1
|
Oti T, Sakamoto H. Neuropeptidergic control circuits in the spinal cord for male sexual behaviour: Oxytocin-gastrin-releasing peptide systems. J Neuroendocrinol 2023; 35:e13324. [PMID: 37515539 DOI: 10.1111/jne.13324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/31/2023]
Abstract
The neuropeptidergic mechanisms controlling socio-sexual behaviours consist of complex neuronal circuitry systems in widely distributed areas of the brain and spinal cord. At the organismal level, it is now becoming clear that "hormonal regulations" play an important role, in addition to the activation of neuronal circuits. The gastrin-releasing peptide (GRP) system in the lumbosacral spinal cord is an important component of the neural circuits that control penile reflexes in rats, circuits that are commonly referred to as the "spinal ejaculation generator (SEG)." Oxytocin, long known as a neurohypophyseal hormone, is now known to be involved in the regulation of socio-sexual behaviors in mammals, ranging from social bonding to empathy. However, the functional interaction between the SEG neurons and the hypothalamo-spinal oxytocin system remains unclear. Oxytocin is known to be synthesised mainly in hypothalamic neurons and released from the posterior pituitary into the circulation. Oxytocin is also released from the dendrites of the neurons into the hypothalamus where they have important roles in social behaviours via non-synaptic volume transmission. Because the most familiar functions of oxytocin are to regulate female reproductive functions including parturition, milk ejection, and maternal behaviour, oxytocin is often thought of as a "feminine" hormone. However, there is evidence that a group of parvocellular oxytocin neurons project to the lower spinal cord and control male sexual function in rats. In this report, we review the functional interaction between the SEG neurons and the hypothalamo-spinal oxytocin system and effects of these neuropeptides on male sexual behaviour. Furthermore, we discuss the finding of a recently identified, localised "volume transmission" role of oxytocin in the spinal cord. Findings from our studies suggest that the newly discovered "oxytocin-mediated spinal control of male sexual function" may be useful in the treatment of erectile and ejaculatory dysfunction.
Collapse
Affiliation(s)
- Takumi Oti
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Japan
- Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
- Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
2
|
Zegers-Delgado J, Aguilera-Soza A, Calderón F, Davidson H, Verbel-Vergara D, Yarur HE, Novoa J, Blanlot C, Bastias CP, Andrés ME, Gysling K. Type 1 Corticotropin-Releasing Factor Receptor Differentially Modulates Neurotransmitter Levels in the Nucleus Accumbens of Juvenile versus Adult Rats. Int J Mol Sci 2022; 23:ijms231810800. [PMID: 36142716 PMCID: PMC9505341 DOI: 10.3390/ijms231810800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Adversity is particularly pernicious in early life, increasing the likelihood of developing psychiatric disorders in adulthood. Juvenile and adult rats exposed to social isolation show differences in anxiety-like behaviors and significant changes in dopamine (DA) neurotransmission in the nucleus accumbens (NAc). Brain response to stress is partly mediated by the corticotropin-releasing factor (CRF) system, composed of CRF and its two main receptors, CRF-R1 and CRF-R2. In the NAc shell of adult rats, CRF induces anxiety-like behavior and changes local DA balance. However, the role of CRF receptors in the control of neurotransmission in the NAc is not fully understood, nor is it known whether there are differences between life stages. Our previous data showed that infusion of a CRF-R1 antagonist into the NAc of juvenile rats increased DA levels in response to a depolarizing stimulus and decreased basal glutamate levels. To extend this analysis, we now evaluated the effect of a CRF-R1 antagonist infusion in the NAc of adult rats. Here, we describe that the opposite occurred in the NAc of adult compared to juvenile rats. Infusion of a CRF-R1 antagonist decreased DA and increased glutamate levels in response to a depolarizing stimulus. Furthermore, basal levels of DA, glutamate, and γ-Aminobutyric acid (GABA) were similar in juvenile animals compared to adults. CRF-R1 protein levels and localization were not different in juvenile compared to adult rats. Interestingly, we observed differences in the signaling pathways of CRF-R1 in the NAc of juveniles compared to adult rats. We propose that the function of CRF-R1 receptors is differentially modulated in the NAc according to life stage.
Collapse
|
3
|
Sukhareva EV. The role of the corticotropin-releasing hormone and its receptors in the regulation of stress response. Vavilovskii Zhurnal Genet Selektsii 2021; 25:216-223. [PMID: 34901719 PMCID: PMC8627883 DOI: 10.18699/vj21.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/19/2020] [Accepted: 10/06/2020] [Indexed: 11/19/2022] Open
Abstract
Stress is an essential part of everyday life. The neuropeptide corticotropin-releasing hormone (CRH, also
called CRF and corticoliberin) plays a key role in the integration of neuroendocrine, autonomic and behavioral
responses to stress. The activation of the hypothalamic-pituitary-adrenal axis (HPA axis) by neurons of the paraventricular hypothalamic nucleus (PVN), the primary site of synthesis CRH, triggers stress reactions. In addition to the
hypothalamus, CRH is widespread in extrahypothalamic brain structures, where it functions as a neuromodulator
for coordination and interaction between the humoral and behavioral aspects of a stress response. The axons of
neurons expressing CRH are directed to various structures of the brain, where the neuropeptide interacts with
specific receptors (CRHR1, CRHR2) and can affect various mediator systems that work together to transmit signals
to different brain regions to cause many reactions to stress. Moreover, the effect of stress on brain functions varies
from behavioral adaptation to increased survival and increased risk of developing mental disorders. Disturbances
of the CRH system regulation are directly related to such disorders: mental pathologies (depression, anxiety, addictions), deviations of neuroendocrinological functions, inflammation, as well as the onset and development of
neurodegenerative diseases such as Alzheimer’s disease. In addition, the role of CRH as a regulator of the neurons
structure in the areas of the developing and mature brain has been established. To date, studies have been conducted in which CRHR1 is a target for antidepressants, which are, in fact, antagonists of this receptor. In this regard,
the study of the participation of the CRH system and its receptors in negative effects on hormone-dependent
systems, as well as the possibility of preventing them, is a promising task of modern physiological genetics. In this
review, attention will be paid to the role of CRH in the regulation of response to stress, as well as to the involvement
of extrahypothalamic CRH in pathophysiology and the correction of mental disorders.
Collapse
Affiliation(s)
- E V Sukhareva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
4
|
Slow development of bladder malfunction parallels spinal cord fiber sprouting and interneurons' loss after spinal cord transection. Exp Neurol 2021; 348:113937. [PMID: 34826427 DOI: 10.1016/j.expneurol.2021.113937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 11/23/2022]
Abstract
Neurogenic lower urinary tract dysfunction typically develops after spinal cord injury. We investigated the time course and the anatomical changes in the spinal cord that may be causing lower urinary tract symptoms following injury. Rats were implanted with a bladder catheter and external urethral sphincter electromyography electrodes. Animals underwent a large, incomplete spinal transection at the T8/9 spinal level. At 1, 2-3, and 4 weeks after injury, the animals underwent urodynamic investigations. Urodynamic investigations showed detrusor overactivity and detrusor-sphincter-dyssynergia appearing over time at 3-4 weeks after injury. Lower urinary tract dysfunction was accompanied by an increase in density of C-fiber afferents in the lumbosacral dorsal horn. CRF-positive Barrington's and 5-HT-positive bulbospinal projections drastically decreased after injury, with partial compensation for the CRF fibers at 3-4 weeks. Interestingly, a decrease over time was observed in the number of GABAergic neurons in the lumbosacral dorsal horn and lamina X, and a decrease of glutamatergic cells in the dorsal horn. Detrusor overactivity and detrusor-sphincter-dyssynergia might therefore arise from a discrepancy in inhibitory/excitatory interneuron activity in the lumbosacral cord as well as input changes which develop over time after injury. The processes point to spinal plastic changes leading to malfunction of the important physiological pathway of lower urinary tract control.
Collapse
|
5
|
Emotional Stress Facilitates Micturition Reflex: Possible Inhibition by an α1-Adrenoceptor Blocker in the Conscious and Anesthetized State. Int Neurourol J 2019; 23:100-108. [PMID: 31260609 PMCID: PMC6606938 DOI: 10.5213/inj.1836284.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/27/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose To test the hypothesis that naftopidil prolongs intercontraction intervals in rats undergoing chronic stress as observed in previous animal models, voiding behavior and bladder function were measured and analyzed. Methods Female Sprague-Dawley rats weighing 200–230 g were exposed to repeated variate stress (RVS) for 1 week, chronic variable mild stress for 2 weeks, or simple mild stress for 1 week. Voiding behavior was assessed in metabolic cages. Voiding frequency and urine output were measured, and changes of these values were compared for the different types of stress. Micturition reflex was analyzed using unconscious cystometry. Naftopidil was administered orally at 30 mg/kg/day for 2 weeks. Results Unexpectedly, no stress-exposed rats exhibited increased micturition frequency compared to the normal nonstressed control. However, intercontraction intervals were shortened with each type of stress in the unconscious condition, especially by RVS (P<0.01). Naftopidil prolonged the shortened intervals. Conclusions Although voiding behavior appears approximately normal in rats chronically exposed to emotional stress, internal bladder function can be affected. With anesthesia, micturition intervals were moderately shortened by emotional stress and clearly improved by naftopidil. Therefore, naftopidil appears to act at the spinal level at least.
Collapse
|
6
|
Anti-Nogo-A Antibodies As a Potential Causal Therapy for Lower Urinary Tract Dysfunction after Spinal Cord Injury. J Neurosci 2019; 39:4066-4076. [PMID: 30902870 DOI: 10.1523/jneurosci.3155-18.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/06/2019] [Indexed: 01/23/2023] Open
Abstract
Loss of bladder control is common after spinal cord injury (SCI) and no causal therapies are available. Here we investigated whether function-blocking antibodies against the nerve-fiber growth inhibitory protein Nogo-A applied to rats with severe SCI could prevent development of neurogenic lower urinary tract dysfunction. Bladder function of rats with SCI was repeatedly assessed by urodynamic examination in fully awake animals. Four weeks after SCI, detrusor sphincter dyssynergia had developed in all untreated or control antibody-infused animals. In contrast, 2 weeks of intrathecal anti-Nogo-A antibody treatment led to significantly reduced aberrant maximum detrusor pressure during voiding and a reduction of the abnormal EMG high-frequency activity in the external urethral sphincter. Anatomically, we found higher densities of fibers originating from the pontine micturition center in the lumbosacral gray matter in the anti-Nogo-A antibody-treated animals, as well as a reduced number of inhibitory interneurons in lamina X. These results suggest that anti-Nogo-A therapy could also have positive effects on bladder function clinically.SIGNIFICANCE STATEMENT After spinal cord injury, loss of bladder control is common. Detrusor sphincter dyssynergia is a potentially life-threatening consequence. Currently, only symptomatic treatment options are available. First causal treatment options are urgently needed in humans. In this work, we show that function-blocking antibodies against the nerve-fiber growth inhibitory protein Nogo-A applied to rats with severe spinal cord injury could prevent development of neurogenic lower urinary tract dysfunction, in particular detrusor sphincter dyssynergia. Anti-Nogo-A therapy has entered phase II clinical trial in humans and might therefore soon be the first causal treatment option for neurogenic lower urinary tract dysfunction.
Collapse
|
7
|
Tamura K, Kobayashi Y, Hirooka A, Takanami K, Oti T, Jogahara T, Oda SI, Sakamoto T, Sakamoto H. Identification of the sexually dimorphic gastrin-releasing peptide system in the lumbosacral spinal cord that controls male reproductive function in the mouse and Asian house musk shrew (Suncus murinus). J Comp Neurol 2017; 525:1586-1598. [DOI: 10.1002/cne.24138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 01/29/2023]
Affiliation(s)
- Kei Tamura
- Ushimado Marine Institute (UMI); Graduate School of Natural Science and Technology, Okayama University; Ushimado, Setouchi Okayama 701-4303 Japan
| | - Yasuhisa Kobayashi
- Ushimado Marine Institute (UMI); Graduate School of Natural Science and Technology, Okayama University; Ushimado, Setouchi Okayama 701-4303 Japan
- Laboratory for Aquatic Biology; Department of Fisheries, Graduate School of Agriculture, Kindai University; Nara 631-0052 Japan
| | - Asuka Hirooka
- Ushimado Marine Institute (UMI); Graduate School of Natural Science and Technology, Okayama University; Ushimado, Setouchi Okayama 701-4303 Japan
| | - Keiko Takanami
- Ushimado Marine Institute (UMI); Graduate School of Natural Science and Technology, Okayama University; Ushimado, Setouchi Okayama 701-4303 Japan
| | - Takumi Oti
- Ushimado Marine Institute (UMI); Graduate School of Natural Science and Technology, Okayama University; Ushimado, Setouchi Okayama 701-4303 Japan
| | - Takamichi Jogahara
- Laboratory of Animal Management and Resources; Department of Zoology, Okayama University of Science; Okayama 700-0005 Japan
- Division of Bio-Resources; Department of Biotechnology, Frontier Science Research Center, University of Miyazaki; Miyazaki 889-1692 Japan
| | - Sen-ichi Oda
- Laboratory of Animal Management and Resources; Department of Zoology, Okayama University of Science; Okayama 700-0005 Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute (UMI); Graduate School of Natural Science and Technology, Okayama University; Ushimado, Setouchi Okayama 701-4303 Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute (UMI); Graduate School of Natural Science and Technology, Okayama University; Ushimado, Setouchi Okayama 701-4303 Japan
| |
Collapse
|
8
|
Motawie AA, Abd Al-Aziz AM, Hamed HM, Fatouh AAA, Awad MAM, El-Ghany AA. Assessment of serum level of corticotropin-releasing factor in primary nocturnal enuresis. J Pediatr Urol 2017; 13:46.e1-46.e5. [PMID: 27887910 DOI: 10.1016/j.jpurol.2016.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/24/2016] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Primary nocturnal enuresis is one of the sleep related phenomena characterized by disruption in the relationship between arousal and urination. Corticotropin-releasing factor (CRF) is a neurohormone released from the paraventricular nucleus of the hypothalamus into the median eminence to elicit release of adrenocorticotrophin from the anterior pituitary. It may act to modulate autonomic function and behavior in concert with the endocrine effects. Conflicting animal studies about the role of CRF in micturition, either facilitating or inhibiting, have been raised. It was suggested to be a novel target for treatment of urinary disorders based on the finding that manipulation of CRF in the pontine micturition circuit could affect urodynamic function. AIM The aim was to throw light on the possible role of CRF in primary monosymptomatic nocturnal enuresis by assessing its serum level. SUBJECTS AND METHODS Twenty-nine children aged 8-14 years complaining of primary monosymptomatic nocturnal enuresis and 16 age- and sex-matched healthy children with good toilet control day and night were recruited to the study. History taking, clinical examination, and assessment of serum CRF levels in the morning and evening (9 a.m. and 9 p.m.) were carried out for all patients and controls. RESULTS AND DISCUSSION A positive family history of enuresis was detected in 82.8% of enuretic patients. Serum levels of CRF (both morning and evening) were significantly lower in patients than in controls. Several animal studies suggested that CRF in descending projections from Barrington's nucleus to the lumbosacral parasympathetic neurons is inhibitory to micturition, which supports our results and the assumption that reduction of the evening serum CRF level could have a role in the occurrence of primary monosymptomatic nocturnal enuresis. No significant difference was found between morning and evening CRF serum levels in either cases or controls, which negates our assumption of having a rhythmic pattern of release (figure). No correlations with age were found. According to their history, all our enuretic patients were deep sleepers. Deep sleep and difficult arousal were found to have a major role in primary monosymptomatic nocturnal enuresis. It was proposed that CRF function may allow arousal to occur before micturition to facilitate preparative behaviors. A lower CRF level may explain deep-sleep pattern in children with enuresis. CONCLUSION CRF was deficient in our enuretic children, which may draw attention to the possible pathophysiological implications in primary nocturnal enuresis (either at the level of loss of inhibitory effect on micturition or lack of arousal in response to bladder distension). Further proof studies are recommended.
Collapse
Affiliation(s)
- Ayat A Motawie
- Pediatric Department, National Research Centre, Cairo, Egypt
| | | | - Hanan M Hamed
- Pediatric Department, National Research Centre, Cairo, Egypt
| | | | - Mona A M Awad
- Clinical and Chemical Pathology Department, National Research Centre, Cairo, Egypt
| | - Amany Abd El-Ghany
- Clinical and Chemical Pathology Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
9
|
Islam MN, Takeshita Y, Yanai A, Imagawa A, Jahan MR, Wroblewski G, Nemoto J, Fujinaga R, Shinoda K. Immunohistochemical analysis of huntingtin-associated protein 1 in adult rat spinal cord and its regional relationship with androgen receptor. Neuroscience 2016; 340:201-217. [PMID: 27984179 DOI: 10.1016/j.neuroscience.2016.10.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 12/13/2022]
Abstract
Huntingtin-associated protein 1 (HAP1) is a neuronal interactor with causatively polyglutamine (polyQ)-expanded huntingtin in Huntington's disease and also associated with pathologically polyQ-expanded androgen receptor (AR) in spinobulbar muscular atrophy (SBMA), being considered as a protective factor against neurodegenerative apoptosis. In normal brains, it is abundantly expressed particularly in the limbic-hypothalamic regions that tend to be spared from neurodegeneration, whereas the areas with little HAP1 expression, including the striatum, thalamus, cerebral neocortex and cerebellum, are targets in several neurodegenerative diseases. While the spinal cord is another major neurodegenerative target, HAP1-immunoreactive (ir) structures have yet to be determined there. In the current study, HAP1 expression was immunohistochemically evaluated in light and electron microscopy through the cervical, thoracic, lumbar, and sacral spinal cords of the adult male rat. Our results showed that HAP1 is specifically expressed in neurons through the spinal segments and that more than 90% of neurons expressed HAP1 in lamina I-II, lamina X, and autonomic preganglionic regions. Double-immunostaining for HAP1 and AR demonstrated that more than 80% of neurons expressed both in laminae I-II and X. In contrast, HAP1 was specifically lacking in the lamina IX motoneurons with or without AR expression. The present study first demonstrated that HAP1 is abundantly expressed in spinal neurons of the somatosensory, viscerosensory, and autonomic regions but absent in somatomotor neurons, suggesting that the spinal motoneurons are, due to lack of putative HAP1 protectivity, more vulnerable to stresses in neurodegenerative diseases than other HAP1-expressing neurons probably involved in spinal sensory and autonomic functions.
Collapse
Affiliation(s)
- Md Nabiul Islam
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yukio Takeshita
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Akie Yanai
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Amami Imagawa
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Mir Rubayet Jahan
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Greggory Wroblewski
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Joe Nemoto
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Ryutaro Fujinaga
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Koh Shinoda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| |
Collapse
|
10
|
Distribution of corticotropin-releasing factor neurons in the mouse brain: a study using corticotropin-releasing factor-modified yellow fluorescent protein knock-in mouse. Brain Struct Funct 2016; 222:1705-1732. [PMID: 27638512 DOI: 10.1007/s00429-016-1303-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/02/2016] [Indexed: 10/21/2022]
Abstract
We examined the morphological features of corticotropin-releasing factor (CRF) neurons in a mouse line in which modified yellow fluorescent protein (Venus) was expressed under the CRF promoter. We previously generated the CRF-Venus knock-in mouse, in which Venus is inserted into the CRF gene locus by homologous recombination. In the present study, the neomycin phosphotransferase gene (Neo), driven by the pgk-1 promoter, was deleted from the CRF-Venus mouse genome, and a CRF-Venus∆Neo mouse was generated. Venus expression is much more prominent in the CRF-Venus∆Neo mouse when compared to the CRF-Venus mouse. In addition, most Venus-expressing neurons co-express CRF mRNA. Venus-expressing neurons constitute a discrete population of neuroendocrine neurons in the paraventricular nucleus of the hypothalamus (PVH) that project to the median eminence. Venus-expressing neurons were also found in brain regions outside the neuroendocrine PVH, including the olfactory bulb, the piriform cortex (Pir), the extended amygdala, the hippocampus, the neocortices, Barrington's nucleus, the midbrain/pontine dorsal tegmentum, the periaqueductal gray, and the inferior olivary nucleus (IO). Venus-expressing perikarya co-expressing CRF mRNA could be observed clearly even in regions where CRF-immunoreactive perikarya could hardly be identified. We demonstrated that the CRF neurons contain glutamate in the Pir and IO, while they contain gamma-aminobutyric acid in the neocortex, the bed nucleus of the stria terminalis, the hippocampus, and the amygdala. A population of CRF neurons was demonstrated to be cholinergic in the midbrain tegmentum. The CRF-Venus∆Neo mouse may be useful for studying the structural and functional properties of CRF neurons in the mouse brain.
Collapse
|
11
|
Girard B, Peterson A, Malley S, Vizzard MA. Accelerated onset of the vesicovesical reflex in postnatal NGF-OE mice and the role of neuropeptides. Exp Neurol 2016; 285:110-125. [PMID: 27342083 DOI: 10.1016/j.expneurol.2016.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/30/2016] [Accepted: 06/20/2016] [Indexed: 12/31/2022]
Abstract
The mechanisms underlying the postnatal maturation of micturition from a somatovesical to a vesicovesical reflex are not known but may involve neuropeptides in the lower urinary tract. A transgenic mouse model with chronic urothelial overexpression (OE) of NGF exhibited increased voiding frequency, increased number of non-voiding contractions, altered morphology and hyperinnervation of the urinary bladder by peptidergic (e.g., Sub P and CGRP) nerve fibers in the adult. In early postnatal and adult NGF-OE mice we have now examined: (1) micturition onset using filter paper void assays and open-outlet, continuous fill, conscious cystometry; (2) innervation and neurochemical coding of the suburothelial plexus of the urinary bladder using immunohistochemistry and semi-quantitative image analyses; (3) neuropeptide protein and transcript expression in urinary bladder of postnatal and adult NGF-OE mice using Q-PCR and ELISAs and (4) the effects of intravesical instillation of a neurokinin (NK)-1 receptor antagonist on bladder function in postnatal and adult NGF-OE mice using conscious cystometry. Postnatal NGF-OE mice exhibit age-dependent (R2=0.996-0.998; p≤0.01) increases in Sub and CGRP expression in the urothelium and significantly (p≤0.01) increased peptidergic hyperinnervation of the suburothelial nerve plexus. By as early as P7, NGF-OE mice exhibit a vesicovesical reflex in response to intravesical instillation of saline whereas littermate WT mice require perigenital stimulation to elicit a micturition reflex until P13 when vesicovesical reflexes are first observed. Intravesical instillation of a NK-1 receptor antagonist, netupitant (0.1μg/ml), significantly (p≤0.01) increased void volume and the interval between micturition events with no effects on bladder pressure (baseline, threshold, peak) in postnatal NGF-OE mice; effects on WT mice were few. NGF-induced pleiotropic effects on neuropeptide (e.g., Sub P) expression in the urinary bladder contribute to the maturation of the micturition reflex and are excitatory to the micturition reflex in postnatal NGF-OE mice. These studies provide insight into the mechanisms that contribute to the postnatal development of the micturition reflex.
Collapse
Affiliation(s)
- Beatrice Girard
- University of Vermont College of Medicine, Department of Neurological Sciences, Burlington, VT 05405, USA
| | - Abbey Peterson
- University of Vermont College of Medicine, Department of Neurological Sciences, Burlington, VT 05405, USA
| | - Susan Malley
- University of Vermont College of Medicine, Department of Neurological Sciences, Burlington, VT 05405, USA
| | - Margaret A Vizzard
- University of Vermont College of Medicine, Department of Neurological Sciences, Burlington, VT 05405, USA.
| |
Collapse
|
12
|
Sakamoto H. Sexually dimorphic nuclei in the spinal cord control male sexual functions. Front Neurosci 2014; 8:184. [PMID: 25071429 PMCID: PMC4092374 DOI: 10.3389/fnins.2014.00184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/10/2014] [Indexed: 01/06/2023] Open
Abstract
Lower spinal cord injuries frequently cause sexual dysfunction in men, including erectile dysfunction and an ejaculation disorder. This indicates that the important neural centers for male sexual function are located within the lower spinal cord. It is interesting that the lumbar spinal segments contain several neural circuits, showing a clear sexually dimorphism that, in association with neural circuits of the thoracic and sacral spinal cord, are critical in expressing penile reflexes during sexual behavior. To date, many sex differences in the spinal cord have been discovered. Interestingly, most of these are male dominant. Substantial evidence of sexually dimorphic neural circuits in the spinal cord have been reported in many animal models, but major issues remain unknown. For example, it is not known how the different circuits cooperatively function during male sexual behavior. In this review, therefore, the anatomical and functional significance of the sexually dimorphic nuclei in the spinal cord corresponding to the expression of male sexual behavior is discussed.
Collapse
Affiliation(s)
- Hirotaka Sakamoto
- Laboratory of Neuroendocrinology, Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University Okayama, Japan
| |
Collapse
|
13
|
Oti T, Satoh K, Saito K, Murata K, Kawata M, Sakamoto T, Sakamoto H. Three-dimensional evaluation of the spinal local neural network revealed by the high-voltage electron microscopy: a double immunohistochemical study. Histochem Cell Biol 2012; 138:693-7. [DOI: 10.1007/s00418-012-0976-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2012] [Indexed: 12/19/2022]
|
14
|
Brain–spinal cord neural circuits controlling male sexual function and behavior. Neurosci Res 2012; 72:103-16. [DOI: 10.1016/j.neures.2011.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/14/2011] [Accepted: 10/25/2011] [Indexed: 01/10/2023]
|
15
|
Kim EH, Ryu DH, Hwang S. The expression of corticotropin-releasing factor and its receptors in the spinal cord and dorsal root ganglion in a rat model of neuropathic pain. Anat Cell Biol 2011; 44:60-8. [PMID: 21519550 PMCID: PMC3080009 DOI: 10.5115/acb.2011.44.1.60] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 02/28/2011] [Accepted: 03/14/2011] [Indexed: 01/15/2023] Open
Abstract
Corticotropin-releasing factor (CRF) is a peptide involved in the activation of the hypothalamic-pituitary-adrenal (HPA) axis. CRF is distributed not only along the HPA axis but also throughout pain-relevant anatomical sites. CRF elicits potent antinociception at the three main levels of pain transmissions: namely, the brain, spinal cord, and peripheral sensory neurons. The widespread distribution of CRF receptors 1 and 2 in the brain offers several targets wherein CRF could alter pain, some of which may be independent of the HPA axis. In this study, we assessed the expression of CRF and its receptors, CRF receptor type (CRFR)1 and CRFR2, in the spinal dorsal horn and dorsal root ganglion (DRG) in a rat model of neuropathic pain induced by spinal nerve injury (SNI). CRF was expressed in a few DRG neurons and primary afferent fibers in the dorsal horns of naїve rats, and the CRF-positive neurons in DRG and fibers in the spinal dorsal horn were found to have increased after SNI. CRFR1 was not expressed in DRG or the dorsal horn and CRFR2 was expressed weakly in the small neurons in DRG in the naїve rats. After SNI, CRFR1 was expressed in the activated microglia in the ipsilateral dorsal horn, and immunoreaction for CRFR2 was increased in the contralateral DRG following SNI. Consequently, it has been suggested that the increased expression of CRF and CRFR2 in DRG neurons and primary afferent fibers in dorsal horn, and CRFR1 in the activated microglia, may be involved in the mediation of stress responses as well as in microglial activation in the neuropathic pain state following SNI.
Collapse
Affiliation(s)
- Eun Hyun Kim
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, Korea
| | | | | |
Collapse
|
16
|
Wilson LA, Wayman CP, Jackson VM. Neuropeptide modulation of a lumbar spinal reflex: potential implications for female sexual function. J Sex Med 2009; 6:947-957. [PMID: 19170864 DOI: 10.1111/j.1743-6109.2008.01150.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Neuropeptides are known to modulate female receptivity. However, even though receptivity is a spinal reflex, the role of neuropeptides within the spinal cord remains to be elucidated. AIM The aims were to (i) investigate neuropeptides in the lumbosacral region; and (ii) determine how neuropeptides modulate glutamate release from stretch Ia fibers, touch sensation Abeta fibers and Adelta/C pain fibers. MAIN OUTCOME MEASURES Neuropeptide modulation of the lumbosacral dorsal-root ventral-root reflex in vitro. METHODS Spinal cords were removed from Sprague-Dawley rats in compliance with UK Home Office guidelines. Hemisected cords were superfused with aCSF and the dorsal root (L4-S1) was stimulated to evoke glutamate release. A biphasic reflex response was evoked from the opposite ventral root consisting of a monosynaptic (Ia fibers) and polysynaptic (Abeta, Adelta/C fibers) component. RESULTS The micro opioid receptor (MOR) agonist DAMGO inhibited the monosynaptic (EC(50) 0.02 +/- 0.02 nM) and polysynaptic area (EC(50) 125 +/- 167 nM) but not polysynaptic amplitude. Oxytocin and corticotrophin releasing factor (CRF) inhibited the monosynaptic amplitude (EC(50), 1.4 +/- 1.0 nM and EC(50) 4.3 +/- 3.5 nM, respectively), polysynaptic amplitude (EC(50) 18.2 +/- 28.0 nM and EC(50), 9.5 +/- 13.3 nM, respectively), and area (EC(50) 11.6 +/- 13.0 nM and EC(50), 2.8 +/- 3.3 nM, respectively); effects that were abolished by oxytocin and CRF(1) antagonists, L-368899 and 8w. Melanocortin agonists solely inhibited the monosynaptic component, which were blocked by the MC(3/4) receptor antagonist SHU9119. CONCLUSION These data suggest endogenous neuropeptides are released within the lumbosacral spinal cord. Melanocortin agonists, oxytocin, CRF, and DAMGO via MC(4), oxytocin, CRF(1), and MOR inhibit glutamate release but with differing effects on afferent fiber subtypes. Melanocortins, oxytocin, CRF, and DAMGO have the ability to modulate orgasm whereas oxytocin, CRF and DAMGO can increase pain threshold. Oxytocin and CRF may dampen touch sensation.
Collapse
Affiliation(s)
- Lesley A Wilson
- Pfizer Global Research & Development-Discovery Biology, Sandwich, Kent, UK
| | - Chris P Wayman
- Pfizer Global Research & Development-Discovery Biology, Sandwich, Kent, UK
| | - V Margaret Jackson
- Pfizer Global Research & Development-Discovery Biology, Sandwich, Kent, UK.
| |
Collapse
|
17
|
LaBerge J, Malley SE, Girard B, Corrow K, Vizzard MA. Postnatal expression of corticotropin releasing factor (CRF) in rat urinary bladder. Auton Neurosci 2008; 141:83-93. [PMID: 18595780 PMCID: PMC2569849 DOI: 10.1016/j.autneu.2008.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 05/20/2008] [Accepted: 05/21/2008] [Indexed: 12/12/2022]
Abstract
Corticotropin releasing factor (CRF) is a neuropeptide expressed in micturition reflex circuitry and different roles in these reflexes have been suggested. These studies examined the expression of CRF/CRF receptors in the urinary bladder during postnatal development in the rat. Urinary bladder was harvested from rats (postnatal (P) day 0-adult) euthanized by isoflurane (4%) and thoracotomy. CRF protein expression significantly (p
Collapse
Affiliation(s)
- Jennifer LaBerge
- Department of Neurology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Susan E Malley
- Department of Neurology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Beatrice Girard
- Department of Anatomy, University of Vermont College of Medicine, Burlington, VT 05405, USA; Department of Anatomy, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Kimberly Corrow
- Department of Neurology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Margaret A Vizzard
- Department of Anatomy, University of Vermont College of Medicine, Burlington, VT 05405, USA; Department of Anatomy, University of Vermont College of Medicine, Burlington, VT 05405, USA; Department of Neurology, University of Vermont College of Medicine, Burlington, VT 05405, USA.
| |
Collapse
|
18
|
Pharmacotherapy in the management of voiding and storage disorders, including enuresis and encopresis. J Am Acad Child Adolesc Psychiatry 2008; 47:491-498. [PMID: 18438186 DOI: 10.1097/chi.0b013e31816774c5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Llewellyn-Smith IJ, Martin CL, Fenwick NM, Dicarlo SE, Lujan HL, Schreihofer AM. VGLUT1 and VGLUT2 innervation in autonomic regions of intact and transected rat spinal cord. J Comp Neurol 2007; 503:741-67. [PMID: 17570127 DOI: 10.1002/cne.21414] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fast excitatory neurotransmission to sympathetic and parasympathetic preganglionic neurons (SPN and PPN) is glutamatergic. To characterize this innervation in spinal autonomic regions, we localized immunoreactivity for vesicular glutamate transporters (VGLUTs) 1 and 2 in intact cords and after upper thoracic complete transections. Preganglionic neurons were retrogradely labeled by intraperitoneal Fluoro-Gold or with cholera toxin B (CTB) from superior cervical, celiac, or major pelvic ganglia or adrenal medulla. Glutamatergic somata were localized with in situ hybridization for VGLUT mRNA. In intact cords, all autonomic areas contained abundant VGLUT2-immunoreactive axons and synapses. CTB-immunoreactive SPN and PPN received many close appositions from VGLUT2-immunoreactive axons. VGLUT2-immunoreactive synapses occurred on Fluoro-Gold-labeled SPN. Somata with VGLUT2 mRNA occurred throughout the spinal gray matter. VGLUT2 immunoreactivity was not noticeably affected caudal to a transection. In contrast, in intact cords, VGLUT1-immunoreactive axons were sparse in the intermediolateral cell column (IML) and lumbosacral parasympathetic nucleus but moderately dense above the central canal. VGLUT1-immunoreactive close appositions were rare on SPN in the IML and the central autonomic area and on PPN. Transection reduced the density of VGLUT1-immunoreactive axons in sympathetic subnuclei but increased their density in the parasympathetic nucleus. Neuronal cell bodies with VGLUT1 mRNA occurred only in Clarke's column. These data indicate that SPN and PPN are densely innervated by VGLUT2-immunoreactive axons, some of which arise from spinal neurons. In contrast, the VGLUT1-immunoreactive innervation of spinal preganglionic neurons is sparse, and some may arise from supraspinal sources. Increased VGLUT1 immunoreactivity after transection may correlate with increased glutamatergic transmission to PPN.
Collapse
Affiliation(s)
- Ida J Llewellyn-Smith
- Cardiovascular Medicine and Centre for Neuroscience, Flinders University, Bedford Park, South Australia 5042, Australia.
| | | | | | | | | | | |
Collapse
|
20
|
LaBerge J, Malley SE, Zvarova K, Vizzard MA. Expression of corticotropin-releasing factor and CRF receptors in micturition pathways after cyclophosphamide-induced cystitis. Am J Physiol Regul Integr Comp Physiol 2006; 291:R692-703. [PMID: 16614059 DOI: 10.1152/ajpregu.00086.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Corticotropin-releasing factor (CRF) is a prominent neuropeptide involved in micturition reflexes, and different roles in these reflexes have been suggested. These studies examined the expression of CRF in the urinary bladder and lumbosacral sacral parasympathetic nucleus (SPN) in response to cyclophosphamide (CYP)-induced cystitis (4 h, 48 h, or chronic) in rats. The expression of CRF receptors, CRF(1) and CRF(2), was examined in urinary bladder from control and CYP-treated rats. Urinary bladder and lumbosacral spinal cord were harvested from rats killed by isoflurane (4%) and thoracotomy. CRF protein expression in whole urinary bladders significantly (P < or = 0.01) increased with 48 h or chronic CYP treatment. CRF immunoreactivity (IR) was increased significantly (P < or = 0.01) in the urothelium and SPN after CYP treatment. CRF IR nerve fibers increased in density in the suburothelial plexus and detrusor smooth muscle whole mounts with CYP-induced cystitis. CRF(2) receptor transcript was expressed in the urothelium or detrusor smooth muscle, and CRF(2) receptor expression increased in whole bladder with CYP-treatment, whereas no CRF(1) receptor transcript was expressed in either urothelium or detrusor. Immunohistochemical studies demonstrated CRF(2) IR in urinary bladder nerve fibers and urothelial cells from control animals, whereas no CRF(1) IR was observed. These studies demonstrated changes in the expression of CRF in urinary bladder and SPN region with CYP-induced cystitis and CRF receptor (CRF(2)) expression in nerve fibers and urothelium in control rats. CRF may contribute to urinary bladder overactivity and altered sensory processing with CYP-induced cystitis.
Collapse
Affiliation(s)
- Jennifer LaBerge
- Dept. of Anatomy, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|