1
|
Lee NK, Uhler KM, Yoon PJ, Santos-Cortez RLP. Clinical Genetic Testing for Hearing Loss: Implications for Genetic Counseling and Gene-Based Therapies. Biomedicines 2024; 12:1427. [PMID: 39062005 PMCID: PMC11274279 DOI: 10.3390/biomedicines12071427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
Genetic factors contribute significantly to congenital hearing loss, with non-syndromic cases being more prevalent and genetically heterogeneous. Currently, 150 genes have been associated with non-syndromic hearing loss, and their identification has improved our understanding of auditory physiology and potential therapeutic targets. Hearing loss gene panels offer comprehensive genetic testing for hereditary hearing loss, and advancements in sequencing technology have made genetic testing more accessible and affordable. Currently, genetic panel tests available at a relatively lower cost are offered to patients who face financial barriers. In this study, clinical and audiometric data were collected from six pediatric patients who underwent genetic panel testing. Known pathogenic variants in MYO15A, GJB2, and USH2A were most likely to be causal of hearing loss. Novel pathogenic variants in the MYO7A and TECTA genes were also identified. Variable hearing phenotypes and inheritance patterns were observed amongst individuals with different pathogenic variants. The identification of these variants contributes to the continually expanding knowledge base on genetic hearing loss and lays the groundwork for personalized treatment options in the future.
Collapse
Affiliation(s)
- Nam K. Lee
- Department of Otolaryngology—Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristin M. Uhler
- Department of Physical Medicine and Rehabilitation, Children’s Hospital Colorado, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
- Department of Pediatric Otolaryngology, Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Patricia J. Yoon
- Department of Otolaryngology—Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatric Otolaryngology, Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Regie Lyn P. Santos-Cortez
- Department of Otolaryngology—Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Chen PY, Yang TW, Tseng YS, Tsai CY, Yeh CS, Lee YH, Lin PH, Lin TC, Wu YJ, Yang TH, Chiang YT, Hsu JSJ, Hsu CJ, Chen PL, Chou CF, Wu CC. Machine learning-based longitudinal prediction for GJB2-related sensorineural hearing loss. Comput Biol Med 2024; 176:108597. [PMID: 38763069 DOI: 10.1016/j.compbiomed.2024.108597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Recessive GJB2 variants, the most common genetic cause of hearing loss, may contribute to progressive sensorineural hearing loss (SNHL). The aim of this study is to build a realistic predictive model for GJB2-related SNHL using machine learning to enable personalized medical planning for timely intervention. METHOD Patients with SNHL with confirmed biallelic GJB2 variants in a nationwide cohort between 2005 and 2022 were included. Different data preprocessing protocols and computational algorithms were combined to construct a prediction model. We randomly divided the dataset into training, validation, and test sets at a ratio of 72:8:20, and repeated this process ten times to obtain an average result. The performance of the models was evaluated using the mean absolute error (MAE), which refers to the discrepancy between the predicted and actual hearing thresholds. RESULTS We enrolled 449 patients with 2184 audiograms available for deep learning analysis. SNHL progression was identified in all models and was independent of age, sex, and genotype. The average hearing progression rate was 0.61 dB HL per year. The best MAE for linear regression, multilayer perceptron, long short-term memory, and attention model were 4.42, 4.38, 4.34, and 4.76 dB HL, respectively. The long short-term memory model performed best with an average MAE of 4.34 dB HL and acceptable accuracy for up to 4 years. CONCLUSIONS We have developed a prognostic model that uses machine learning to approximate realistic hearing progression in GJB2-related SNHL, allowing for the design of individualized medical plans, such as recommending the optimal follow-up interval for this population.
Collapse
Affiliation(s)
- Pey-Yu Chen
- Department of Otolaryngology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Audiology and Speech-Language Pathology, Mackay Medical College, New Taipei City, Taiwan; Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ta-Wei Yang
- Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan
| | - Yi-Shan Tseng
- Department of Computer Science & Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yu Tsai
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chiung-Szu Yeh
- Department of Computer Science & Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Yen-Hui Lee
- Department of Otolaryngology, National Taiwan University Biomedical Park Hospital, Hsinchu County, Taiwan; Department of Otolaryngology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu City, Taiwan; Hearing and Speech Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Hsuan Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Chun Lin
- Department of Computer Science & Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Jen Wu
- Department of Computer Science & Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Ting-Hua Yang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Ting Chiang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jacob Shu-Jui Hsu
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan; Department of Otorhinolaryngology-Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chen-Fu Chou
- Department of Computer Science & Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan.
| |
Collapse
|
3
|
Zhang X, Shi T, Li J, Wu X, Wu K, Li D, Wang D, Guan J, Wang H. Natural History of KCNQ4 p.G285S Related Hearing Loss, Construction of iPSC and Mouse Model. Laryngoscope 2024; 134:2356-2363. [PMID: 37962101 DOI: 10.1002/lary.31179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVE KCNQ4 is one of the most common disease-causing genes involved in autosomal dominant non-syndromic hearing loss. We previously found that patients with KCNQ4 p.G285S exhibited a much more rapid deterioration in hearing loss than those with other KCNQ4 variants. To determine the rate of hearing loss and assess the disease for further analysis, we performed a long-term follow-up of these patients and generated patient-derived induced pluripotent stem cells (iPSCs), and a mouse model. METHODS Patients with KCNQ4 p.G285S from a five-generation family with hearing loss were followed up from 2005 to 2022. iPSCs were generated by stimulating peripheral blood mononuclear cells from the proband, and their pluripotency was determined. The Kcnq4 p.G286S mouse model was generated using CRISPR/Cas9, and its genotype and phenotype were identified. RESULTS (1) The annual rates of hearing loss at the frequencies of speech were 0.96 dB for the proband and 0.87 dB for his father during the follow-up period, which were faster than patients with other KCNQ4 variants. (2) The patient-derived iPSC line carrying KCNQ4 p.G285S, possessed the capacity of differentiation and pluripotency capacities. (3) Mutant mice with Kcnq4 p.G286S exhibited hearing loss and outer hair cell loss at 1 month of age. CONCLUSION Patients with KCNQ4 p.G285S variant exhibited significantly accelerated progression of hearing loss compared to those with other reported variants. Awareness of the natural history of hearing loss associated with KCNQ4 p.G285S is beneficial for genetic counseling and prognosis. The generation of the iPSCs and mouse model can provide a valuable foundation for further in-depth analyses. LEVEL OF EVIDENCE 4 Laryngoscope, 134:2356-2363, 2024.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Tao Shi
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Jin Li
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xiaonan Wu
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Kaili Wu
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Danyang Li
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Dayong Wang
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jing Guan
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Beijing, China
| | - Hongyang Wang
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
李 丹, 王 洪, 王 秋. [Splicing mutations of GSDME cause late-onset non-syndromic hearing loss]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2024; 38:30-37. [PMID: 38297846 PMCID: PMC11116152 DOI: 10.13201/j.issn.2096-7993.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Indexed: 02/02/2024]
Abstract
Objective:To dentify the genetic and audiological characteristics of families affected by late-onset hearing loss due to GSDMEgene mutations, aiming to explore clinical characteristics and pathogenic mechanisms for providing genetic counseling and intervention guidance. Methods:Six families with late-onset hearing loss from the Chinese Deafness Genome Project were included. Audiological tests, including pure-tone audiometry, acoustic immittance, speech recognition scores, auditory brainstem response, and distortion product otoacoustic emission, were applied to evaluate the hearing levels of patients. Combining with medical history and physical examination to analyze the phenotypic differences between the probands and their family members. Next-generation sequencing was used to identify pathogenic genes in probands, and validations were performed on their relatives by Sanger sequencing. Pathogenicity analysis was performed according to the American College of Medical Genetics and Genomics Guidelines. Meanwhile, the pathogenic mechanisms of GSDME-related hearing loss were explored combining with domestic and international research progress. Results:Among the six families with late-onset hearing loss, a total of 30 individuals performed hearing loss. The onset of hearing loss in these families ranged from 10 to 50 years(mean age: 27.88±9.74 years). In the study, four splicing mutations of the GSDME were identified, including two novel variants: c. 991-7C>G and c. 1183+1G>T. Significantly, the c. 991-7C>G was a de novo variant. The others were previously reported variants: c. 991-1G>C and c. 991-15_991-13del, the latter was identified in three families. Genotype-phenotype correlation analysis revealed that probands with the c. 991-7C>G and c. 1183+1G>T performed a predominantly high-frequency hearing loss. The three families carrying the same mutation exhibited varying degrees of hearing loss, with an annual rate of hearing deterioration exceeding 0.94 dB HL/year. Furthermore, follow-up of interventions showed that four of six probands received intervention(66.67%), but the results of intervention varied. Conclusion:The study analyzed six families with late-onset non-syndromic hearing loss linked to GSDME mutations, identifying four splicing variants. Notably, c. 991-7C>G is the first reported de novo variant of GSDME globally. Audiological analysis revealed that the age of onset generally exceeded 10 years,with variable effectiveness of interventions.
Collapse
Affiliation(s)
- 丹阳 李
- 中国人民解放军总医院第六医学中心耳鼻咽喉头颈外科医学部耳鼻咽喉内科解放军医学院(北京,100853)Department of Audiology and Vestibular Medicine, College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, 100853, China
- 南开大学医学院Nankai University School of Medicine
- 国家耳鼻咽喉疾病临床医学研究中心National Clinical Research Center for Otolaryngologic Diseases
| | - 洪阳 王
- 中国人民解放军总医院第六医学中心耳鼻咽喉头颈外科医学部耳鼻咽喉内科解放军医学院(北京,100853)Department of Audiology and Vestibular Medicine, College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, 100853, China
- 国家耳鼻咽喉疾病临床医学研究中心National Clinical Research Center for Otolaryngologic Diseases
| | - 秋菊 王
- 中国人民解放军总医院第六医学中心耳鼻咽喉头颈外科医学部耳鼻咽喉内科解放军医学院(北京,100853)Department of Audiology and Vestibular Medicine, College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, 100853, China
- 南开大学医学院Nankai University School of Medicine
- 国家耳鼻咽喉疾病临床医学研究中心National Clinical Research Center for Otolaryngologic Diseases
| |
Collapse
|
5
|
Singh S, Penney C, Griffin A, Woodland G, Werdyani S, Benteau TA, Abdelfatah N, Squires J, King B, Houston J, Dyer MJ, Roslin NM, Vincent D, Marquis P, O'Rielly DD, Hodgkinson K, Burt T, Baker A, Stanton SG, Young TL. Highly variable hearing loss due to POU4F3 (c.37del) is revealed by longitudinal, frequency specific analyses. Eur J Hum Genet 2023:10.1038/s41431-023-01358-0. [PMID: 37072551 DOI: 10.1038/s41431-023-01358-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
Genotype-phenotype correlations add value to the management of families with hereditary hearing loss (HL), where age-related typical audiograms (ARTAs) are generated from cross-sectional regression equations and used to predict the audiogram phenotype across the lifespan. A seven-generation kindred with autosomal dominant sensorineural HL (ADSNHL) was recruited and a novel pathogenic variant in POU4F3 (c.37del) was identified by combining linkage analysis with whole exome sequencing (WES). POU4F3 is noted for large intrafamilial variation including the age of onset of HL, audiogram configuration and presence of vestibular impairment. Sequential audiograms and longitudinal analyses reveal highly variable audiogram features among POU4F3 (c.37del) carriers, limiting the utility of ARTAs for clinical prognosis and management of HL. Furthermore, a comparison of ARTAs against three previously published families (1 Israeli Jewish, 2 Dutch) reveals significant interfamilial differences, with earlier onset and slower deterioration. This is the first published report of a North American family with ADSNHL due to POU4F3, the first report of the pathogenic c.37del variant, and the first study to conduct longitudinal analysis, extending the phenotypic spectrum of DFNA15.
Collapse
Affiliation(s)
- Sushma Singh
- Communication Sciences and Disorders and National Centre for Audiology, Western University, Elborn College, 1201 Western Road, London, ON, Canada
| | - Cindy Penney
- Centre for Translational Genomics, Health Sciences Centre, 300 Prince Philip Drive, St. John's, NL, Canada
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Anne Griffin
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Geoffrey Woodland
- Centre for Translational Genomics, Health Sciences Centre, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Salem Werdyani
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Tammy A Benteau
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Nelly Abdelfatah
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Jessica Squires
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | | | - Jim Houston
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Matthew J Dyer
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Nicole M Roslin
- The Centre for Applied Genomics, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, Canada
| | - Daniel Vincent
- Canadian Centre for Computational Genomics, McGill University, 740 Dr. Penfield Avenue, Montréal, QC, Canada
| | - Pascale Marquis
- Canadian Centre for Computational Genomics, McGill University, 740 Dr. Penfield Avenue, Montréal, QC, Canada
| | - Darren D O'Rielly
- Centre for Translational Genomics, Health Sciences Centre, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Kathy Hodgkinson
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Taylor Burt
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Ashley Baker
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Susan G Stanton
- Communication Sciences and Disorders and National Centre for Audiology, Western University, Elborn College, 1201 Western Road, London, ON, Canada
| | - Terry-Lynn Young
- Communication Sciences and Disorders and National Centre for Audiology, Western University, Elborn College, 1201 Western Road, London, ON, Canada.
- Centre for Translational Genomics, Health Sciences Centre, 300 Prince Philip Drive, St. John's, NL, Canada.
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada.
| |
Collapse
|
6
|
Velde HM, Huizenga XJJ, Yntema HG, Haer-Wigman L, Beynon AJ, Oostrik J, Pegge SAH, Kremer H, Lanting CP, Pennings RJE. Genotype and Phenotype Analyses of a Novel WFS1 Variant (c.2512C>T p.(Pro838Ser)) Associated with DFNA6/14/38. Genes (Basel) 2023; 14:457. [PMID: 36833385 PMCID: PMC9957259 DOI: 10.3390/genes14020457] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
The aim of this study is to contribute to a better description of the genotypic and phenotypic spectrum of DFNA6/14/38 and aid in counseling future patients identified with this variant. Therefore, we describe the genotype and phenotype in a large Dutch-German family (W21-1472) with autosomal dominant non-syndromic, low-frequency sensorineural hearing loss (LFSNHL). Exome sequencing and targeted analysis of a hearing impairment gene panel were used to genetically screen the proband. Co-segregation of the identified variant with hearing loss was assessed by Sanger sequencing. The phenotypic evaluation consisted of anamnesis, clinical questionnaires, physical examination and examination of audiovestibular function. A novel likely pathogenic WFS1 variant (NM_006005.3:c.2512C>T p.(Pro838Ser)) was identified in the proband and found to co-segregate with LFSNHL, characteristic of DFNA6/14/38, in this family. The self-reported age of onset of hearing loss (HL) ranged from congenital to 50 years of age. In the young subjects, HL was demonstrated in early childhood. At all ages, an LFSNHL (0.25-2 kHz) of about 50-60 decibel hearing level (dB HL) was observed. HL in the higher frequencies showed inter-individual variability. The dizziness handicap inventory (DHI) was completed by eight affected subjects and indicated a moderate handicap in two of them (aged 77 and 70). Vestibular examinations (n = 4) showed abnormalities, particularly in otolith function. In conclusion, we identified a novel WFS1 variant that co-segregates with DFNA6/14/38 in this family. We found indications of mild vestibular dysfunction, although it is uncertain whether this is related to the identified WFS1 variant or is an incidental finding. We would like to emphasize that conventional neonatal hearing screening programs are not sensitive to HL in DFNA6/14/38 patients, because high-frequency hearing thresholds are initially preserved. Therefore, we suggest screening newborns in DFNA6/14/38 families with more frequency-specific methods.
Collapse
Affiliation(s)
- Hedwig M. Velde
- Department of Otorhinolaryngology, Radboudumc, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Xanne J. J. Huizenga
- Department of Otorhinolaryngology, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Helger G. Yntema
- Department of Human Genetics, Radboudumc, 6525 GA Nijmegen, The Netherlands
- The Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboudumc, 6525 GA Nijmegen, The Netherlands
- The Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Andy J. Beynon
- Department of Otorhinolaryngology, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Jaap Oostrik
- Department of Otorhinolaryngology, Radboudumc, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Sjoert A. H. Pegge
- Department of Medical Imaging, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Hannie Kremer
- Department of Otorhinolaryngology, Radboudumc, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, 6525 GA Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Cris P. Lanting
- Department of Otorhinolaryngology, Radboudumc, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Ronald J. E. Pennings
- Department of Otorhinolaryngology, Radboudumc, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
7
|
张 晓, 王 洪, 李 进, 李 丹, 武 凯, 吴 萧, 王 秋. [The genotype-phenotype correlation analysis and genetic counseling of hearing loss patients with novel KCNQ4 mutations]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2023; 37:25-30;35. [PMID: 36597364 PMCID: PMC10128352 DOI: 10.13201/j.issn.2096-7993.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 01/05/2023]
Abstract
Objective:To provide accurate genetic counseling, the genotype-phenotype correlation of the patients with KCNQ4mutations was analyzed. Methods:Two hearing loss families, 1807956(a five-generation family with 34 members) and 1707806(a three-generation family with 12 members) were recruited. The candidate variants were detected by next generation sequencing technology. Sanger sequencing was performed to verify the co-segregation of the phenotype in the recruited family members. According to American College of Medical Genetics and Genomics(ACMG) guideline, combined with clinical data, genetic testing, bioinformatic analysis and electrophysiological experiments, the pathogenicity of mutations was analyzed and genetic counseling was provided for family members. Results:The proband of family 1807956 was a pregnant woman, who carried KCNQ4 c.808T>G p.Y270D and developed hearing loss at the age of 15 years old, she had profound hearing loss in both ears, with middle-frequency highly affected. The proband of family 1707806 was an adolescent whose onset age was 11 years old, carrying KCNQ4 c.733G>A p.G245R, he presented with bilateral moderately severe hearing loss. The inheritance pattern of these two families were autosomal dominant inheritance. The two variants were missense mutations that were co-segregation in the two families and were not found in normal population. The mutations predicted by bioinformatic analysis tools were damaging and highly conserved in different species. Electrophysiological experiments showed that the function of the mutant ion channels was impaired. According to ACMG guideline, KCNQ4 c.808T>G was pathogenic, and KCNQ4 c.733G>A was likely pathogenic. Conclusion:The two mutations in this research were reported for the first time. The hearing loss of the patients showed heterogeneity, enriching the variation spectrum and clinical phenotype of KCNQ4.
Collapse
Affiliation(s)
- 晓龙 张
- 解放军总医院耳鼻咽喉头颈外科医学部耳鼻咽喉内科 解放军医学院 国家耳鼻咽喉疾病临床医学研究中心 聋病教育部重点实验室 聋病防治北京市重点实验室(北京,100853)Department of Audiology and Vestibular Medicine, College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, 100853, China
| | - 洪阳 王
- 解放军总医院耳鼻咽喉头颈外科医学部耳鼻咽喉内科 解放军医学院 国家耳鼻咽喉疾病临床医学研究中心 聋病教育部重点实验室 聋病防治北京市重点实验室(北京,100853)Department of Audiology and Vestibular Medicine, College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, 100853, China
| | - 进 李
- 解放军总医院耳鼻咽喉头颈外科医学部耳鼻咽喉内科 解放军医学院 国家耳鼻咽喉疾病临床医学研究中心 聋病教育部重点实验室 聋病防治北京市重点实验室(北京,100853)Department of Audiology and Vestibular Medicine, College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, 100853, China
| | - 丹阳 李
- 解放军总医院耳鼻咽喉头颈外科医学部耳鼻咽喉内科 解放军医学院 国家耳鼻咽喉疾病临床医学研究中心 聋病教育部重点实验室 聋病防治北京市重点实验室(北京,100853)Department of Audiology and Vestibular Medicine, College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, 100853, China
| | - 凯丽 武
- 解放军总医院耳鼻咽喉头颈外科医学部耳鼻咽喉内科 解放军医学院 国家耳鼻咽喉疾病临床医学研究中心 聋病教育部重点实验室 聋病防治北京市重点实验室(北京,100853)Department of Audiology and Vestibular Medicine, College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, 100853, China
| | - 萧男 吴
- 解放军总医院耳鼻咽喉头颈外科医学部耳鼻咽喉内科 解放军医学院 国家耳鼻咽喉疾病临床医学研究中心 聋病教育部重点实验室 聋病防治北京市重点实验室(北京,100853)Department of Audiology and Vestibular Medicine, College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, 100853, China
| | - 秋菊 王
- 解放军总医院耳鼻咽喉头颈外科医学部耳鼻咽喉内科 解放军医学院 国家耳鼻咽喉疾病临床医学研究中心 聋病教育部重点实验室 聋病防治北京市重点实验室(北京,100853)Department of Audiology and Vestibular Medicine, College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, 100853, China
| |
Collapse
|
8
|
A Novel Missense WFS1 Variant: Expanding the Mutational Spectrum Associated with Nonsyndromic Low-Frequency Sensorineural Hearing Loss. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5068869. [PMID: 36225977 PMCID: PMC9550458 DOI: 10.1155/2022/5068869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Background. Nonsyndromic low-frequency sensorineural hearing loss (LFSNHL) is an uncommon form of hearing loss (HL) that typically affects frequencies at 2000 Hz and below. Heterozygous variants in the WFS1 gene at the DFNA6/14/38 locus are considered a common cause of LFSNHL. To date, 34 different pathogenic genetic variants have been reported to cause LFSNHL with seven of these variants identified in the Chinese population. However, limited reports are available on the association between WFS1 gene and LFSNHL. Here, we report a five-generation Chinese family with an autosomal dominant inheritance pattern of postlingual and progressive LFSNHL. Methods. Routine clinical and audiological examinations were performed on 16 affected and 7 healthy members in this family. The targeted next-generation sequencing of 127 known deafness genes was performed to identify variants in affected individuals. Sanger sequencing were further employed to confirm the pathogenic variant identified. Results. A novel heterozygous pathogenic genetic variant c.2530G > T (p.Ala844Ser) was identified in the WFS1 gene in all patients of this family. The mutated Ala residue is evolutionarily conserved and cosegregated with HL. The variant was predicted to be deleterious by MutationTaster, PolyPhen-2, LRT, and Fathmm software. Conservation analysis and 3D protein structure model indicated that the variant caused a structural change in the protein. Conclusions. Our present study identifies a novel heterozygous WFS1 variant associated with LFSNHL in a Chinese family.
Collapse
|
9
|
Singh SP, William M, Malavia M, Chu XP. Behavior of KCNQ Channels in Neural Plasticity and Motor Disorders. MEMBRANES 2022; 12:membranes12050499. [PMID: 35629827 PMCID: PMC9143857 DOI: 10.3390/membranes12050499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023]
Abstract
The broad distribution of voltage-gated potassium channels (VGKCs) in the human body makes them a critical component for the study of physiological and pathological function. Within the KCNQ family of VGKCs, these aqueous conduits serve an array of critical roles in homeostasis, especially in neural tissue. Moreover, the greater emphasis on genomic identification in the past century has led to a growth in literature on the role of the ion channels in pathological disease as well. Despite this, there is a need to consolidate the updated findings regarding both the pharmacotherapeutic and pathological roles of KCNQ channels, especially regarding neural plasticity and motor disorders which have the largest body of literature on this channel. Specifically, KCNQ channels serve a remarkable role in modulating the synaptic efficiency required to create appropriate plasticity in the brain. This role can serve as a foundation for clinical approaches to chronic pain. Additionally, KCNQ channels in motor disorders have been utilized as a direction for contemporary pharmacotherapeutic developments due to the muscarinic properties of this channel. The aim of this study is to provide a contemporary review of the behavior of these channels in neural plasticity and motor disorders. Upon review, the behavior of these channels is largely dependent on the physiological role that KCNQ modulatory factors (i.e., pharmacotherapeutic options) serve in pathological diseases.
Collapse
|
10
|
Smith RJH. The hearing-impaired patient: what the future holds. Hum Genet 2022; 141:307-310. [PMID: 35290517 PMCID: PMC9093598 DOI: 10.1007/s00439-022-02447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Otolaryngology, Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, University of Iowa Graduate College, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|