1
|
Minuth WW. Installation of the developing nephron in the fetal human kidney during advanced pregnancy. Mol Cell Pediatr 2023; 10:18. [PMID: 38012334 PMCID: PMC10682366 DOI: 10.1186/s40348-023-00172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The kidneys of preterm and low birth weight babies reflect vulnerability, since several noxae can evoke the termination of nephron formation. This again leads to oligonephropathy with severe consequences for health in the later life. While the clinical parameters have been intensely investigated, only little is known about the initial traces left by the noxae. For the fetal human kidney, solely the lack of basophilic S-shaped bodies and the reduction in width of the nephrogenic zone were registered. It is not known in how far also the involved progenitor cells, the earlier nephron stages, the collecting duct (CD) ampullae, and the local interstitium are collaterally harmed. AIM The interstitium at the forming nephron is heterogeneously structured. Thereby, it fulfills quite different mastering and integrative tasks. Since data dealing with the installation of a nephron is not available, the microanatomical features were recorded. RESULTS The microscopic specimens show that the installation of the transient stages of nephron anlage is not synchronized. Instead, it is controlled within a nephrogenic compartment of the nephrogenic zone. It starts near the renal capsule by positioning the nephrogenic niche so that the nephrogenic progenitor cells face the epithelial progenitor cell at the tip of a CD ampulla. Then, the induced nephrogenic progenitor cells assimilate in the pretubular aggregate. While its medial part remains opposite the head of the CD ampulla, at its proximal end, the primitive renal vesicle is formed. Only a part of it separates to stick to the section border between the head and conus of the CD ampulla. This marks the link with the future connecting tubule at the distal pole of the extending renal vesicle. Meanwhile, the proximal pole is mounted next to the connecting tubule of an earlier developed nephron. The resulting two-point mounting serves a common elongation of the conus at the CD ampulla and the medial aspect of the comma-shaped body. In the S-shaped body, it supports to defoliate the arising glomerulus and to link it with the perforating radiate artery at its deep lateral aspect. CONCLUSIONS The investigation depicts that the installation is an interactive process between the stages of nephron anlage and its structural neighbors. A special meaning has the interjacent interstitium. It is vital for the positioning, shaping, and physiological integration. Due to its special location, this is mainly exposed to noxae.
Collapse
Affiliation(s)
- Will W Minuth
- Institute of Anatomy, University of Regensburg, D-93053, Regensburg, Germany.
| |
Collapse
|
2
|
Minuth WW. The interstitium at the developing nephron in the fetal kidney during advanced pregnancy - a microanatomical inventory. Mol Cell Pediatr 2022; 9:17. [PMID: 36008693 PMCID: PMC9411487 DOI: 10.1186/s40348-022-00149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background A series of noxae can evoke the termination of nephron formation in preterm and low birth weight babies. This results in oligonephropathy with severe consequences for health in the later life. Although the clinical parameters have been extensively investigated, little is known about the initial damage. Previous pathological findings indicate the reduction in width of the nephrogenic zone and the lack of S-shaped bodies. Current morphological investigations suggest that due to the mutual patterning beside the forming nephron, also its structural neighbors, particularly the interjacent interstitium, must be affected. However, beside the findings on integrative and mastering functions, systematic microanatomical data explaining the configuration of the interstitium at the developing nephron in the fetal kidney during advanced pregnancy is not available. Therefore, this work explains the typical features. Results The generated data depicts that the progenitor cells, nephrogenic niche, pretubular aggregate, and mesenchymal-to-epithelial transition are restricted to the subcapsular interstitium. During the proceeding development, only the distal pole of the renal vesicles and comma- and S-shaped bodies stays in further contact with it. The respective proximal pole is positioned opposite the peritubular interstitium at the connecting tubule of an underlying but previously formed nephron. The related medial aspect faces the narrow peritubular interstitium of a collecting duct (CD) ampulla first only at its tip, then at its head, conus, and neck, and finally at the differentiating CD tubule. The lateral aspect starts at the subcapsular interstitium, but then it is positioned along the wide perivascular interstitium of the neighboring ascending perforating radiate artery. When the nephron matures, the interstitial configuration changes again. Conclusions The present investigation illustrates that the interstitium at the forming nephron in the fetal kidney consists of existing, transient, stage-specific, and differently far matured compartments. According to the developmental needs, it changes its shape by formation, degradation, fusion, and rebuilding.
Collapse
Affiliation(s)
- Will W Minuth
- Institute of Anatomy, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
3
|
Prat-Duran J, Pinilla E, Nørregaard R, Simonsen U, Buus NH. Transglutaminase 2 as a novel target in chronic kidney disease - Methods, mechanisms and pharmacological inhibition. Pharmacol Ther 2020; 222:107787. [PMID: 33307141 DOI: 10.1016/j.pharmthera.2020.107787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/02/2020] [Indexed: 01/31/2023]
Abstract
Chronic kidney disease (CKD) is a global health problem with a prevalence of 10-15%. Progressive fibrosis of the renal tissue is a main feature of CKD, but current treatment strategies are relatively unspecific and delay, but do not prevent, CKD. Exploration of novel pharmacological targets to inhibit fibrosis development are therefore important. Transglutaminase 2 (TG2) is known to be central for extracellular collagenous matrix formation, but TG2 is a multifunctional enzyme and novel research has broadened our view on its extra- and intracellular actions. TG2 exists in two conformational states with different catalytic properties as determined by substrate availability and local calcium concentrations. The open conformation of TG2 depends on calcium and has transamidase activity, central for protein modification and cross-linking of extracellular protein components, while the closed conformation is a GTPase involved in transmembrane signaling processes. We first describe different methodologies to assess TG2 activity in renal tissue and cell cultures such as biotin cadaverine incorporation. Then we systematically review animal CKD models and preliminary studies in humans (with diabetic, IgA- and chronic allograft nephropathy) to reveal the role of TG2 in renal fibrosis. Mechanisms behind TG2 activation, TG2 externalization dependent on Syndecan-4 and interactions between TG and profibrotic molecules including transforming growth factor β and the angiotensin II receptor are discussed. Pharmacological TG2 inhibition shows antifibrotic effects in CKD. However, the translation of TG2 inhibition to treat CKD in patients is a challenge as clinical information is limited, and further studies on pharmacokinetics and efficacy of the individual compounds are required.
Collapse
Affiliation(s)
| | | | | | - Ulf Simonsen
- Institute of Biomedicine, Health, Aarhus University, Denmark
| | - Niels Henrik Buus
- Institute of Biomedicine, Health, Aarhus University, Denmark; Department of Renal Medicine, Aarhus University Hospital, Denmark.
| |
Collapse
|
4
|
Minuth WW. Concepts for a therapeutic prolongation of nephrogenesis in preterm and low-birth-weight babies must correspond to structural-functional properties in the nephrogenic zone. Mol Cell Pediatr 2017; 4:12. [PMID: 29218481 PMCID: PMC5721096 DOI: 10.1186/s40348-017-0078-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/20/2017] [Indexed: 12/30/2022] Open
Abstract
Numerous investigations are dealing with anlage of the mammalian kidney and primary development of nephrons. However, only few information is available about the last steps in kidney development leading at birth to a downregulation of morphogen activity in the nephrogenic zone and to a loss of stem cell niches aligned beyond the organ capsule. Surprisingly, these natural changes in the developmental program display similarities to processes occurring in the kidneys of preterm and low-birth-weight babies. Although those babies are born at a time with a principally intact nephrogenic zone and active niches, a high proportion of them suffers on impairment of nephrogenesis resulting in oligonephropathy, formation of atypical glomeruli, and immaturity of parenchyma. The setting points out that up to date not identified noxae in the nephrogenic zone hamper primary steps of parenchyma development. In this situation, a possible therapeutic aim is to prolong nephrogenesis by medications. However, actual data provide information that administration of drugs is problematic due to an unexpectedly complex microanatomy of the nephrogenic zone, in niches so far not considered textured extracellular matrix and peculiar contacts between mesenchymal cell projections and epithelial stem cells via tunneling nanotubes. Thus, it remains to be figured out whether disturbance of morphogen signaling altered synthesis of extracellular matrix, disturbed cell-to-cell contacts, or modified interstitial fluid impair nephrogenic activity. Due to most unanswered questions, search for eligible drugs prolonging nephrogenesis and their reliable administration is a special challenge for the future.
Collapse
Affiliation(s)
- Will W Minuth
- Institute of Anatomy, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
5
|
Minuth WW, Denk L. Structural links between the renal stem/progenitor cell niche and the organ capsule. Histochem Cell Biol 2014; 141:459-71. [PMID: 24429831 DOI: 10.1007/s00418-014-1179-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2014] [Indexed: 11/30/2022]
Abstract
A special feature of the renal stem/progenitor cell niche is its always close neighborhood to the capsule during organ development. To explore this link, neonatal kidney was investigated by histochemistry and transmission electron microscopy. For adequate contrasting, fixation of specimens was performed by glutaraldehyde including tannic acid. The immunohistochemical data illustrate that renal stem/progenitor cells are not distributed randomly but are positioned specially to the capsule. Epithelial stem/progenitor cells are found to be enclosed by the basal lamina at a collecting duct (CD) ampulla tip. Only few layers of mesenchymal cells are detected between epithelial cells and the capsule. Most impressive, numerous microfibers reacting with soybean agglutinin, anti-collagen I and III originate from the basal lamina at a CD ampulla tip and line between mesenchymal stem/progenitor cells to the inner side of the capsule. This specific arrangement holds together both types of stem/progenitor cells in a cage and fastens the niche as a whole at the capsule. Electron microscopy further illustrates that the stem/progenitor cell niche is in contact with a tunnel system widely spreading between atypical smooth muscle cells at the inner side of the capsule. It seems probable that stem/progenitor cells are supplied here by interstitial fluid.
Collapse
Affiliation(s)
- Will W Minuth
- Molecular and Cellular Anatomy, University of Regensburg, University Street 31, 93053, Regensburg, Germany,
| | | |
Collapse
|
6
|
Minuth WW, Denk L. Illustration of extensive extracellular matrix at the epithelial-mesenchymal interface within the renal stem/progenitor cell niche. BMC Clin Pathol 2012; 12:16. [PMID: 23009620 PMCID: PMC3511299 DOI: 10.1186/1472-6890-12-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/21/2012] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED BACKGROUND Stem/progenitor cells are promising candidates to treat diseased renal parenchyma. However, implanted stem/progenitor cells are exposed to a harmful atmosphere of degenerating parenchyma. To minimize hampering effects after an implantation investigations are in progress to administer these cells within an artificial polyester interstitum supporting survival. Learning from nature the renal stem/progenitor cell niche appears as a valuable model. At this site epithelial stem/progenitor cells within the collecting duct ampulla face mesenchymal stem/progenitor cells. Both cell types do not have close contact but are separated by a wide interstitium. METHODS To analyze extracellular matrix in this particular interstitium, special contrasting for transmission electron microscopy was performed. Kidneys of neonatal rabbits were fixed in solutions containing glutaraldehyde (GA) or in combination with cupromeronic blue, ruthenium red and tannic acid. RESULTS GA revealed a basal lamina at the ampulla and a bright but inconspicuously looking interstitial space. In contrast, GA containing cupromeronic blue exhibits numerous proteoglycan braces lining from the ampulla towards the interstitial space. GA containing ruthenium red or tannic acid demonstrates clouds of extracellular matrix protruding from the basal lamina of the ampulla to the surface of mesenchymal stem/progenitor cells. CONCLUSIONS The actual data show that the interstitium between epithelial and mesenchymal stem/progenitor cells contains much more and up to date unknown extracellular matrix than earlier observed by classical GA fixation.
Collapse
Affiliation(s)
- Will W Minuth
- Department of Molecular and Cellular Anatomy, University of Regensburg, University Street 31, D - 93053, Regensburg, Germany
| | - Lucia Denk
- Department of Molecular and Cellular Anatomy, University of Regensburg, University Street 31, D - 93053, Regensburg, Germany
| |
Collapse
|
7
|
Ilmiawati C, Horiguchi K, Fujiwara K, Yashiro T. Matrix metalloproteinase-9 expression in folliculostellate cells of rat anterior pituitary gland. J Endocrinol 2012; 212:363-70. [PMID: 22182603 DOI: 10.1530/joe-11-0433] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Folliculostellate (FS) cells of the anterior pituitary gland express a variety of regulatory molecules. Using transgenic rats that express green fluorescent protein specifically in FS cells, we recently demonstrated that FS cells in vitro showed marked changes in motility, proliferation, and that formation of cellular interconnections in the presence of laminin, a component of the extracellular matrix, closely resembled those observed in vivo. These findings suggested that FS cells express matrix metalloproteinase-9 (MMP-9), which assists their function on laminin. In the present study, we investigate MMP-9 expression in rat anterior pituitary gland and examine its role in motility and proliferation of FS cells on laminin. Immunohistochemistry, RT-PCR, immunoblotting, and gelatin zymography were performed to assess MMP-9 expression in the anterior pituitary gland and cultured FS cells. Real-time RT-PCR was used to quantify MMP-9 expression in cultured FS cells under different conditions and treatments. MMP-9 expression was inhibited by pharmacological inhibitor or downregulated by siRNA and time-lapse images were acquired. A 5-bromo-2'-deoxyuridine assay was performed to analyze the proliferation of FS cells. Our results showed that MMP-9 was expressed in FS cells, that this expression was upregulated by laminin, and that laminin induced MMP-9 secretion by FS cells. MMP-9 inhibition and downregulation did not impair FS motility; however, it did impair the capacity of FS cells to form interconnections and it significantly inhibited proliferation of FS cells on laminin. We conclude that MMP-9 is necessary in FS cell interconnection and proliferation in the presence of laminin.
Collapse
Affiliation(s)
- Cimi Ilmiawati
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| | | | | | | |
Collapse
|
8
|
Peculiarities of the extracellular matrix in the interstitium of the renal stem/progenitor cell niche. Histochem Cell Biol 2011; 136:321-34. [PMID: 21822715 DOI: 10.1007/s00418-011-0851-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2011] [Indexed: 02/07/2023]
Abstract
The development of the nephron is piloted by interactions between epithelial and surrounding mesenchymal stem/progenitor cells. Data show that an astonishingly wide interstitial space separates both kinds of stem/progenitor cells. A simple contrasting procedure was applied to visualize features that keep renal epithelial and mesenchymal stem/progenitor cells in distance. The kidney of neonatal rabbits was fixed in solutions containing glutaraldehyde (GA) in combination with alcian blue, lanthanum, ruthenium red, or tannic acid. To obtain a comparable view to the renal stem/progenitor cell niche, the tissue was exactly orientated along the axis of collecting ducts. Fixation with GA or in combination with alcian blue or lanthanum revealed an inconspicuous interstitial space. In contrast, fixation with GA containing ruthenium red exhibits strands of extracellular matrix lining from epithelial stem/progenitor cells through the interstitium up to the surface of mesenchymal stem/progenitor cells. Fixation with GA containing tannic acid shows that the basal lamina of epithelial stem/progenitor cells, the adjacent interstitial space and also the surface of mesenchymal stem/progenitor cells are connected over a net of extracellular matrix. The applied technique appears to be a suitable method to illuminate the interstitium in stem/progenitor cell niches of specialized tissues, the microenvironment of tumors and extension of degeneration.
Collapse
|
9
|
Minuth WW, Denk L, Castrop H. Generation of Tubular Superstructures by Piling of Renal Stem/Progenitor Cells. Tissue Eng Part C Methods 2008; 14:3-13. [DOI: 10.1089/tec.2007.0230] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Will W. Minuth
- Department of Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Lucia Denk
- Department of Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Hayo Castrop
- Department of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
Heber S, Denk L, Hu K, Minuth WW. Modulating the Development of Renal Tubules Growing in Serum-Free Culture Medium at an Artificial Interstitium. ACTA ACUST UNITED AC 2007; 13:281-92. [PMID: 17518563 DOI: 10.1089/ten.2006.0199] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Little information on the structural growth of renal tubules is available. A major problem is the technical limitation of culturing intact differentiated tubules over prolonged periods of time. Consequently, we developed an advanced culture method to follow tubule development. Isolated tissue containing renal progenitor cells was placed in a perfusion culture container at the interphase of an artificial polyester interstitium. Iscove's modified Dulbecco's medium without serum or protein supplementation was used for culture, and the culture period was 13 days. Tissue growth was not supported by addition of extracellular matrix proteins. The development of tubules was registered on cryosections labeled with soybean agglutinin (SBA) and tissue-specific antibodies. Multiple SBA-labeled tubules were found when aldosterone was added to the culture medium. In contrast, culture without aldosterone supplementation displayed completely disintegrated tissue. The development of tubules depended on the applied aldosterone concentration. The use of 1 x 10(-6) M and 1 x 10(-7) M aldosterone produced numerous tubules, while application of 1 x 10(-8) M to 1 x 10(-10) M led to a continuous decrease and finally a loss of tubule formation. The development of labeled tubules in aldosterone-treated specimens took an unexpectedly long period of at least 8 days. The morphogenic effect of aldosterone appeared to be mineralocorticoid hormone-specific since spironolactone and canrenoate abolished the development. Finally, dexamethasone induced widely distributed cell clusters instead of tubules.
Collapse
Affiliation(s)
- Sabine Heber
- Department of Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | | | | | | |
Collapse
|