect and supravalvular aortic stenosis, craniosynostosis and radioulnar synostosis. This is the first description of potentially disease-causing SMAD6 variants in patients with IPAH and complex CHD-APAH. Further studies are needed to assess pathogenesis and prevalence of pathogenic SMAD6 variants in PAH.
Collapse
Affiliation(s)
- Sofia Karl
- Center for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital and Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Ekkehard Grünig
- Center for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital and Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Memoona Shaukat
- Center for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital and Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Matthias Held
- Department of Pulmonary Medicine, KWM Missio Clinic, Würzburg, Germany
| | - Christian Apitz
- Department for Pediatric Cardiology, University Hospital Ulm, Ulm, Germany
| | - Fabian von Scheidt
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Munich, Germany
| | - Ralf Geiger
- Pediatrics III (Cardiopulmonary Unit), Department of Child and Adolescent Health, Medical University Innsbruck, Innsbruck, Austria
| | - Michael Halank
- Devision of Pulmonology, Medical Department I, University Hospital Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Karen M Olsson
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover and Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Marius M Hoeper
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover and Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Jan C Kamp
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover and Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Gabor Kovacs
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz and Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz and Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Hans-Jürgen Seyfarth
- Department of Pneumology, Medical Clinic II, University Hospital of Leipzig, Leipzig, Germany
| | - Katrin Milger
- Department of Internal Medicine V, Ludwig-Maximilian University of Munich; Asklepios Clinic Gauting, Comprehensive Pneumology Centre Munich (CPC), German Center for Lung Research (DZL), Munich, Germany
| | - Ralf Ewert
- Department of Internal Medicine B-Cardiology, Intensive Care, Pulmonary Medicine and Infectious Diseases, University of Greifswald, Greifswald, Germany
| | - Hans Klose
- Department of Pneumology, Department of Medicine II, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Egenlauf
- Center for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital and Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Panagiota Xanthouli
- Center for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital and Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Internal Medicine V: Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Katrin Hinderhofer
- Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Christina A Eichstaedt
- Center for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital and Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.
- Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
2
|
Li L, Lu L, Xiao Z, Lv J, Huang H, Wu B, Zhao T, Li C, Wang W, Wang H. Deamidation enables pathogenic SMAD6 variants to activate the BMP signaling pathway. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1915-1927. [PMID: 38913236 DOI: 10.1007/s11427-023-2532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/23/2024] [Indexed: 06/25/2024]
Abstract
The BMP signaling pathway plays a crucial role in regulating early embryonic development and tissue homeostasis. SMAD6 encodes a negative regulator of BMP, and rare variants of SMAD6 are recurrently found in individuals with birth defects. However, we observed that a subset of rare pathogenic variants of SMAD6 consistently exhibited positive regulatory effects instead of the initial negative effects on the BMP signaling pathway. We sought to determine whether these SMAD6 variants have common pathogenic mechanisms. Here, we showed that pathogenic SMAD6 variants accompanying this functional reversal exhibit similar increases in deamidation. Mechanistically, increased deamidation of SMAD6 variants promotes the accumulation of the BMP receptor BMPR1A and the formation of new complexes, both of which lead to BMP signaling pathway activation. Specifically, two residues, N262 and N404, in SMAD6 were identified as the crucial sites of deamidation, which was catalyzed primarily by glutamine-fructose-6-phosphate transaminase 2 (GFPT2). Additionally, treatment of cells harboring SMAD6 variants with a deamidase inhibitor restored the inhibitory effect of SMAD6 on the BMP signaling pathway. Conversely, when wild-type SMAD6 was manually simulated to mimic the deamidated state, the reversed function of activating BMP signaling was reproduced. Taken together, these findings show that deamidation of SMAD6 plays a crucial role in the functional reversal of BMP signaling activity, which can be induced by a subset of various SMAD6 variants. Our study reveals a common pathogenic mechanism shared by these variants and provides a potential strategy for preventing birth defects through deamidation regulation, which might prevent the off-target effects of gene editing.
Collapse
Affiliation(s)
- Ling Li
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, and Children's Hospital, Fudan University, Shanghai, 200090, China
| | - Lei Lu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
| | - Ziqi Xiao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Jingyi Lv
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, and Children's Hospital, Fudan University, Shanghai, 200090, China
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, and Children's Hospital, Fudan University, Shanghai, 200090, China
| | - Bo Wu
- Prenatal Diagnosis Center of Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, 518028, China
| | - Tongjin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Chengtao Li
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Weimin Wang
- Department of Pharmacy, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, and Children's Hospital, Fudan University, Shanghai, 200090, China.
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
- Prenatal Diagnosis Center of Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, 518028, China.
| |
Collapse
|
3
|
Luyckx I, Walton IS, Boeckx N, Van Schil K, Pang C, De Praeter M, Lord H, Watson CM, Bonthron DT, Van Laer L, Wilkie AOM, Loeys B. Homozygous SMAD6 variants in two unrelated patients with craniosynostosis and radioulnar synostosis. J Med Genet 2024; 61:363-368. [PMID: 38290823 PMCID: PMC10982635 DOI: 10.1136/jmg-2023-109151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 11/29/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND SMAD6 encodes an intracellular inhibitor of the bone morphogenetic protein (BMP) signalling pathway. Until now, rare heterozygous loss-of-function variants in SMAD6 were demonstrated to increase the risk of disparate clinical disorders including cardiovascular disease, craniosynostosis and radioulnar synostosis. Only two unrelated patients harbouring biallelic SMAD6 variants presenting a complex cardiovascular phenotype and facial dysmorphism have been described. CASES Here, we present the first two patients with craniosynostosis harbouring homozygous SMAD6 variants. The male probands, both born to healthy consanguineous parents, were diagnosed with metopic synostosis and bilateral or unilateral radioulnar synostosis. Additionally, one proband had global developmental delay. Echocardiographic evaluation did not reveal cardiac or outflow tract abnormalities. MOLECULAR ANALYSES The novel missense (c.[584T>G];[584T>G], p.[(Val195Gly)];[(Val195Gly)]) and missense/splice-site variant (c.[817G>A];[817G>A], r.[(817g>a,817delins[a;817+2_817+228])];[(817g>a,817delins[a;817+2_817+228])], p.[(Glu273Lys,Glu273Serfs*72)];[(Glu273Lys,Glu273Serfs*72)]) both locate in the functional MH1 domain of the protein and have not been reported in gnomAD database. Functional analyses of the variants showed reduced inhibition of BMP signalling or abnormal splicing, respectively, consistent with a hypomorphic mechanism of action. CONCLUSION Our data expand the spectrum of variants and phenotypic spectrum associated with homozygous variants of SMAD6 to include craniosynostosis.
Collapse
Affiliation(s)
- Ilse Luyckx
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Department of Clinical Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Isaac Scott Walton
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nele Boeckx
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Kristof Van Schil
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Chingyiu Pang
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Mania De Praeter
- Department of Paediatric Neurosurgery, University Hospital Antwerp, Antwerp, Belgium
| | - Helen Lord
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
| | - Christopher Mark Watson
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK
| | - David T Bonthron
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK
| | - Lut Van Laer
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Andrew O M Wilkie
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Bart Loeys
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Department of Clinical Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
4
|
Zhu Z, Liu Z, Zhang D, Li L, Pei J, Cai L. Models for calcific aortic valve disease in vivo and in vitro. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:6. [PMID: 38424219 PMCID: PMC10904700 DOI: 10.1186/s13619-024-00189-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Calcific Aortic Valve Disease (CAVD) is prevalent among the elderly as the most common valvular heart disease. Currently, no pharmaceutical interventions can effectively reverse or prevent CAVD, making valve replacement the primary therapeutic recourse. Extensive research spanning decades has contributed to the establishment of animal and in vitro cell models, which facilitates a deeper understanding of the pathophysiological progression and underlying mechanisms of CAVD. In this review, we provide a comprehensive summary and analysis of the strengths and limitations associated with commonly employed models for the study of valve calcification. We specifically emphasize the advancements in three-dimensional culture technologies, which replicate the structural complexity of the valve. Furthermore, we delve into prospective recommendations for advancing in vivo and in vitro model studies of CAVD.
Collapse
Affiliation(s)
- Zijin Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China
| | - Zhirong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China
| | - Li Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China.
| | - Jianqiu Pei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, China.
| | - Lin Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
5
|
Narayan P, Richter F, Morton S. Genetics and etiology of congenital heart disease. Curr Top Dev Biol 2024; 156:297-331. [PMID: 38556426 DOI: 10.1016/bs.ctdb.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Congenital heart disease (CHD) is the most common severe birth anomaly, affecting almost 1% of infants. Most CHD is genetic, but only 40% of patients have an identifiable genetic risk factor for CHD. Chromosomal variation contributes significantly to CHD but is not readily amenable to biological follow-up due to the number of affected genes and lack of evolutionary synteny. The first CHD genes were implicated in extended families with syndromic CHD based on the segregation of risk alleles in affected family members. These have been complemented by more CHD gene discoveries in large-scale cohort studies. However, fewer than half of the 440 estimated human CHD risk genes have been identified, and the molecular mechanisms underlying CHD genetics remains incompletely understood. Therefore, model organisms and cell-based models are essential tools for improving our understanding of cardiac development and CHD genetic risk. Recent advances in genome editing, cell-specific genetic manipulation of model organisms, and differentiation of human induced pluripotent stem cells have recently enabled the characterization of developmental stages. In this chapter, we will summarize the latest studies in CHD genetics and the strengths of various study methodologies. We identify opportunities for future work that will continue to further CHD knowledge and ultimately enable better diagnosis, prognosis, treatment, and prevention of CHD.
Collapse
Affiliation(s)
| | - Felix Richter
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sarah Morton
- Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
6
|
Luyckx I, Verstraeten A, Goumans MJ, Loeys B. SMAD6-deficiency in human genetic disorders. NPJ Genom Med 2022; 7:68. [DOI: 10.1038/s41525-022-00338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
AbstractSMAD6 encodes an intracellular inhibitor of the bone morphogenetic protein (BMP) signalling pathway. Until now, SMAD6-deficiency has been associated with three distinctive human congenital conditions, i.e., congenital heart diseases, including left ventricular obstruction and conotruncal defects, craniosynostosis and radioulnar synostosis. Intriguingly, a similar spectrum of heterozygous loss-of-function variants has been reported to cause these clinically distinct disorders without a genotype–phenotype correlation. Even identical nucleotide changes have been described in patients with either a cardiovascular phenotype, craniosynostosis or radioulnar synostosis. These findings suggest that the primary pathogenic variant alone cannot explain the resultant patient phenotype. In this review, we summarise clinical and (patho)genetic (dis)similarities between these three SMAD6-related conditions, compare published Madh6 mouse models, in which the importance and impact of the genetic background with respect to the observed phenotype is highlighted, and elaborate on the cellular key mechanisms orchestrated by SMAD6 in the development of these three discrete inherited disorders. In addition, we discuss future research needed to elucidate the pathogenetic mechanisms underlying these diseases in order to improve their molecular diagnosis, advance therapeutic strategies and facilitate counselling of patients and their families.
Collapse
|
7
|
Chen J, Chang R. Association of TGF-β Canonical Signaling-Related Core Genes With Aortic Aneurysms and Aortic Dissections. Front Pharmacol 2022; 13:888563. [PMID: 35517795 PMCID: PMC9065418 DOI: 10.3389/fphar.2022.888563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/04/2022] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor-beta (TGF-β) signaling is essential for the maintenance of the normal structure and function of the aorta. It includes SMAD-dependent canonical pathways and noncanonical signaling pathways. Accumulated genetic evidence has shown that TGF-β canonical signaling-related genes have key roles in aortic aneurysms (AAs) and aortic dissections and many gene mutations have been identified in patients, such as those for transforming growth factor-beta receptor one TGFBR1, TGFBR2, SMAD2, SMAD3, SMAD4, and SMAD6. Aortic specimens from patients with these mutations often show paradoxically enhanced TGF-β signaling. Some hypotheses have been proposed and new AA models in mice have been constructed to reveal new mechanisms, but the role of TGF-β signaling in AAs is controversial. In this review, we focus mainly on the role of canonical signaling-related core genes in diseases of the aorta, as well as recent advances in gene-mutation detection, animal models, and in vitro studies.
Collapse
Affiliation(s)
- Jicheng Chen
- Department of Vasculocardiology, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, China
| | - Rong Chang
- Department of Vasculocardiology, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
8
|
Shen F, Yang Y, Li P, Zheng Y, Luo Z, Fu Y, Zhu G, Mei H, Chen S, Zhu Y. A genotype and phenotype analysis of SMAD6 mutant patients with radioulnar synostosis. Mol Genet Genomic Med 2021; 10:e1850. [PMID: 34953066 PMCID: PMC8801148 DOI: 10.1002/mgg3.1850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022] Open
Abstract
Background SMAD6 variants have been reported in patients with radioulnar synostosis (RUS). This study aimed to investigate the genotypes and phenotypes for a large cohort of patients with RUS having mutant SMAD6. Methods Genomic DNA samples were isolated from 251 RUS sporadic patients (with their parents) and 27 RUS pedigrees. Sanger sequencing was performed for the SMAD6 coding regions. For positive probands, co‐segregation and parental‐origin analysis of SMAD6 variants and phenotypic re‐evaluation were performed for their family members. Results We identified 50 RUS probands with SMAD6 variants (13 co‐segregated with RUS in pedigrees and 37 in RUS‐sporadic patients). Based on the new and previous data, we identified SMAD6 mutated in 16/38 RUS pedigrees and 61/393 RUS sporadic patients, respectively. Overall, 93 SMAD6 mutant patients with RUS were identified, among which 29 patients had unilateral RUS, where the left side was more involved than the right side (left:right = 20:9). Female protective effects and non‐full penetrance were observed, in which only 6.90% mothers (vs. ~50% fathers) of SMAD6 mutant RUS probands had RUS. Pleiotropy was observed as a re‐evaluation of SMAD6 mutant families identified: (a) three families had axial skeletal malformations; (b) two families had polydactyly; and (c) eight families had other known malformations. Conclusion SMAD6 was mutated in 42.11% RUS pedigrees and 15.52% RUS sporadic patients. The RUS patients with SMAD6 variants exhibit both non‐full‐penetrance, variable expressivity, pleiotropy, female protective effects, and the left side is more susceptible than the right side.
Collapse
Affiliation(s)
- Fang Shen
- The Laboratory of Genetics and Metabolism, Institute of Pediatric Medicine of Hunan Province, Hunan Children's Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Yongjia Yang
- The Laboratory of Genetics and Metabolism, Institute of Pediatric Medicine of Hunan Province, Hunan Children's Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Pengcheng Li
- The Laboratory of Genetics and Metabolism, Institute of Pediatric Medicine of Hunan Province, Hunan Children's Hospital, Hengyang Medical School, University of South China, Changsha, China.,Department of Hand Surgery, Beijing Ji Shui Tan Hospital, Beijing, China
| | - Yu Zheng
- The Laboratory of Genetics and Metabolism, Institute of Pediatric Medicine of Hunan Province, Hunan Children's Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Zhenqing Luo
- The Laboratory of Genetics and Metabolism, Institute of Pediatric Medicine of Hunan Province, Hunan Children's Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Yuyan Fu
- The Laboratory of Genetics and Metabolism, Institute of Pediatric Medicine of Hunan Province, Hunan Children's Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Guanghui Zhu
- Department of orthopedics, Hunan Children's Hospital, Hengyang Meical School, University of South China, Changsha, China
| | - Haibo Mei
- Department of orthopedics, Hunan Children's Hospital, Hengyang Meical School, University of South China, Changsha, China
| | - Shanlin Chen
- Department of Hand Surgery, Beijing Ji Shui Tan Hospital, Beijing, China
| | - Yimin Zhu
- The Laboratory of Genetics and Metabolism, Institute of Pediatric Medicine of Hunan Province, Hunan Children's Hospital, Hengyang Medical School, University of South China, Changsha, China.,Emergency Research Institute of Hunan Province, Hunan People's Hospital, Changsha, China
| |
Collapse
|
9
|
Priolo M, Radio FC, Pizzi S, Pintomalli L, Pantaleoni F, Mancini C, Cordeddu V, Africa E, Mammì C, Dallapiccola B, Tartaglia M. Co-Occurring Heterozygous CNOT3 and SMAD6 Truncating Variants: Unusual Presentation and Refinement of the IDDSADF Phenotype. Genes (Basel) 2021; 12:genes12071009. [PMID: 34208845 PMCID: PMC8303239 DOI: 10.3390/genes12071009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 11/29/2022] Open
Abstract
Objective, the application of genomic sequencing in clinical practice has allowed us to appreciate the contribution of co-occurring pathogenic variants to complex and unclassified clinical phenotypes. Besides the clinical relevance, these findings have provided evidence of previously unrecognized functional links between genes in the context of developmental processes and physiology. Patients and Methods, a 5-year-old patient showing an unclassified phenotype characterized by developmental delay, speech delay, peculiar behavioral features, facial dysmorphism and severe cardiopathy was analyzed by trio-based whole exome sequencing (WES) analysis to identify the genomic events underlying the condition. Results, two co-occurring heterozygous truncating variants in CNOT3 and SMAD6 were identified. Heterozygous loss-of-function variants in CNOT3, encoding a subunit of the CCR4-NOT protein complex, have recently been reported to cause a syndromic condition known as intellectual developmental disorder with speech delay, autism and dysmorphic facies (IDDSADF). Enrichment of rare/private variants in the SMAD6 gene, encoding a protein negatively controlling transforming growth factor β/bone morphogenetic protein (TGFB/BMP) signaling, has been described in association with a wide spectrum of congenital heart defects. We dissected the contribution of individual variants to the complex clinical manifestations and profiled a previously unappreciated set of facial features and signs characterizing IDDSADF. Conclusions, two concomitant truncating variants in CNOT3 and SMAD6 are the cause of the combination of features documented in the patient resulting in the unique multisystem neurodevelopmental condition. These findings provide evidence for a functional link between the CCR4-NOT complex and TGFB/BMP signaling in processes controlling cardiac development. Finally, the present revision provides evidence that IDDSADF is characterized by a distinctive facial gestalt.
Collapse
Affiliation(s)
- Manuela Priolo
- Unità di Genetica Medica, Grande Ospedale Metropolitano “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy; (L.P.); (C.M.)
- Correspondence: (M.P.); (M.T.); Tel.: +39-0965397319 (M.P.); +39-0668593742 (M.T.)
| | - Francesca Clementina Radio
- Area di Ricerca Genetica e Malattie Rare, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (F.C.R.); (S.P.); (F.P.); (C.M.); (B.D.)
| | - Simone Pizzi
- Area di Ricerca Genetica e Malattie Rare, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (F.C.R.); (S.P.); (F.P.); (C.M.); (B.D.)
| | - Letizia Pintomalli
- Unità di Genetica Medica, Grande Ospedale Metropolitano “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy; (L.P.); (C.M.)
| | - Francesca Pantaleoni
- Area di Ricerca Genetica e Malattie Rare, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (F.C.R.); (S.P.); (F.P.); (C.M.); (B.D.)
| | - Cecilia Mancini
- Area di Ricerca Genetica e Malattie Rare, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (F.C.R.); (S.P.); (F.P.); (C.M.); (B.D.)
| | - Viviana Cordeddu
- Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Emilio Africa
- UOC di Neuroradiologia, Grande Ospedale Metropolitano “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy;
| | - Corrado Mammì
- Unità di Genetica Medica, Grande Ospedale Metropolitano “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy; (L.P.); (C.M.)
| | - Bruno Dallapiccola
- Area di Ricerca Genetica e Malattie Rare, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (F.C.R.); (S.P.); (F.P.); (C.M.); (B.D.)
| | - Marco Tartaglia
- Area di Ricerca Genetica e Malattie Rare, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (F.C.R.); (S.P.); (F.P.); (C.M.); (B.D.)
- Correspondence: (M.P.); (M.T.); Tel.: +39-0965397319 (M.P.); +39-0668593742 (M.T.)
| |
Collapse
|
10
|
Burada F, Streata I, Ungureanu A, Ruican D, Nagy R, Serban-Sosoi S, Stambouli D, Dimos L, Popescu-Hobeanu G, Mihai I, Iliescu D. Prenatal diagnosis of a pure 15q distal trisomy derived from a maternal pericentric inversion: A case report. Exp Ther Med 2021; 21:304. [PMID: 33717247 PMCID: PMC7885063 DOI: 10.3892/etm.2021.9735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/24/2020] [Indexed: 11/06/2022] Open
Abstract
Distal trisomy or duplication of 15q is a very rare chromosomal disorder; most of the previously reported cases were derived from unbalanced translocations involving chromosome 15 and another chromosome, whereas other mechanisms (e.g. duplication) have rarely been reported. We herein report a very rare prenatal case of a partial 15q trisomy, a 42.64-Mb duplication of 15q22.2-q26.3, arising from a maternal pericentric inversion of chromosome 15 (p11q22) that was not the result of an unbalanced translocation or duplication, and was not associated with concomitant partial monosomy. Fetal ultrasound revealed isolated thickened nuchal translucency at 12 weeks and multiple abnormalities in the second trimester, including early growth restriction, unilateral ventriculomegaly, narrow cavum septi pellucidi with hypoplasia of the corpus callosum, unilateral postaxial polydactyly, clenched hands and clubfoot with clawing of the toes, and a particular general dysplastic and hypotrophic aspect of the heart. The distinctive aspects of the present case may help to refine the phenotype associated with distal duplication 15q. To the best of our knowledge, this is the first report of a prenatal diagnosis with a 15q22.2-q26.3 duplication that did not result from an unbalanced translocation and did not have a concomitant monosomic component.
Collapse
Affiliation(s)
- Florin Burada
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Regional Center of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Ioana Streata
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Regional Center of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Anda Ungureanu
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Pediatric Cardiology, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Dan Ruican
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Rodica Nagy
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Simona Serban-Sosoi
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Regional Center of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | | | - Luiza Dimos
- Cytogenomic Medical Laboratory, 014453 Bucharest, Romania
| | - Gabriela Popescu-Hobeanu
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ioana Mihai
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Regional Center of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Dominic Iliescu
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
11
|
Viering DHHM, Chan MMY, Hoogenboom L, Iancu D, de Baaij JHF, Tullus K, Kleta R, Bockenhauer D. Genetics of renovascular hypertension in children. J Hypertens 2020; 38:1964-1970. [PMID: 32890272 DOI: 10.1097/hjh.0000000000002491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE In most cases of renovascular hypertension in children, the cause is unclear. The aim of this study was to investigate genetic variation as a factor in the development of renovascular hypertension in children. METHODS In a cohort of 37 unrelated children from a single tertiary referral center, exome sequencing was performed. We assessed variants in recognized and suspected disease genes and searched for novel ones with a gene-based variant-burden analysis. RESULTS In the majority of patients, exome sequencing could not identify causative variants. We found a pathogenic variant in a recognized associated disease gene in five patients (three pathogenic variants in NF1, one in ELN and a deletion of chromosome 7q11.23, consistent with Williams syndrome). In two other patients, (likely) pathogenic variants were found in putative renovascular hypertension genes (SMAD6 and GLA), with clinical implications for both. Ten additional patients carried variants of uncertain significance (VUS) in known (n = 4) or putative (n = 6) renovascular hypertension disease genes. Rare variant burden analysis yielded no further candidate genes. CONCLUSION Genetic contributors, such as germline mutations in NF1, ELN, 7q11.23del were present in only 5 out of 37 (14%) children with renovascular hypertension. Twelve other children (32%) had potentially causal variants identified, including a pathogenic variant in SMAD6; a vasculopathy gene hitherto unknown to link with renovascular hypertension. Most importantly, our data show that exome sequencing can rarely identify the cause of renovascular hypertension in nonsyndromic children. We suggest that nongenetic factors or somatic genetic variation will play a more important role.
Collapse
Affiliation(s)
- Daan H H M Viering
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Melanie M Y Chan
- Department of Renal Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Lieke Hoogenboom
- Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust
| | - Daniela Iancu
- Department of Renal Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kjell Tullus
- Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust
| | - Robert Kleta
- Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust
- Department of Renal Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Detlef Bockenhauer
- Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust
- Department of Renal Medicine, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
12
|
Calpena E, Cuellar A, Bala K, Swagemakers SMA, Koelling N, McGowan SJ, Phipps JM, Balasubramanian M, Cunningham ML, Douzgou S, Lattanzi W, Morton JEV, Shears D, Weber A, Wilson LC, Lord H, Lester T, Johnson D, Wall SA, Twigg SRF, Mathijssen IMJ, Boardman-Pretty F, Boyadjiev SA, Wilkie AOM. SMAD6 variants in craniosynostosis: genotype and phenotype evaluation. Genet Med 2020; 22:1498-1506. [PMID: 32499606 PMCID: PMC7462747 DOI: 10.1038/s41436-020-0817-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Enrichment of heterozygous missense and truncating SMAD6 variants was previously reported in nonsyndromic sagittal and metopic synostosis, and interaction of SMAD6 variants with a common polymorphism nearBMP2 (rs1884302) was proposed to contribute to inconsistent penetrance. We determined the occurrence of SMAD6 variants in all types of craniosynostosis, evaluated the impact of different missense variants on SMAD6 function, and tested independently whether rs1884302 genotype significantly modifies the phenotype. METHODS We performed resequencing of SMAD6 in 795 unsolved patients with any type of craniosynostosis and genotyped rs1884302 in SMAD6-positive individuals and relatives. We examined the inhibitory activity and stability of SMAD6 missense variants. RESULTS We found 18 (2.3%) different rare damaging SMAD6 variants, with the highest prevalence in metopic synostosis (5.8%) and an 18.3-fold enrichment of loss-of-function variants comparedwith gnomAD data (P < 10-7). Combined with eight additional variants, ≥20/26 were transmitted from an unaffected parent but rs1884302 genotype did not predict phenotype. CONCLUSION Pathogenic SMAD6 variants substantially increase the risk of both nonsyndromic and syndromic presentations of craniosynostosis, especially metopic synostosis. Functional analysis is important to evaluate missense variants. Genotyping of rs1884302 is not clinically useful. Mechanisms to explain the remarkable diversity of phenotypes associated with SMAD6 variants remain obscure.
Collapse
Affiliation(s)
- Eduardo Calpena
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Araceli Cuellar
- Department of Pediatrics, University of California-Davis, Sacramento, CA, USA
| | - Krithi Bala
- Department of Pediatrics, University of California-Davis, Sacramento, CA, USA
| | - Sigrid M A Swagemakers
- Departments of Pathology and Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nils Koelling
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Simon J McGowan
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Julie M Phipps
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Michael L Cunningham
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Sofia Douzgou
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Saint Mary's Hospital, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester, UK
| | - Wanda Lattanzi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Jenny E V Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospitals NHS Foundation Trust, Birmingham, UK
| | - Deborah Shears
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Craniofacial Unit, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, UK
| | - Astrid Weber
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Louise C Wilson
- Clinical Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Helen Lord
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford, UK
| | - Tracy Lester
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford, UK
| | - David Johnson
- Craniofacial Unit, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, UK
| | - Steven A Wall
- Craniofacial Unit, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, UK
| | - Stephen R F Twigg
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Irene M J Mathijssen
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Freya Boardman-Pretty
- Genomics England, London, UK
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Simeon A Boyadjiev
- Department of Pediatrics, University of California-Davis, Sacramento, CA, USA
| | - Andrew O M Wilkie
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
- Craniofacial Unit, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
13
|
Orr WB, Johnson MC, Abarbanell AM, Sintek M. Recanalization of an atretic intramural left main coronary artery after bypass surgery in a pediatric patient with anomalous aortic origin of the left main coronary artery arising from the right sinus of Valsalva. Catheter Cardiovasc Interv 2019; 95:739-742. [PMID: 31802625 DOI: 10.1002/ccd.28633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/23/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022]
Abstract
We report a pediatric patient with nonatherosclerotic chronic total occlusion (CTO) of the left main coronary artery (LMCA) leading to complete LMCA atresia which was successfully recanalized via retrograde techniques through a previous internal mammary bypass graft. After the CTO was treated, the artery was found to be anomalous off the right cusp with an intramural coarse and slit-like orifice. The patient's ischemic symptoms resolved after Percutaneous Coronary Intervention (PCI), and she has continued to do well.
Collapse
Affiliation(s)
- William B Orr
- Division of Pediatric Cardiology, Washington University School of Medicine/Saint Louis Children's Hospital, Saint Louis, Missouri
| | - Mark C Johnson
- Division of Pediatric Cardiology, Washington University School of Medicine/Saint Louis Children's Hospital, Saint Louis, Missouri
| | - Aaron M Abarbanell
- Section of Pediatric Cardiothoracic Surgery, Washington University School of Medicine/Saint Louis Children's Hospital, Saint Louis, Missouri
| | - Marc Sintek
- Cardiovascular Division, Washington University School of Medicine/Barnes-Jewish Hospital, Saint Louis, Missouri
| |
Collapse
|