1
|
Chou CW, Hsu YC. Current development of patient-specific induced pluripotent stem cells harbouring mitochondrial gene mutations and their applications in the treatment of sensorineural hearing loss. Hear Res 2023; 429:108689. [PMID: 36649664 DOI: 10.1016/j.heares.2023.108689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Of all the human body's sensory systems, the auditory system is perhaps its most intricate. Hearing loss can result from even modest damage or cell death in the inner ear, and is the most common form of sensory loss. Human hearing is made possible by the sensory epithelium, the lateral wall, and auditory nerves. The most prominent functional cells in the sensory epithelium are outer hair cells (OHCs), inner hair cells (IHCs), and supporting cells. Different sound frequencies are processed by OHCs and IHCs in different cochlear regions, with those in the apex responsible for low frequencies and those in the basal region responsible for high frequencies. Hair cells can be damaged or destroyed by loud noise, aging process, genetic mutations, ototoxicity, infection, and illness. As such, they are a primary target for treating sensorineural hearing loss. Other areas known to affect hearing include spiral ganglion neurons (SGNs) in the auditory nerve. Age-related degradation of HCs and SGNs can also cause hearing loss. The aim of this review is to introduce the roles of mitochondria in human auditory system and the inner ear's main cell types and cellular functions, before going on to detail the likely health benefits of iPSC technology. We posit that patient-specific iPSCs with mitochondrial gene mutations will be an important aspect of regenerative medicine and will lead to significant progress in the treatment of SNHL.
Collapse
Affiliation(s)
- Chao-Wen Chou
- Department of Audiology and Speech-Language Pathology, Mackay Medical College, New Taipei City, Taiwan
| | - Yi-Chao Hsu
- Department of Audiology and Speech-Language Pathology, Mackay Medical College, New Taipei City, Taiwan; Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
2
|
Li W, Zhang Y, Xu J, Chen J, Gao X. Fasudil prevents neomycin-induced hair cell damage by inhibiting autophagy through the miR-489/NDP52 signaling pathway in HEI-OC1 cells. Exp Ther Med 2021; 23:43. [PMID: 34849158 DOI: 10.3892/etm.2021.10965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 08/11/2021] [Indexed: 11/05/2022] Open
Abstract
Hearing loss is a common sensory disorder that is mainly caused by the loss of hair cells (HCs). Drug-induced deafness, for which there is currently no effective treatment, is mainly caused by the inappropriate use of aminoglycoside antibiotics. Fasudil (Fas), a novel isoquinoline sulfonamide derivative, has exhibited antioxidant abilities in a number of previous studies. The aim of the present study was to investigate the potential effects of Fas against neomycin (Neo)-induced hair cell damage and elucidate the underlying mechanism. Flow cytometry and western blot analysis were used to detect the effects of Fas on cell apoptosis and to determine the expression levels of autophagy-related proteins, LC3B and Beclin 1, induced by Neo. Mitochondrial membrane potential and reactive oxygen species (ROS) levels were detected using fluorescent probes. The effect of Fas on Neo-induced hair cell injury marker, GFP-LC3B, was also examined using the immunofluorescence technique. Fas was found to inhibit Neo-induced mitochondrial autophagy and mitochondrial membrane potential decline, in addition to reducing ROS levels and cell apoptosis caused by Neo treatment. However, Fas failed to inhibit the Neo-induced these above changes in cells with NDP52 overexpression. The putative binding sites of microRNA (miR)-489 on the 3'-untranslated region of nuclear dot protein 52 (NDP52) were predicted using the TargetScan 7.0 online tool, and this association was further verified using a dual-luciferase reporter assay. Moreover, the expression of miR-489 negatively regulated the expression of NDP52. Fas and miR-489 mimic inhibited the Neo-induced mitochondrial autophagy and mitochondrial membrane potential decline, in addition to reducing ROS levels and cell apoptosis. Knockdown of miR-489 expression using a miR-489 inhibitor blocked the inhibitory effects of Fas on the mitochondrial membrane potential, cell apoptosis and ROS production. Therefore, Fas may upregulate the expression of miR-489 to negatively regulate the expression of NDP52 at the post-transcriptional level, which in turn inhibits the activation of mitophagy and cell injury induced by Neo. Thus, Fas may act as a novel therapeutic option in the clinical treatment of hearing loss in the future.
Collapse
Affiliation(s)
- Wei Li
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Yanqiu Zhang
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, P.R. China
| | - Jifeng Xu
- Department of Otolaryngology Head and Neck Surgery, The First Clinical Medical College of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Jincan Chen
- Department of Otolaryngology Head and Neck Surgery, The First Clinical Medical College of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Xia Gao
- Research Institute of Otolaryngology, Gulou Hospital Affiliated to Medical College of Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Department of Otolaryngology Head and Neck Surgery, Gulou Hospital Affiliated to Medical College of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
3
|
Novel insights into inner ear development and regeneration for targeted hearing loss therapies. Hear Res 2019; 397:107859. [PMID: 31810596 DOI: 10.1016/j.heares.2019.107859] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/06/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Sensorineural hearing loss is the most common sensory deficit in humans. Despite the global scale of the problem, only limited treatment options are available today. The mammalian inner ear is a highly specialized postmitotic organ, which lacks proliferative or regenerative capacity. Since the discovery of hair cell regeneration in non-mammalian species however, much attention has been placed on identifying possible strategies to reactivate similar responses in humans. The development of successful regenerative approaches for hearing loss strongly depends on a detailed understanding of the mechanisms that control human inner ear cellular specification, differentiation and function, as well as on the development of robust in vitro cellular assays, based on human inner ear cells, to study these processes and optimize therapeutic interventions. We summarize here some aspects of inner ear development and strategies to induce regeneration that have been investigated in rodents. Moreover, we discuss recent findings in human inner ear development and compare the results with findings from animal models. Finally, we provide an overview of strategies for in vitro generation of human sensory cells from pluripotent and somatic progenitors that may provide a platform for drug development and validation of therapeutic strategies in vitro.
Collapse
|
4
|
Roccio M, Edge ASB. Inner ear organoids: new tools to understand neurosensory cell development, degeneration and regeneration. Development 2019; 146:146/17/dev177188. [PMID: 31477580 DOI: 10.1242/dev.177188] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of therapeutic interventions for hearing loss requires fundamental knowledge about the signaling pathways controlling tissue development as well as the establishment of human cell-based assays to validate therapeutic strategies ex vivo Recent advances in the field of stem cell biology and organoid culture systems allow the expansion and differentiation of tissue-specific progenitors and pluripotent stem cells in vitro into functional hair cells and otic-like neurons. We discuss how inner ear organoids have been developed and how they offer for the first time the opportunity to validate drug-based therapies, gene-targeting approaches and cell replacement strategies.
Collapse
Affiliation(s)
- Marta Roccio
- Inner Ear Research Laboratory, Department of Biomedical Research (DBMR), University of Bern, Bern 3008, Switzerland .,Department of Otorhinolaryngology, Head & Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Albert S B Edge
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
5
|
Nacher-Soler G, Garrido JM, Rodríguez-Serrano F. Hearing regeneration and regenerative medicine: present and future approaches. Arch Med Sci 2019; 15:957-967. [PMID: 31360190 PMCID: PMC6657260 DOI: 10.5114/aoms.2019.86062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 05/28/2017] [Indexed: 01/04/2023] Open
Abstract
More than 5% of the world population lives with a hearing impairment. The main factors responsible for hearing degeneration are ototoxic drugs, aging, continued exposure to excessive noise and infections. The pool of adult stem cells in the inner ear drops dramatically after birth, and therefore an endogenous cellular source for regeneration is absent. Hearing loss can emerge after the degeneration of different cochlear components, so there are multiple targets to be reached, such as hair cells (HCs), spiral ganglion neurons (SGNs), supporting cells (SCs) and ribbon synapses. Important discoveries in the hearing regeneration field have been reported regarding stem cell transplantation, migration and survival; genetic systems for cell fate monitoring; and stem cell differentiation to HCs, SGNs and SCs using adult stem cells, embryonic stem cells and induced pluripotent stem cells. Moreover, some molecular mediators that affect the establishment of functional synapses have been identified. In this review, we will focus on reporting the state of the art in the regenerative medicine field for hearing recovery. Stem cell research has enabled remarkable advances in regeneration, particularly in neuronal cells and synapses. Despite the progress achieved, there are certain issues that need a deeper development to improve the results already obtained, or to develop new approaches aiming for the clinical application.
Collapse
Affiliation(s)
- German Nacher-Soler
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain
| | - José Manuel Garrido
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain
- Department of Cardiovascular Surgery, Virgen de las Nieves University Hospital, Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Fernando Rodríguez-Serrano
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Human Anatomy and Embryology, University of Granada, Granada, Spain
| |
Collapse
|
6
|
Ma Y, Wise AK, Shepherd RK, Richardson RT. New molecular therapies for the treatment of hearing loss. Pharmacol Ther 2019; 200:190-209. [PMID: 31075354 DOI: 10.1016/j.pharmthera.2019.05.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
An estimated 466 million people suffer from hearing loss worldwide. Sensorineural hearing loss is characterized by degeneration of key structures of the sensory pathway in the cochlea such as the sensory hair cells, the primary auditory neurons and their synaptic connection to the hair cells - the ribbon synapse. Various strategies to protect or regenerate these sensory cells and structures are the subject of intensive research. Yet despite recent advances in our understandings of the capacity of the cochlea for repair and regeneration there are currently no pharmacological or biological interventions for hearing loss. Current research focusses on localized cochlear drug, gene and cell-based therapies. One of the more promising drug-based therapies is based on neurotrophic factors for the repair of the ribbon synapse after noise exposure, as well as preventing loss of primary auditory neurons and regrowth of the auditory neuron fibers after severe hearing loss. Drug therapy delivery technologies are being employed to address the specific needs of neurotrophin and other therapies for hearing loss that include the need for high doses, long-term delivery, localised or cell-specific targeting and techniques for their safe and efficacious delivery to the cochlea. Novel biomaterials are enabling high payloads of drugs to be administered to the cochlea with subsequent slow-release properties that are proving to be beneficial for treating hearing loss. In parallel, new gene therapy technologies are addressing the need for cell specificity and high efficacy for the treatment of both genetic and acquired hearing loss with promising reports of hearing recovery. Some biomaterials and cell therapies are being used in conjunction with the cochlear implant ensuring therapeutic benefit to the primary neurons during electrical stimulation. This review will introduce the auditory system, hearing loss and the potential for repair and regeneration in the cochlea. Drug delivery to the cochlea will then be reviewed, with a focus on new biomaterials, gene therapy technologies, cell therapy and the use of the cochlear implant as a vehicle for drug delivery. With the current pre-clinical research effort into therapies for hearing loss, including clinical trials for gene therapy, the future for the treatment for hearing loss is looking bright.
Collapse
Affiliation(s)
- Yutian Ma
- Bionics Institute, East Melbourne, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia; University of Melbourne, Department of Chemical Engineering, Parkville, Victoria, Australia
| | - Andrew K Wise
- Bionics Institute, East Melbourne, Australia; University of Melbourne, Medical Bionics Department, East Melbourne, Australia; University of Melbourne, Department of Surgery - Otolaryngology, East Melbourne, Australia
| | - Robert K Shepherd
- Bionics Institute, East Melbourne, Australia; University of Melbourne, Medical Bionics Department, East Melbourne, Australia; University of Melbourne, Department of Surgery - Otolaryngology, East Melbourne, Australia
| | - Rachael T Richardson
- Bionics Institute, East Melbourne, Australia; University of Melbourne, Medical Bionics Department, East Melbourne, Australia; University of Melbourne, Department of Surgery - Otolaryngology, East Melbourne, Australia.
| |
Collapse
|
7
|
Chen YC, Tsai CL, Wei YH, Wu YT, Hsu WT, Lin HC, Hsu YC. ATOH1/RFX1/RFX3 transcription factors facilitate the differentiation and characterisation of inner ear hair cell-like cells from patient-specific induced pluripotent stem cells harbouring A8344G mutation of mitochondrial DNA. Cell Death Dis 2018; 9:437. [PMID: 29740017 PMCID: PMC5941227 DOI: 10.1038/s41419-018-0488-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 11/10/2022]
Abstract
Degeneration or loss of inner ear hair cells (HCs) is irreversible and results in sensorineural hearing loss (SHL). Human-induced pluripotent stem cells (hiPSCs) have been employed in disease modelling and cell therapy. Here, we propose a transcription factor (TF)-driven approach using ATOH1 and regulatory factor of x-box (RFX) genes to generate HC-like cells from hiPSCs. Our results suggest that ATOH1/RFX1/RFX3 could significantly increase the differentiation capacity of iPSCs into MYO7AmCherry-positive cells, upregulate the mRNA expression levels of HC-related genes and promote the differentiation of HCs with more mature stereociliary bundles. To model the molecular and stereociliary structural changes involved in HC dysfunction in SHL, we further used ATOH1/RFX1/RFX3 to differentiate HC-like cells from the iPSCs from patients with myoclonus epilepsy associated with ragged-red fibres (MERRF) syndrome, which is caused by A8344G mutation of mitochondrial DNA (mtDNA), and characterised by myoclonus epilepsy, ataxia and SHL. Compared with isogenic iPSCs, MERRF-iPSCs possessed ~42–44% mtDNA with A8344G mutation and exhibited significantly elevated reactive oxygen species (ROS) production and CAT gene expression. Furthermore, MERRF-iPSC-differentiated HC-like cells exhibited significantly elevated ROS levels and MnSOD and CAT gene expression. These MERRF-HCs that had more single cilia with a shorter length could be observed only by using a non-TF method, but those with fewer stereociliary bundle-like protrusions than isogenic iPSCs-differentiated-HC-like cells could be further observed using ATOH1/RFX1/RFX3 TFs. We further analysed and compared the whole transcriptome of M1ctrl-HCs and M1-HCs after treatment with ATOH1 or ATOH1/RFX1/RFX3. We revealed that the HC-related gene transcripts in M1ctrl-iPSCs had a significantly higher tendency to be activated by ATOH1/RFX1/RFX3 than M1-iPSCs. The ATOH1/RFX1/RFX3 TF-driven approach for the differentiation of HC-like cells from iPSCs is an efficient and promising strategy for the disease modelling of SHL and can be employed in future therapeutic strategies to treat SHL patients.
Collapse
Affiliation(s)
- Yen-Chun Chen
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Chia-Ling Tsai
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Yau-Huei Wei
- Center for Mitochondrial Medicine and Free Radical Research Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Ting Wu
- Center for Mitochondrial Medicine and Free Radical Research Changhua Christian Hospital, Changhua, Taiwan
| | - Wei-Ting Hsu
- Department of Audiology and Speech-Language Pathology, Mackay Medical College, New Taipei City, Taiwan
| | - Hung-Ching Lin
- Department of Audiology and Speech-Language Pathology, Mackay Medical College, New Taipei City, Taiwan.,Department of Otolaryngology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yi-Chao Hsu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
8
|
Mahmoudian-Sani MR, Mehri-Ghahfarrokhi A, Ahmadinejad F, Hashemzadeh-Chaleshtori M, Saidijam M, Jami MS. MicroRNAs: effective elements in ear-related diseases and hearing loss. Eur Arch Otorhinolaryngol 2017; 274:2373-2380. [PMID: 28224282 DOI: 10.1007/s00405-017-4470-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Abstract
miRNAs are important factors for post-transcriptional process that controls gene expression at mRNA level. Various biological processes, including growth and differentiation, are regulated by miRNAs. miRNAs have been demonstrated to play an essential role in development and progression of hearing loss. Nowadays, miRNAs are known as critical factors involved in different physiological, biological, and pathological processes, such as gene expression, progressive sensorineural hearing loss, age-related hearing loss, noise-induced hearing loss, cholesteatoma, schwannomas, and inner ear inflammation. The miR-183 family (miR-183, miR-96 and miR-182) is expressed abundantly in some types of sensory cells in inner ear specially mechanosensory hair cells that exhibit a great expression level of this family. The plasma levels of miR-24-3p, miR-16-5p, miR-185-5p, and miR-451a were upregulated during noise exposures, and increased levels of miR-21 have been found in vestibular schwannomas and human cholesteatoma. In addition, upregulation of pro-apoptotic miRNAs and downregulation of miRNAs which promote differentiation and proliferation in age-related degeneration of the organ of Corti may potentially serve as a helpful biomarker for the early detection of age-related hearing loss. This knowledge represents miRNAs as promising diagnostic and therapeutic tools in the near future.
Collapse
Affiliation(s)
- Mohammad-Reza Mahmoudian-Sani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Fereshteh Ahmadinejad
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad-Saeid Jami
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
9
|
Chen S, Karamy B, Shipp D, Nedzelski J, Chen J, Lin V. Assessment of the psychosocial impacts of cochlear implants on adult recipients and their partners. Cochlear Implants Int 2016; 17:90-7. [DOI: 10.1080/14670100.2015.1102456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Lou X, Dong Y, Xie J, Wang X, Yang L, Tokuda M, Zhang Y. Comparing the cultivated cochlear cells derived from neonatal and adult mouse. J Transl Med 2014; 12:150. [PMID: 24884939 PMCID: PMC4050405 DOI: 10.1186/1479-5876-12-150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 05/21/2014] [Indexed: 12/28/2022] Open
Abstract
Background Previous reports showed the presence of limited numbers of stem cells in neonatal murine cochlear sensory epithelia and these cells are progressively lost during the postnatal development. The goal of this study was to investigate whether stem cells can be derived from mature mouse cochleae under suspension culture conditions, and to analyze the expression of the stem cell and inner ear progenitor cell markers in cells dissociated from neonatal and adult mouse organs of Corti. Methods Organs of Corti were dissected from postnatal day 1 (P1) or postnatal day 60 (P60) mouse. The dissociated cells were cultivated under suspension cultures conditions. Reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemistry were conducted for phenotype characterization. Results The number of cochlear stem cells (otospheres) yielded from P1 organ of Corti was significantly higher than that of the P60 organ of Corti. RT-PCR analyses showed that the stem markers, such as nanog, sox2, klf4, and nestin can be found to be distributed similarly in the cells derived from both of organisms, but the inner ear developmental/progenitor cell markers showed lower expression in P60 organ of Corti compared to P1. Immunocytochemistry results also revealed the evidence that P60 otospheres lacking of differentiation potential in vitro, which opposed to the strong differentiation potential of otospheres at P1 stage. Conclusions Our findings suggest that the loss of numbers and features of stem cells in the adult organ of Corti is associated with the substantial down-regulation of inner ear progenitor key-markers during maturation of the cells in organ of Corti.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yanzhong Zhang
- Department of Bioengineering, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
11
|
Gunewardene N, Dottori M, Nayagam BA. The convergence of cochlear implantation with induced pluripotent stem cell therapy. Stem Cell Rev Rep 2012; 8:741-54. [PMID: 21956409 DOI: 10.1007/s12015-011-9320-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
According to 2010 estimates from The National Institute on Deafness and other Communication Disorders, approximately 17% (36 million) American adults have reported some degree of hearing loss. Currently, the only clinical treatment available for those with severe-to-profound hearing loss is a cochlear implant, which is designed to electrically stimulate the auditory nerve in the absence of hair cells. Whilst the cochlear implant has been revolutionary in terms of providing hearing to the severe-to-profoundly deaf, there are variations in cochlear implant performance which may be related to the degree of degeneration of auditory neurons following hearing loss. Hence, numerous experimental studies have focused on enhancing the efficacy of cochlear implants by using neurotrophins to preserve the auditory neurons, and more recently, attempting to replace these dying cells with new neurons derived from stem cells. As a result, several groups are now investigating the potential for both embryonic and adult stem cells to replace the degenerating sensory elements in the deaf cochlea. Recent advances in our knowledge of stem cells and the development of induced pluripotency by Takahashi and Yamanaka in 2006, have opened a new realm of science focused on the use of induced pluripotent stem (iPS) cells for therapeutic purposes. This review will provide a broad overview of the potential benefits and challenges of using iPS cells in combination with a cochlear implant for the treatment of hearing loss, including differentiation of iPS cells into an auditory neural lineage and clinically relevant transplantation approaches.
Collapse
Affiliation(s)
- Niliksha Gunewardene
- Department of Otolaryngology, University of Melbourne, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
12
|
Ronaghi M, Nasr M, Heller S. Concise review: Inner ear stem cells--an oxymoron, but why? Stem Cells 2012; 30:69-74. [PMID: 22102534 DOI: 10.1002/stem.785] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hearing loss, caused by irreversible loss of cochlear sensory hair cells, affects millions of patients worldwide. In this concise review, we examine the conundrum of inner ear stem cells, which obviously are present in the inner ear sensory epithelia of nonmammalian vertebrates, giving these ears the ability to functionally recover even from repetitive ototoxic insults. Despite the inability of the mammalian inner ear to regenerate lost hair cells, there is evidence for cells with regenerative capacity because stem cells can be isolated from vestibular sensory epithelia and from the neonatal cochlea. Challenges and recent progress toward identification of the intrinsic and extrinsic signaling pathways that could be used to re-establish stemness in the mammalian organ of Corti are discussed.
Collapse
Affiliation(s)
- Mohammad Ronaghi
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California 94305-5739, USA
| | | | | |
Collapse
|
13
|
Parker MA. Biotechnology in the treatment of sensorineural hearing loss: foundations and future of hair cell regeneration. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2011; 54:1709-31. [PMID: 21386039 PMCID: PMC3163053 DOI: 10.1044/1092-4388(2011/10-0149)] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
PURPOSE To provide an overview of the methodologies involved in the field of hair cell regeneration. First, the author provides a tutorial on the biotechnological foundations of this field to assist the reader in the comprehension and interpretation of the research involved in hair cell regeneration. Next, the author presents a review of stem cell and gene therapy and provides a critical appraisal of their application to hair cell regeneration. The methodologies used in these approaches are highlighted. METHOD The author conducted a narrative review of the fields of cellular, molecular, and developmental biology, tissue engineering, and stem cell and gene therapy using the PubMed database. RESULTS The use of biotechnological approaches to the treatment of hearing loss--approaches such as stem cell and gene therapy-has led to new methods of regenerating cochlear hair cells in mammals. CONCLUSIONS Incredible strides have been made in assembling important pieces of the puzzle that comprise hair cell regeneration. However, mammalian hair cell regeneration using stem cell and gene therapy are years--if not decades--away from being clinically feasible. If the goals of the biological approaches are met, these therapies may represent future treatments for hearing loss.
Collapse
|
14
|
Sun H, Lin CH, Smith ME. Growth hormone promotes hair cell regeneration in the zebrafish (Danio rerio) inner ear following acoustic trauma. PLoS One 2011; 6:e28372. [PMID: 22140580 PMCID: PMC3227666 DOI: 10.1371/journal.pone.0028372] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 11/07/2011] [Indexed: 01/13/2023] Open
Abstract
Background Previous microarray analysis showed that growth hormone (GH) was significantly upregulated following acoustic trauma in the zebrafish (Danio rerio) ear suggesting that GH may play an important role in the process of auditory hair cell regeneration. Our objective was to examine the effects of exogenous and endogenous GH on zebrafish inner ear epithelia following acoustic trauma. Methodology/Principal Findings We induced auditory hair cell damage by exposing zebrafish to acoustic overstimulation. Fish were then injected intraperitoneally with either carp GH or buffer, and placed in a recovery tank for either one or two days. Phalloidin-, bromodeoxyuridine (BrdU)-, and TUNEL-labeling were used to examine hair cell densities, cell proliferation, and apoptosis, respectively. Two days post-trauma, saccular hair cell densities in GH-treated fish were similar to that of baseline controls, whereas buffer-injected fish showed significantly reduced densities of hair cell bundles. Cell proliferation was greater and apoptosis reduced in the saccules, lagenae, and utricles of GH-treated fish one day following trauma compared to controls. Fluorescent in situ hybridization (FISH) was used to examine the localization of GH mRNA in the zebrafish ear. At one day post-trauma, GH mRNA expression appeared to be localized perinuclearly around erythrocytes in the blood vessels of the inner ear epithelia. In order to examine the effects of endogenous GH on the process of cell proliferation in the ear, a GH antagonist was injected into zebrafish immediately following acoustic trauma, resulting in significantly decreased cell proliferation one day post-trauma in all three zebrafish inner ear end organs. Conclusions/Significance Our results show that exogenous GH promotes post-trauma auditory hair cell regeneration in the zebrafish ear through stimulating proliferation and suppressing apoptosis, and that endogenous GH signals are present in the zebrafish ear during the process of auditory hair cell regeneration.
Collapse
Affiliation(s)
- Huifang Sun
- Department of Biology and Biotechnology Center, Western Kentucky University, Bowling Green, Kentucky, United States of America
| | - Chia-Hui Lin
- Department of Biology and Biotechnology Center, Western Kentucky University, Bowling Green, Kentucky, United States of America
| | - Michael E. Smith
- Department of Biology and Biotechnology Center, Western Kentucky University, Bowling Green, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
15
|
Devarajan K, Staecker H, Detamore MS. A review of gene delivery and stem cell based therapies for regenerating inner ear hair cells. J Funct Biomater 2011; 2:249-70. [PMID: 24956306 PMCID: PMC4030941 DOI: 10.3390/jfb2030249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 08/31/2011] [Accepted: 09/05/2011] [Indexed: 12/13/2022] Open
Abstract
Sensory neural hearing loss and vestibular dysfunction have become the most common forms of sensory defects, affecting millions of people worldwide. Developing effective therapies to restore hearing loss is challenging, owing to the limited regenerative capacity of the inner ear hair cells. With recent advances in understanding the developmental biology of mammalian and non-mammalian hair cells a variety of strategies have emerged to restore lost hair cells are being developed. Two predominant strategies have developed to restore hair cells: transfer of genes responsible for hair cell genesis and replacement of missing cells via transfer of stem cells. In this review article, we evaluate the use of several genes involved in hair cell regeneration, the advantages and disadvantages of the different viral vectors employed in inner ear gene delivery and the insights gained from the use of embryonic, adult and induced pluripotent stem cells in generating inner ear hair cells. Understanding the role of genes, vectors and stem cells in therapeutic strategies led us to explore potential solutions to overcome the limitations associated with their use in hair cell regeneration.
Collapse
Affiliation(s)
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA.
| | | |
Collapse
|
16
|
Kopecky B, Santi P, Johnson S, Schmitz H, Fritzsch B. Conditional deletion of N-Myc disrupts neurosensory and non-sensory development of the ear. Dev Dyn 2011; 240:1373-90. [PMID: 21448975 PMCID: PMC3092837 DOI: 10.1002/dvdy.22620] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2011] [Indexed: 01/08/2023] Open
Abstract
Ear development requires interactions of transcription factors for proliferation and differentiation. The proto-oncogene N-Myc is a member of the Myc family that regulates proliferation. To investigate the function of N-Myc, we conditionally knocked out N-Myc in the ear using Tg(Pax2-Cre) and Foxg1(KiCre). N-Myc CKOs had reduced growth of the ear, abnormal morphology including fused sensory epithelia, disrupted histology, and disorganized neuronal innervation. Using Thin-Sheet Laser Imaging Microscopy (TSLIM), 3D reconstruction and quantification of the cochlea revealed a greater than 50% size reduction. Immunochemistry and in situ hybridization showed a gravistatic organ-cochlear fusion and a "circularized" apex with no clear inner and outer hair cells. Furthermore, the abnormally developed cochlea had cross innervation from the vestibular ganglion near the basal tip. These findings are put in the context of the possible functional relationship of N-Myc with a number of other cell proliferative and fate determining genes during ear development.
Collapse
Affiliation(s)
- Benjamin Kopecky
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
- Carver College of Medicine, Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, USA
| | - Peter Santi
- Department of Otolaryngology, University of Minnesota, Minneapolis, MN, USA
| | - Shane Johnson
- Department of Otolaryngology, University of Minnesota, Minneapolis, MN, USA
| | - Heather Schmitz
- Department of Otolaryngology, University of Minnesota, Minneapolis, MN, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
17
|
Kopecky B, Fritzsch B. Regeneration of Hair Cells: Making Sense of All the Noise. Pharmaceuticals (Basel) 2011; 4:848-879. [PMID: 21966254 PMCID: PMC3180915 DOI: 10.3390/ph4060848] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/04/2011] [Accepted: 06/08/2011] [Indexed: 12/17/2022] Open
Abstract
Hearing loss affects hundreds of millions of people worldwide by dampening or cutting off their auditory connection to the world. Current treatments for sensorineural hearing loss (SNHL) with cochlear implants are not perfect, leaving regenerative medicine as the logical avenue to a perfect cure. Multiple routes to regeneration of damaged hair cells have been proposed and are actively pursued. Each route not only requires a keen understanding of the molecular basis of ear development but also faces the practical limitations of stem cell regulation in the delicate inner ear where topology of cell distribution is essential. Improvements in our molecular understanding of the minimal essential genes necessary for hair cell formation and recent advances in stem cell manipulation, such as seen with inducible pluripotent stem cells (iPSCs) and epidermal neural crest stem cells (EPI-NCSCs), have opened new possibilities to advance research in translational stem cell therapies for individuals with hearing loss. Despite this, more detailed network maps of gene expression are needed, including an appreciation for the roles of microRNAs (miRs), key regulators of transcriptional gene networks. To harness the true potential of stem cells for hair cell regeneration, basic science and clinical medicine must work together to expedite the transition from bench to bedside by elucidating the full mechanisms of inner ear hair cell development, including a focus on the role of miRs, and adapting this knowledge safely and efficiently to stem cell technologies.
Collapse
Affiliation(s)
- Benjamin Kopecky
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
18
|
Weston MD, Pierce ML, Jensen-Smith HC, Fritzsch B, Rocha-Sanchez S, Beisel KW, Soukup GA. MicroRNA-183 family expression in hair cell development and requirement of microRNAs for hair cell maintenance and survival. Dev Dyn 2011; 240:808-19. [PMID: 21360794 PMCID: PMC3072272 DOI: 10.1002/dvdy.22591] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2011] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNAs) post-transcriptionally repress complementary target gene expression and can contribute to cell differentiation. The coordinate expression of miRNA-183 family members (miR-183, miR-96, and miR-182) has been demonstrated in sensory cells of the mouse inner ear and other vertebrate sensory organs. To further examine hair cell miRNA expression in the mouse inner ear, we have analyzed miR-183 family expression in wild type animals and various mutants with defects in neurosensory development. miR-183 family member expression follows neurosensory cell specification, exhibits longitudinal (basal-apical) gradients in maturating cochlear hair cells, and is maintained in sensory neurons and most hair cells into adulthood. Depletion of hair cell miRNAs resulting from Dicer1 conditional knockout (CKO) in Atoh1-Cre transgenic mice leads to more disparate basal-apical gene expression profiles and eventual hair cell loss. Results suggest that hair cell miRNAs subdue cochlear gradient gene expression and are required for hair cell maintenance and survival.
Collapse
Affiliation(s)
- Michael D. Weston
- Creighton University School of Dentistry, 2500 California Plaza, Omaha, NE 68178, USA
| | - Marsha L. Pierce
- Department of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | - Heather C. Jensen-Smith
- Department of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, 143 Biology Building, Iowa City, IA 52242, USA
| | - Sonia Rocha-Sanchez
- Creighton University School of Dentistry, 2500 California Plaza, Omaha, NE 68178, USA
| | - Kirk W. Beisel
- Department of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | - Garrett A. Soukup
- Department of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
19
|
Induced endolymphatic flow from the endolymphatic sac to the cochlea in Ménière's disease. Otolaryngol Head Neck Surg 2010; 143:673-9. [PMID: 20974338 DOI: 10.1016/j.otohns.2010.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 07/30/2010] [Accepted: 08/10/2010] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of the present study was to verify whether drugs injected into the endolymphatic sac (ES) can reach the cochlea and possibly treat inner ear disorders. STUDY DESIGN Prospective cohort study. SETTING Tertiary referral center, Otolaryngology Department, University of Verona. SUBJECTS AND METHODS Patients with Ménière's disease (MD) who were candidates for ES decompression were selected. Nineteen subjects received dexamethasone (DEX) via injection into the ES. To objectively define whether substances administered into the ES could reach the cochlea, we added gadolinium (GD) in three patients. All subjects had intraoperative electrocorticogram recordings and an audiologic follow-up. The three subjects who underwent injection of the DEX-GD solution were followed-up with magnetic resonance imaging. The audiological data are presented during a follow-up period of 12 months. RESULTS Intraoperative electrocochleography recordings revealed no changes in two patients and summating potentials and compound action potential latency and wave-form modifications in all the other subjects. GD distribution was observed from 48 hours to one week after ES injection into the cochlea of the three subjects injected with DEX-GD. GD-related enhancement of inner ear structures lasted more than two weeks in all subjects. Pure tone average results showed hearing improvement of at least 20 dB HL in 42 percent of patients (8 of 19) at the 12-month follow-up. Statistically significant differences emerged between the mean pure tone average of the ES procedure subjects at one and 12 months after surgery (P = 0.0096). CONCLUSION This novel approach might reveal new prospects for treating viral, metabolic, autoimmune, and genetic disorders of the cochlea.
Collapse
|
20
|
Jahan I, Pan N, Kersigo J, Fritzsch B. Neurod1 suppresses hair cell differentiation in ear ganglia and regulates hair cell subtype development in the cochlea. PLoS One 2010; 5:e11661. [PMID: 20661473 PMCID: PMC2908541 DOI: 10.1371/journal.pone.0011661] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 06/23/2010] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND At least five bHLH genes regulate cell fate determination and differentiation of sensory neurons, hair cells and supporting cells in the mammalian inner ear. Cross-regulation of Atoh1 and Neurog1 results in hair cell changes in Neurog1 null mice although the nature and mechanism of the cross-regulation has not yet been determined. Neurod1, regulated by both Neurog1 and Atoh1, could be the mediator of this cross-regulation. METHODOLOGY/PRINCIPAL FINDINGS We used Tg(Pax2-Cre) to conditionally delete Neurod1 in the inner ear. Our data demonstrate for the first time that the absence of Neurod1 results in formation of hair cells within the inner ear sensory ganglia. Three cell types, neural crest derived Schwann cells and mesenchyme derived fibroblasts (neither expresses Neurod1) and inner ear derived neurons (which express Neurod1) constitute inner ear ganglia. The most parsimonious explanation is that Neurod1 suppresses the alternative fate of sensory neurons to develop as hair cells. In the absence of Neurod1, Atoh1 is expressed and differentiates cells within the ganglion into hair cells. We followed up on this effect in ganglia by demonstrating that Neurod1 also regulates differentiation of subtypes of hair cells in the organ of Corti. We show that in Neurod1 conditional null mice there is a premature expression of several genes in the apex of the developing cochlea and outer hair cells are transformed into inner hair cells. CONCLUSIONS/SIGNIFICANCE Our data suggest that the long noted cross-regulation of Atoh1 expression by Neurog1 might actually be mediated in large part by Neurod1. We suggest that Neurod1 is regulated by both Neurog1 and Atoh1 and provides a negative feedback for either gene. Through this and other feedback, Neurod1 suppresses alternate fates of neurons to differentiate as hair cells and regulates hair cell subtypes.
Collapse
Affiliation(s)
- Israt Jahan
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Ning Pan
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jennifer Kersigo
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
21
|
Oshima K, Suchert S, Blevins NH, Heller S. Curing hearing loss: Patient expectations, health care practitioners, and basic science. JOURNAL OF COMMUNICATION DISORDERS 2010; 43:311-8. [PMID: 20434163 PMCID: PMC2885475 DOI: 10.1016/j.jcomdis.2010.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/06/2010] [Accepted: 02/08/2010] [Indexed: 05/29/2023]
Abstract
UNLABELLED Millions of patients are debilitated by hearing loss, mainly caused by degeneration of sensory hair cells in the cochlea. The underlying reasons for hair cell loss are highly diverse, ranging from genetic disposition, drug side effects, traumatic noise exposure, to the effects of aging. Whereas modern hearing aids offer some relief of the symptoms of mild hearing loss, the only viable option for patients suffering from profound hearing loss is the cochlear implant. Despite their successes, hearing aids and cochlear implants are not perfect. Particularly frequency discrimination and performance in noisy environments and general efficacy of the devises vary among individual patients. The advent of regenerative medicine, the publicity of stem cells and gene therapy, and recent scientific achievements in inner ear cell regeneration have generated an emerging spirit of optimism among scientists, health care practitioners, and patients. In this review, we place the different points of view of these three groups in perspective with the goal of providing an assessment of patient expectations, health care reality, and potential future treatment options for hearing disorders. LEARNING OUTCOMES (1) Readers will be encouraged to put themselves in the position of a hearing impaired patient or family member of a hearing impaired person. (2) Readers will be able to explain why diagnosis of the underlying pathology of hearing loss is difficult. (3) Readers will be able to list the main directions of current research aimed to cure hearing loss. (4) Readers will be able to understand the different viewpoints of patients and their relatives, health care providers, and scientists with respect to finding novel treatments for hearing loss.
Collapse
Affiliation(s)
- Kazuo Oshima
- Department of Otolaryngology - Head & Neck Surgery , Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
22
|
Wei–ning S, Li–dong Z, Xiao–bing Z, Shi–ming Y. The progenitors of inner ear hair cells and their regulating genes. J Otol 2010. [DOI: 10.1016/s1672-2930(10)50007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
23
|
Oshima K, Shin K, Diensthuber M, Peng AW, Ricci AJ, Heller S. Mechanosensitive hair cell-like cells from embryonic and induced pluripotent stem cells. Cell 2010; 141:704-16. [PMID: 20478259 PMCID: PMC2873974 DOI: 10.1016/j.cell.2010.03.035] [Citation(s) in RCA: 232] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 01/18/2010] [Accepted: 02/24/2010] [Indexed: 12/21/2022]
Abstract
Mechanosensitive sensory hair cells are the linchpin of our senses of hearing and balance. The inability of the mammalian inner ear to regenerate lost hair cells is the major reason for the permanence of hearing loss and certain balance disorders. Here, we present a stepwise guidance protocol starting with mouse embryonic stem and induced pluripotent stem cells, which were directed toward becoming ectoderm capable of responding to otic-inducing growth factors. The resulting otic progenitor cells were subjected to varying differentiation conditions, one of which promoted the organization of the cells into epithelial clusters displaying hair cell-like cells with stereociliary bundles. Bundle-bearing cells in these clusters responded to mechanical stimulation with currents that were reminiscent of immature hair cell transduction currents.
Collapse
Affiliation(s)
- Kazuo Oshima
- Departments of Otolaryngology – Head & Neck Surgery and Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Kunyoo Shin
- Departments of Otolaryngology – Head & Neck Surgery and Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Marc Diensthuber
- Departments of Otolaryngology – Head & Neck Surgery and Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Anthony W. Peng
- Departments of Otolaryngology – Head & Neck Surgery and Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Anthony J. Ricci
- Departments of Otolaryngology – Head & Neck Surgery and Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Stefan Heller
- Departments of Otolaryngology – Head & Neck Surgery and Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
24
|
Abstract
Sensory hair cells of the inner ear are responsible for translating auditory or vestibular stimuli into electrical energy that can be perceived by the nervous system. Although hair cells are exquisitely mechanically sensitive, they can be easily damaged by excessive stimulation by ototoxic drugs and by the effects of aging. In mammals, auditory hair cells are never replaced, such that cumulative damage to the ear causes progressive and permanent deafness. In contrast, non-mammalian vertebrates are capable of replacing lost hair cells, which has led to efforts to understand the molecular and cellular basis of regenerative responses in different vertebrate species. In this review, we describe recent progress in understanding the limits to hair cell regeneration in mammals and discuss the obstacles that currently exist for therapeutic approaches to hair cell replacement.
Collapse
Affiliation(s)
- Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, BCM 295, 1 Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Palmgren B, Jin Z, Ma H, Jiao Y, Olivius P. beta-Bungarotoxin application to the round window: an in vivo deafferentation model of the inner ear. Hear Res 2010; 265:70-6. [PMID: 20184947 DOI: 10.1016/j.heares.2010.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 02/13/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
Abstract
Hearing impairment can be caused by a primary lesion to the spiral ganglion neurons (SGNs) with the hair cells kept intact, for example via tumours, trauma or auditory neuropathy. To mimic these conditions in animal models various methods of inflicting damage to the inner ear have been used. However, only a few methods have a selective effect on the SGNs, which is of importance since it might be clinically more relevant to study hearing impairment with the hair cells undamaged. beta-Bungarotoxin is a venom of the Taiwan banded krait, which in vitro has been shown to induce apoptosis in neurons, leaving remaining cochlear cells intact. We wanted to create an in vivo rat model of selective damage to primary auditory neurons. Under deep anaesthesia, 41 rats received beta-Bungarotoxin or saline to the round window niche. At postoperative intervals between days 3 and 21 auditory brainstem response (ABR) measurement, immunohistochemistry, SGN quantification and cochlear surface preparation were performed. The results in the beta-Bungarotoxin-treated ears, as compared with sham-operated ears, show significantly increased ABR thresholds at all postoperative intervals, illustrating a severe to profound hearing loss at all tested frequencies (3.5, 7, 16 and 28 kHz). Quantification of the SGNs showed no obvious reduction in neuronal numbers until 14 days postoperatively. Between days 14 and 21 a significant reduction in SGN numbers was observed. Cochlear surface preparation and immunohistochemistry showed that the hair cells were intact. Our results illustrate that in vivo application of beta-Bungarotoxin to the round window niche is a feasible way of deafening rats by SGN reduction while the hair cells are kept intact.
Collapse
Affiliation(s)
- Björn Palmgren
- Center for Hearing and Communication Research, Karolinska University Hospital, 171 76 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
26
|
SHEN HF, YAO ZF, XIAO GF, JIA JS, XIAO D, YAO KT. Induced Pluripotent Stem Cells(iPS Cells):Current Status and Future Prospect*. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2008.00794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Current Opinion in Otolaryngology & Head and Neck Surgery. Current world literature. Curr Opin Otolaryngol Head Neck Surg 2009; 17:326-31. [PMID: 19602933 DOI: 10.1097/moo.0b013e32832fa68b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Brignull HR, Raible DW, Stone JS. Feathers and fins: non-mammalian models for hair cell regeneration. Brain Res 2009; 1277:12-23. [PMID: 19245801 PMCID: PMC2700174 DOI: 10.1016/j.brainres.2009.02.028] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 02/09/2009] [Accepted: 02/11/2009] [Indexed: 11/18/2022]
Abstract
Death of mechanosensory cells in the inner ear results in two profound disabilities: hearing loss and balance disorders. Although mammals lack the capacity to regenerate hair cells, recent studies in mice and other rodents have offered valuable insight into strategies for stimulating hair cell regeneration in mammals. Investigations of model organisms that retain the ability to form new hair cells after embryogenesis, such as fish and birds, are equally important and have provided clues as to the cellular and molecular mechanisms that may block hair cell regeneration in mammals. Here, we summarize studies on hair cell regeneration in the chicken and the zebrafish, discuss specific advantages of each model, and propose future directions for the use of non-mammalian models in understanding hair cell regeneration.
Collapse
Affiliation(s)
- Heather R Brignull
- Department of Biological Structure, University of Washington, WA 98195-7420, USA.
| | | | | |
Collapse
|
29
|
Soukup GA. Little but loud: small RNAs have a resounding affect on ear development. Brain Res 2009; 1277:104-14. [PMID: 19245798 PMCID: PMC2700218 DOI: 10.1016/j.brainres.2009.02.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 02/07/2023]
Abstract
The impact of small RNA function has resonated throughout nearly every aspect of eukaryotic biology and captured the varied interests of researchers, whether they are endeavoring to understand the basis of development and disease or seeking novel therapeutic targets and tools. The genetic regulatory roles of microRNAs (miRNAs) are particularly interesting given that these often highly conserved factors post-transcriptionally silence many complementary target genes by inhibiting messenger RNA translation. In this regard, miRNAs can be considered as counterparts to transcription factors, the ensemble of which establishes the set of expressed genes that define the characteristics of a specific cell type. In this review, evidence supporting a resounding role for small RNAs in development and maturation of sensory epithelia in the mouse inner ear will be considered with an emphasis on the contribution of one hair cell miRNA family (miR-183, miR-96, and miR-182). Although there is much yet to be explored in this fledgling aspect of ear biology, the breadth of miRNA expression and functional requirement for ear development are already sounding off.
Collapse
Affiliation(s)
- Garrett A Soukup
- Department of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|
30
|
Abstract
The message is loud and clear. MicroRNA-96, one in a cluster of three related neurosensory microRNAs, is crucial to the development and maintenance of inner ear hair cells and hearing in mice and humans. Two recent studies show that mutations in the critical seed region of the microRNA underlie the cause of hair cell degeneration and progressive hearing loss. Other recent reports reveal the general requirement of microRNAs for sensory epithelial development and maintenance in Dicer knockout mouse ear. The challenge begins to determine whether microRNAs will resonate as therapeutic agents or target molecules to preserve or restore hearing.
Collapse
Affiliation(s)
- Michael D Weston
- Department of Oral Biology, Creighton University School of Dentistry, California Plaza, Omaha, Nebraska 68178, USA
| | | |
Collapse
|