1
|
Shibuya H. Telomeres, the nuclear lamina, and membrane remodeling: Orchestrating meiotic chromosome movements. J Cell Biol 2025; 224:e202412135. [PMID: 40261310 PMCID: PMC12013511 DOI: 10.1083/jcb.202412135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025] Open
Abstract
Telomeres, the DNA-protein complex located at the ends of linear eukaryotic chromosomes, not only safeguard genetic information from DNA erosion and aberrant activation of the DNA damage response pathways but also play a pivotal role in sexual reproduction. During meiotic prophase I, telomeres attach to the nuclear envelope and migrate along its surface, facilitating two-dimensional DNA homology searches that ensure precise pairing and recombination of the paternal and maternal chromosomes. Recent studies across diverse model systems have revealed intricate molecular mechanisms, including modifications to telomere- and nuclear envelope-binding proteins, the nuclear lamina, and even membrane composition. Emerging evidence reveals mutations in the genes encoding these meiotic telomere and nuclear envelope-associated proteins among infertile patients. This review highlights recent advances in the field of meiotic telomere research, particularly emphasizing mammalian model systems, contextualizes these findings through comparisons with other eukaryotes, and concludes by exploring potential future research directions in the field.
Collapse
Affiliation(s)
- Hiroki Shibuya
- Laboratory for Gametogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Fang Q, Ran L, Bi X, Di J, Liu Y, Xu F, Wang B. A novel homozygous nonsense variant of STX2 underlies non-obstructive azoospermia in a consanguineous Chinese family. J Hum Genet 2024; 69:675-677. [PMID: 39155345 DOI: 10.1038/s10038-024-01288-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Male infertility is a widespread population health concern, causing various degrees of adverse fertility outcomes. We determined the genetic cause of an infertile male from a consanguineous family, expanding the mutant spectrum of male infertility. A non-obstructive azoospermia (NOA) patient was recruited, and histological type of human testicular tissue of the patient categorized as maturation arrest. We identified a novel loss-of-function variant of syntaxin 2 (STX2) (c.142C>T:p.Gln48*) by performing Whole-exome sequencing (WES) on the NOA patient from a consanguineous Chinese family. Sanger sequencing confirmed the p.Gln48* variant was maternally and paternally inherited. The variant was predicted to be deleterious and resulted in aberrant changes to structure and function of STX2 by In silico analysis. In summary, we reported for the first time that a nonsense variant occurred in the exon region of STX2 in an infertile male presenting with NOA, which was beneficial for diagnosis and therapies of NOA.
Collapse
Affiliation(s)
- Qi Fang
- Department of Reproduction, Tianjin First Central Hospital, Tianjin, China
| | - Lanxi Ran
- Center for Genetics, National Research Institute for Family Planning, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinying Bi
- Center for Genetics, National Research Institute for Family Planning, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianyong Di
- Department of Reproduction, Tianjin First Central Hospital, Tianjin, China
| | - Ye Liu
- Department of Reproduction, Tianjin First Central Hospital, Tianjin, China
| | - Fengqin Xu
- Department of Reproduction, Tianjin First Central Hospital, Tianjin, China.
| | - Binbin Wang
- Center for Genetics, National Research Institute for Family Planning, Beijing, China.
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), Beijing, China.
| |
Collapse
|
3
|
Amiri-Yekta A, Sen S, Hazane-Puch F, Tebbakh C, Roux-Buisson N, Cazin C, Thierry-Mieg N, Bouras A, Mohammad Ali SG, Hosseini SH, Goodarzian M, Gourabi H, Ray PF, Kherraf ZE. Whole genome sequencing identifies a homozygous splicing variant in TDRKH segregating with non-obstructive azoospermia in an Iranian family. Clin Genet 2024; 106:625-631. [PMID: 38956960 DOI: 10.1111/cge.14584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Non-obstructive azoospermia (NOA) resulting from primary spermatogenic failure represents one of the most severe forms of male infertility, largely because therapeutic options are very limited. Beyond their diagnostic value, genetic tests for NOA also hold prognostic potential. Specifically, genetic diagnosis enables the establishment of genotype-testicular phenotype correlations, which, in some cases, provide a negative predictive value for testicular sperm extraction (TESE), thereby preventing unnecessary surgical procedures. In this study, we employed whole-genome sequencing (WGS) to investigate two generations of an Iranian family with NOA and identified a homozygous splicing variant in TDRKH (NM_001083965.2: c.562-2A>T). TDRKH encodes a conserved mitochondrial membrane-anchored factor essential for piRNA biogenesis in germ cells. In Tdrkh knockout mice, de-repression of retrotransposons in germ cells leads to spermatogenic arrest and male infertility. Previously, our team reported TDRKH involvement in human NOA cases through the investigation of a North African cohort. This current study marks the second report of TDRKH's role in NOA and human male infertility, underscoring the significance of the piRNA pathway in spermatogenesis. Furthermore, across both studies, we demonstrated that men carrying TDRKH variants, similar to knockout mice, exhibit complete spermatogenic arrest, correlating with failed testicular sperm retrieval.
Collapse
Affiliation(s)
- Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Sharanya Sen
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Florence Hazane-Puch
- CHU Grenoble Alpes, Medical Unit of Molecular Genetics (Hereditary Diseases and Oncology), Grenoble, France
| | - Célia Tebbakh
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Nathalie Roux-Buisson
- CHU Grenoble Alpes, Medical Unit of Molecular Genetics (Hereditary Diseases and Oncology), Grenoble, France
| | - Caroline Cazin
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | | | - Ahmed Bouras
- Centre Léon Bérard, Laboratory of Constitutional Genetics for Frequent Cancer HCL-CLB, Lyon, France
| | - Sadighi-Gilani Mohammad Ali
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Seyedeh-Hanieh Hosseini
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maedeh Goodarzian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Pierre F Ray
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Zine-Eddine Kherraf
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| |
Collapse
|
4
|
Fakhro KA, Awwad J, Garibova S, Saraiva LR, Avella M. Conserved genes regulating human sex differentiation, gametogenesis and fertilization. J Transl Med 2024; 22:473. [PMID: 38764035 PMCID: PMC11103854 DOI: 10.1186/s12967-024-05162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 05/21/2024] Open
Abstract
The study of the functional genome in mice and humans has been instrumental for describing the conserved molecular mechanisms regulating human reproductive biology, and for defining the etiologies of monogenic fertility disorders. Infertility is a reproductive disorder that includes various conditions affecting a couple's ability to achieve a healthy pregnancy. Recent advances in next-generation sequencing and CRISPR/Cas-mediated genome editing technologies have facilitated the identification and characterization of genes and mechanisms that, if affected, lead to infertility. We report established genes that regulate conserved functions in fundamental reproductive processes (e.g., sex determination, gametogenesis, and fertilization). We only cover genes the deletion of which yields comparable fertility phenotypes in both rodents and humans. In the case of newly-discovered genes, we report the studies demonstrating shared cellular and fertility phenotypes resulting from loss-of-function mutations in both species. Finally, we introduce new model systems for the study of human reproductive biology and highlight the importance of studying human consanguineous populations to discover novel monogenic causes of infertility. The rapid and continuous screening and identification of putative genetic defects coupled with an efficient functional characterization in animal models can reveal novel mechanisms of gene function in human reproductive tissues.
Collapse
Affiliation(s)
- Khalid A Fakhro
- Research Branch, Sidra Medicine, Doha, Qatar
- Weill Cornell Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Johnny Awwad
- Reproductive Medicine Unit, Sidra Medicine, Doha, Qatar
- Obstetrics & Gynecology, American University of Beirut Medical Center, Beirut, Lebanon
- Vincent Memorial Obstetrics & Gynecology Service, The Massachusetts General Hospital, Boston, MA, USA
| | | | - Luis R Saraiva
- Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Matteo Avella
- Research Branch, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
- Department of Biomedical Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
5
|
Yin L, Jiang N, Li T, Zhang Y, Yuan S. Telomeric function and regulation during male meiosis in mice and humans. Andrology 2024. [PMID: 38511802 DOI: 10.1111/andr.13631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Telomeres are unique structures situated at the ends of chromosomes. Preserving the structure and function of telomeres is essential for maintaining genomic stability and promoting genetic diversity during male meiosis in mammals. MATERIAL-METHODS This review compiled recent literature on the function and regulation of telomeres during male meiosis in both mice and humans, and also highlighted the critical roles of telomeres in reproductive biology and medicine. RESULTS-DISCUSSION Various structures, consisting of the LINC complex (SUN-KASH), SPDYA-CDK2, TTM trimer (TERB1-TERB2-MAJIN), and shelterin, are critical in controlling telomeric activities, such as nuclear envelope attachment and bouquet formation. Other than telomere-related proteins, cohesins and genes responsible for regulating telomere function are also highlighted, though the exact mechanism remains unclear. The gene-mutant mouse models with meiotic defects directly reveal the essential roles of telomeres in male meiosis. Recently reported mutant genes associated with telomere activity in clinical practice have also been illustrated in detail. CONCLUSIONS Proper regulation of telomere activities is essential for male meiosis progression in mice and humans.
Collapse
Affiliation(s)
- Lisha Yin
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Jiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youzhi Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Yalcin Z, Liang M, Abdelrazek IM, Friedrich C, Bareke E, Nabil A, Tüttelmann F, Majewski J, Abdalla E, Tan SL, Slim R. A report of two homozygous TERB1 protein-truncating variants in two unrelated women with primary infertility. J Assist Reprod Genet 2024; 41:751-756. [PMID: 38277113 PMCID: PMC10957843 DOI: 10.1007/s10815-024-03031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
PURPOSE To investigate the genetic etiology of patients with female infertility. METHODS Whole Exome Sequencing was performed on genomic DNA extracted from the patient's blood. Exome data were filtered for damaging rare biallelic variants in genes with possible roles in reproduction. Sanger sequencing was used to validate the selected variants and segregate them in family members. RESULTS A novel homozygous likely pathogenic variant, c.626G>A, p.Trp209*, was identified in the TERB1 gene of the patient. Additionally, we report a second homozygous pathogenic TERB1 variant, c.1703C>G, p.Ser568*, in an infertile woman whose azoospermic brother was previously described to be homozygous for her variant. CONCLUSIONS Here, we report for the first time two homozygous likely pathogenic and pathogenic TERB1 variants, c.626G>A, p.Trp209* and c.1703C>G, p.Ser568*, respectively, in two unrelated women with primary infertility. TERB1 is known to play an essential role in homologous chromosome movement, synapsis, and recombination during the meiotic prophase I and has an established role in male infertility in humans. Our data add TERB1 to the shortlist of Meiosis I genes associated with human infertility in both sexes.
Collapse
Affiliation(s)
- Zeynep Yalcin
- Department of Human Genetics, McGill University Health Centre, Montreal, QC, Canada
| | - Manqi Liang
- Department of Human Genetics, McGill University Health Centre, Montreal, QC, Canada
| | - Ibrahim M Abdelrazek
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Corinna Friedrich
- Institute of Reproductive Genetics, University of Münster, 48149, Münster, Germany
| | - Eric Bareke
- Department of Human Genetics, McGill University Health Centre, Montreal, QC, Canada
| | - Amira Nabil
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, 48149, Münster, Germany
| | - Jacek Majewski
- Department of Human Genetics, McGill University Health Centre, Montreal, QC, Canada
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Seang-Lin Tan
- OriginElle Fertility Clinic, Montreal, QC, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
| | - Rima Slim
- Department of Human Genetics, McGill University Health Centre, Montreal, QC, Canada.
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada.
- Research Institute of the McGill University Health Centre, 1001 Décarie Blvd, Montréal, Québec, H4A 3J1, Canada.
| |
Collapse
|
7
|
van Heerden D, Klima S, van den Bout I. How nuclear envelope dynamics can direct laminopathy phenotypes. Curr Opin Cell Biol 2024; 86:102290. [PMID: 38048657 DOI: 10.1016/j.ceb.2023.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/25/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023]
Abstract
The nuclear envelope separates the genome from the cytoplasmic environment. However, the nuclear envelope is also physically associated with the genome and exerts influence on gene expression and genome modification. The nucleus is dynamic, changing shape and responding to cell movement, disassembling and assembling during cell division, and undergoing rupture and repair. These dynamics can be impacted by genetic disease, leading to a family of diseases called laminopathies. Their disparate phenotypes suggest that multiple processes are affected. We highlight three such processes here, which we believe can be used to classify most of the laminopathies. While much still needs to be learned, some commonalities between these processes, such as proteins involved in nuclear envelope formation and rupture repair, may drive a variety of laminopathies. Here we review the latest information regarding nuclear dynamics and its role in laminopathies related to mutations in the nuclear lamina and linker of nucleoskeleton and cytoskeleton complex (LINC) proteins.
Collapse
Affiliation(s)
- David van Heerden
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, South Africa; Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Stefanie Klima
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, South Africa; Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Iman van den Bout
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, South Africa; Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa.
| |
Collapse
|