1
|
Fang R, Zeng Q, Tang X. Protective effect of Bletilla ochracea Schltr. against acetogenic gastric ulcer in rats based on non-targeted metabolomics. Front Med (Lausanne) 2024; 11:1447566. [PMID: 39669987 PMCID: PMC11634584 DOI: 10.3389/fmed.2024.1447566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
Background Gastric ulcer (GU), a globally prevalent disease, represents a significant burden to human health. Bletilla ochracea Schltr. (BOS), an herbal medicine, shows promising therapeutic potential in the treatment of chronic GU. Methods This study utilized a rat model of chronic gastric ulceration induced by acetic acid to evaluate the protective effects of Bletilla ochracea Schltr. (BOS) on gastric tissue through the analysis of gross morphological and histopathological changes. Non-targeted metabolomic techniques were employed to identify differential metabolites, followed by the use of metabolic analysis software to enrich the pathways associated with these metabolites, thereby revealing the potential mechanisms underlying the anti-gastric ulcer effects of BOS. Results The results suggest that the primary mechanism underlying BOS regulation of GU involves modulation of endogenous metabolites, including dimethylglycine, l-2,4-diaminobutyric acid, uridine propionic acid and l-asparagine. These diverse metabolites may have anti-inflammatory, antioxidant and reparative properties. In addition, KEGG enrichment analysis indicated potential anti-GU effects of BOS through diverse pathways such as energy metabolism, immune metabolism and amino acid metabolism. Conclusion The study demonstrates BOS protective effects on GU in rats, potentially through modulating key metabolites and pathways, highlighting its therapeutic potential and warranting further investigation for clinical applications.
Collapse
Affiliation(s)
- Rongze Fang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qi Zeng
- Acupuncture Rehabilitation Department, Cengong Hospital of Traditional Chinese Medicine, Kaili, Guizhou, China
| | - Xiusheng Tang
- Pharmacy Department, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Singh S, Chauhan K. Pharmacological approach using doxycycline and tocopherol in rotenone induced oxidative stress, neuroinflammation and Parkinson's like symptoms. Int J Neurosci 2024; 134:866-881. [PMID: 36453937 DOI: 10.1080/00207454.2022.2154670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a second most common neurodegenerative disorder characterized by the selective and progressive degeneration of dopaminergic neurons in substantia nigra pars compacta. Rotenone is a neurotoxin which selectively degenerate dopaminergic neurons in striatum, leading to cause PD like symptoms. METHOD Rotenone was administered at a dose of 1.5 mg/kg, i.p. from day 1 to day 40. Treatment with doxycycline (50 and 100 mg/kg, p.o), tocopherol (5 mg and 10 mg/kg, p.o) alone, doxycycline (50 mg/kg, p.o) in combination with tocopherol (10 mg/kg, p.o), and ropinirole (0.5 mg/kg, i.p.) was given for 40 days 1 h prior to administration of rotenone. All behavioral parameters were analyzed on weekly basis. On day 41, animals were sacrificed and the striatum region was isolated for neurotransmitters estimation (dopamine, serotonin, norepinephrine, GABA and glutamate), biochemical analysis (GSH, nitrite, LPO, mitochondrial complexes I and IV), inflammatory markers estimation (IL-6, IL-1β and TNF-α) and activity of MAO-A, MAO-B. RESULT Doxycycline and tocopherol in combination significantly attenuated behavioral, neurotransmitters and biochemical alterations induced by rotenone in experimental rats as compared to alone treatment with DOX and TOCO. Similarly, DOX and TOCO combination significantly reduced the level of inflammatory markers, prevented the biochemical changes, decreased MAO-A and MAO-B and improved complex-I, complex-IV, cAMP levels significantly. CONCLUSION The current study revealed that a combination of doxycycline with tocopherol contributed to the prevention of PD like symptoms in rats by antioxidant, anti-inflammatory, MAO inhibitory and neuromodulatory mechanisms.
Collapse
Affiliation(s)
- Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Kanupriya Chauhan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
3
|
Yan JT, Zhu YZ, Liang L, Feng XY. NE-activated β 2-AR/β-arrestin 2/Src pathway mediates duodenal hyperpermeability induced by water-immersion restraint stress. Am J Physiol Cell Physiol 2023; 324:C133-C141. [PMID: 36440855 DOI: 10.1152/ajpcell.00412.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stress causes a rapid spike in norepinephrine (NE) levels, leading to gastrointestinal dysfunction. NE reduces the expression of tight junctions (TJs) and aggravates intestinal mucosal damage, but the regulatory mechanism is still unclear. The present study aimed to investigate the molecular mechanisms underlying the regulation of stress-associated duodenal hyperpermeability by NE. Fluorescein isothiocyanate-dextran permeability, transepithelial resistance, immunofluorescence, Western blot, and high-performance liquid chromatography analysis were used in water-immersion restraint stress (WIRS) rats in this study. The results indicate that the duodenal permeability, degradation of TJs, mucosal NE, and β2-adrenergic receptor (β2-AR) increased in WIRS rats. The duodenal intracellular cyclic adenosine monophosphate levels were decreased, whereas the expression of β-arrestin 2 negatively regulates G protein-coupled receptors signaling, was significantly increased. Src recruitment was mediated by β-arrestin; thus, the levels of Src kinase activation were enhanced in WIRS rats. NE depletion, β2-AR, or β-arrestin 2 blockade significantly decreased mucosal permeability and increased TJs expression, suggesting improved mucosal barrier function. Moreover, NE induced an increased duodenal permeability of normal rats with activated β-arrestin 2/Src signaling, which was significantly inhibited by β2-AR blockade. The present findings demonstrate that the enhanced NE induced an increased duodenal permeability in WIRS rats through the activated β2-AR/β-arrestin 2/Src pathway. This study provides novel insight into the molecular mechanism underlying the regulation of NE on the duodenal mucosal barrier and a new target for treating duodenal ulcers induced by stress.
Collapse
Affiliation(s)
- Jing-Ting Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
| | - Yin-Zhe Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Liang Liang
- Grade 2020 Pediatrics, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Xiao-Yan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Huang M, Yang Z, Li Y, Lan H, Cyganek L, Yuecel G, Lang S, Bieback K, El-Battrawy I, Zhou X, Borggrefe M, Akin I. Dopamine D1/D5 Receptor Signaling Is Involved in Arrhythmogenesis in the Setting of Takotsubo Cardiomyopathy. Front Cardiovasc Med 2022; 8:777463. [PMID: 35187102 PMCID: PMC8855058 DOI: 10.3389/fcvm.2021.777463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/29/2021] [Indexed: 01/11/2023] Open
Abstract
Background Previous studies suggested involvement of non-ß-adrenoceptors in the pathogenesis of Takotsubo cardiomyopathy (TTC). This study was designed to explore possible roles and underlying mechanisms of dopamine D1/D5 receptor coupled signaling in arrhythmogenesis of TTC. Methods Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were challenged by toxic concentration of epinephrine (Epi, 0.5 mM for 1 h) for mimicking the catecholamine excess in setting of TTC. Specific receptor blockers and activators were used to unveil roles of D1/D5 receptors. Patch clamp, qPCR, and FACS analyses were performed in the study. Results High concentration Epi and two dopamine D1/D5 receptor agonists [(±)-SKF 38393 and fenoldopam] reduced the depolarization velocity and prolonged the duration of action potentials (APs) and caused arrhythmic events in iPSC-CMs, suggesting involvement of dopamine D1/D5 receptor signaling in arrhythmogenesis associated with QT interval prolongation in the setting of TTC. (±)-SKF 38393 and fenoldopam enhanced the reactive oxygen species (ROS)-production. H2O2 (100 μM) recapitulated the effects of (±)-SKF 38393 and fenoldopam on APs and a ROS-blocker N-acetylcysteine (NAC, 1 mM) abolished the effects, suggesting that the ROS-signaling is involved in the dopamine D1/D5 receptor actions. A NADPH oxidases blocker and a PKA- or PKC-blocker suppressed the effects of the dopamine receptor agonist, implying that PKA, NADPH oxidases and PKC participated in dopamine D1/D5 receptor signaling. The abnormal APs resulted from dopamine D1/D5 receptor activation-induced dysfunctions of ion channels including the Na+ and L-type Ca2+ and IKr channels. Conclusions Dopamine D1/D5 receptor signaling plays important roles for arrhythmogenesis of TTC. Dopamine D1/D5 receptor signaling in cardiomyocytes might be a potential target for treating arrhythmias in patients with TTC.
Collapse
Affiliation(s)
- Mengying Huang
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Zhen Yang
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Yingrui Li
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Huan Lan
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Lukas Cyganek
- DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Goekhan Yuecel
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Mannheim, Germany
| | - Siegfried Lang
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Mannheim, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Ibrahim El-Battrawy
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Mannheim, Germany
| | - Xiaobo Zhou
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Mannheim, Germany
- *Correspondence: Xiaobo Zhou
| | - Martin Borggrefe
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Mannheim, Germany
| | - Ibrahim Akin
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Mannheim, Germany
| |
Collapse
|
5
|
Zhang XL, Zhang XH, Yu X, Zheng LF, Feng XY, Liu CZ, Quan ZS, Zhang Y, Zhu JX. Enhanced Contractive Tension and Upregulated Muscarinic Receptor 2/3 in Colorectum Contribute to Constipation in 6-Hydroxydopamine-Induced Parkinson's Disease Rats. Front Aging Neurosci 2022; 13:770841. [PMID: 35002677 PMCID: PMC8733788 DOI: 10.3389/fnagi.2021.770841] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022] Open
Abstract
Constipation and defecatory dysfunctions are frequent symptoms in patients with Parkinson’s disease (PD). The pathology of Lewy bodies in colonic and rectal cholinergic neurons suggests that cholinergic pathways are involved in colorectal dysmotility in PD. However, the underlying mechanism is unclear. The aim of the present study is to examine the effect of central dopaminergic denervation in rats, induced by injection 6-hydroxydopamine into the bilateral substania nigra (6-OHDA rats), on colorectal contractive activity, content of acetylcholine (ACh), vasoactive intestinal peptide (VIP) and expression of neural nitric oxide synthase (nNOS) and muscarinic receptor (MR). Strain gauge force transducers combined with electrical field stimulation (EFS), gut transit time, immunohistochemistry, ELISA, western blot and ultraperformance liquid chromatography tandem mass spectrometry were used in this study. The 6-OHDA rats exhibited outlet obstruction constipation characterized by prolonged transit time, enhanced contractive tension and fecal retention in colorectum. Pretreatment with tetrodotoxin significantly increased the colorectal motility. EFS-induced cholinergic contractions were diminished in the colorectum. Bethanechol chloride promoted colorectal motility in a dose-dependent manner, and much stronger reactivity of bethanechol chloride was observed in 6-OHDA rats. The ACh, VIP and protein expression of nNOS was decreased, but M2R and M3R were notably upregulated in colorectal muscularis externa. Moreover, the number of cholinergic neurons was reduced in sacral parasympathetic nucleus (SPN) of 6-OHDA rats. In conclusion, central nigrostriatal dopaminergic denervation is associated with decreased cholinergic neurons in SPN, decreased ACh, VIP content, and nNOS expression and upregulated M2R and M3R in colorectum, resulting in colorectal dysmotility, which contributes to outlet obstruction constipation. The study provides new insights into the mechanism of constipation and potential therapeutic targets for constipation in PD patients.
Collapse
Affiliation(s)
- Xiao-Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao-Hui Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Artificial Liver Treatment Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiao Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Li-Fei Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao-Yan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chen-Zhe Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhu-Sheng Quan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yue Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jin-Xia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Feng XY, Xue H, Guo ZH, Yan JT, Liu S, Zhu JX. Dopamine and Gastrointestinal Mucosa Function. DOPAMINE IN THE GUT 2021:87-131. [DOI: 10.1007/978-981-33-6586-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
7
|
Li Y, Zhang Y, Zhang XL, Feng XY, Liu CZ, Zhang XN, Quan ZS, Yan JT, Zhu JX. Dopamine promotes colonic mucus secretion through dopamine D 5 receptor in rats. Am J Physiol Cell Physiol 2019; 316:C393-C403. [PMID: 30624983 DOI: 10.1152/ajpcell.00261.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dopamine regulates gastrointestinal mucosal barrier. Mucus plays important roles in the protection of intestinal mucosa. Here, the regulatory effect of dopamine on rat colonic mucus secretion was investigated. RT-PCR, immunofluorescence, Periodic Acid-Schiff reagent assay, Alcian blue-Periodic Acid-Schiff staining, and enzyme-linked immunosorbent assay were used to observe the expression of dopamine receptor and the direct effect of dopamine on the colonic mucus. Mice injected intraperitoneally with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) destroying enteric dopamine (DA) neurons, rats microinjected with 6-hydroxydopamine (6-OHDA) into the bilateral substantia nigra damaging central dopaminergic neurons, and dopamine D5 receptor-downregulated transgenic mice were used to detect the effect of endogenous enteric dopamine or dopamine receptors on distal colonic mucus. Our results indicated that D5 immunoreactivity was widely distributed on the colonic goblet cells. Dopamine dose-dependently increased rat distal colonic mucus secretion in vitro. D1-like receptor antagonist SCH23390 inhibited dopamine (1 μΜ)-induced distal colonic mucus secretion. D1-like receptor agonist SKF38393 promoted mucin 2 (MUC2) secretion and increased the intracellular cAMP level of colonic mucosa. D5 receptor-downregulated transgenic mice showed a decreased colonic MUC2 content. MPTP-treated mice exhibited lower colonic dopamine content and decreased colonic mucus content. 6-OHDA rats had an increase in the dopamine content in colonic mucosa but decreases in the protein levels of D1 and D5 receptors and MUC2 content in the colonic mucosa. These findings reveal that dopamine is able to promote distal colonic mucus secretion through the D5 receptor, which provides important evidence to better understand the possible role of dopamine in the colonic mucosal barrier.
Collapse
Affiliation(s)
- Yun Li
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University , Beijing , China.,Department of Immunology, School of Basic Medical Science, Capital Medical University , Beijing , China
| | - Yue Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University , Beijing , China
| | - Xiao-Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University , Beijing , China
| | - Xiao-Yan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University , Beijing , China
| | - Chen-Zhe Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University , Beijing , China
| | - Xiu-Neng Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University , Beijing , China
| | - Zhu-Sheng Quan
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University , Beijing , China
| | - Jing-Ting Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University , Beijing , China
| | - Jin-Xia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University , Beijing , China
| |
Collapse
|
8
|
Liu CZ, Zhang XL, Zhou L, Wang T, Quan ZS, Zhang Y, Li J, Li GW, Zheng LF, Li LS, Zhu JX. Rasagiline, an inhibitor of MAO-B, decreases colonic motility through elevating colonic dopamine content. Neurogastroenterol Motil 2018; 30:e13390. [PMID: 29956417 DOI: 10.1111/nmo.13390] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/08/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Dopamine (DA) is a negative modulator of gut motility. Monoamine oxidase-B (MAO-B) is an important metabolic enzyme degrading DA. Rasagiline, an irreversible MAO-B inhibitor, is used to treat Parkinson's disease because of its neuroprotective effect and increasing central DA. However, it is unclear whether MAO-B exists in the colon and rasagiline increases colonic DA, thereby affecting colonic motility. METHODS Immunohistochemistry, western blotting, enzyme activity assay, colonic motility recording, gut transit test, and high-performance liquid chromatography-electrochemical detection were employed in this study. KEY RESULTS Monoamine oxidase-B was distributed in the colonic muscular layers including neurons and glias of rat and human. When oral treatment of rats with rasagiline for 4 weeks, in vitro colonic motility was significantly reduced, but it was greatly reversed by SCH-23390, an antagonist of DA D1 receptor. The rasagiline-treated rats also manifested decreased MAO-B activity and increased DA content in the colonic muscular layer, but no alterations were detected in the protein expressions of D1 and D2 receptors, and MAO-A and MAO-B, as well as in the content of 5-hydroxytryptamine and noradrenaline. Moreover, acute administration of rasagiline did not affect the colonic motility in vitro and the colonic DA level in rats, although MAO-B activity was significantly inhibited. CONCLUSIONS & INFERENCES Monoamine oxidase-B is abundant in the colonic muscular layer including myenteric plexus of rat and human. Long-term administration of rasagiline can increase colonic DA thereby inhibiting colonic motility, suggesting that colonic MAO-B could be a potential drug target for colonic dysmotility.
Collapse
Affiliation(s)
- C-Z Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - X-L Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - L Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - T Wang
- Xingtai Medical College, Xingtai, China
| | - Z-S Quan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Y Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - J Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - G-W Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - L-F Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - L-S Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - J-X Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Catecholamine-Directed Epithelial Cell Interactions with Bacteria in the Intestinal Mucosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:79-99. [DOI: 10.1007/978-3-319-20215-0_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Levandis G, Balestra B, Siani F, Rizzo V, Ghezzi C, Ambrosi G, Cerri S, Bonizzi A, Vicini R, Vairetti M, Ferrigno A, Pastoris O, Blandini F. Response of colonic motility to dopaminergic stimulation is subverted in rats with nigrostriatal lesion: relevance to gastrointestinal dysfunctions in Parkinson's disease. Neurogastroenterol Motil 2015; 27:1783-95. [PMID: 26433214 DOI: 10.1111/nmo.12691] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/25/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Constipation is extremely common in patients with Parkinson's disease (PD) and has been described in PD animal models. In this study, we investigated whether a PD-like degeneration of dopaminergic neurons of the substantia nigra can influence peristalsis in colonic segments of rats by impacting on enteric dopaminergic transmission. METHODS Male, Sprague-Dawley rats received a unilateral injection of neurotoxin 6-hydroxydopamine (6-OHDA), or saline, into the medial-forebrain-bundle. Peristaltic activity was recorded in isolated colonic segments, in baseline conditions and following exposure to combinations of D2 receptor (DRD2) agonist sumanirole and antagonist L-741626. Dopamine levels and DRD2 expression were assessed in the ileum and colon of animals. We also investigated the involvement of the dorsal motor nucleus of the vagus (DMV) - a potential relay station between central dopaminergic denervation and gastrointestinal (GI) dysfunction - by analyzing cytochrome c oxidase activity and FosB/DeltaFosB expression in DMV neurons. KEY RESULTS We observed profound alterations in the response of colonic segments of 6-OHDA lesioned animals to DRD2 stimulation. In fact, the inhibition of colonic peristalsis elicited by sumanirole in control rats was absent in 6-OHDA-lesioned animals. These animals also showed reduced DRD2 expression in the colon, along with elevation of dopamine levels. No significant changes were detected within the DMV. CONCLUSIONS & INFERENCES Our results demonstrate that selective lesion of the nigrostriatal dopaminergic pathway subverts the physiological response of the colon to dopaminergic stimulation, opening new perspectives in the comprehension and treatment of GI dysfunctions associated with PD.
Collapse
Affiliation(s)
- G Levandis
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, "C. Mondino", National Neurological Institute, Pavia, Italy
| | - B Balestra
- Dept. of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - F Siani
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, "C. Mondino", National Neurological Institute, Pavia, Italy
| | - V Rizzo
- Department of Molecular Medicine, IRCCS San Matteo Foundation, University of Pavia, Pavia, Italy
| | - C Ghezzi
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, "C. Mondino", National Neurological Institute, Pavia, Italy
| | - G Ambrosi
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, "C. Mondino", National Neurological Institute, Pavia, Italy
| | - S Cerri
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, "C. Mondino", National Neurological Institute, Pavia, Italy
| | - A Bonizzi
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, "C. Mondino", National Neurological Institute, Pavia, Italy
| | - R Vicini
- Dept. of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - M Vairetti
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - A Ferrigno
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - O Pastoris
- Dept. of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - F Blandini
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, "C. Mondino", National Neurological Institute, Pavia, Italy
| |
Collapse
|
11
|
Zhang X, Li Y, Liu C, Fan R, Wang P, Zheng L, Hong F, Feng X, Zhang Y, Li L, Zhu J. Alteration of enteric monoamines with monoamine receptors and colonic dysmotility in 6-hydroxydopamine-induced Parkinson's disease rats. Transl Res 2015; 166:152-62. [PMID: 25766133 DOI: 10.1016/j.trsl.2015.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/26/2015] [Accepted: 02/12/2015] [Indexed: 11/30/2022]
Abstract
Constipation is common in Parkinson's disease (PD), in which monoamines (dopamine [DA], norepinephrine [NE], and 5-hydroxytryptamine [5-HT]) play an important role. Rats microinjected with 6-hydroxydopamine (6-OHDA) into the bilateral substantia nigra (SN) exhibit constipation, but the role of monoamines and their receptors is not clear. In the present study, colonic motility, monoamine content, and the expression of monoamine receptors were examined using strain gauge force transducers, ultraperformance liquid chromatography tandem mass spectrometry, immunofluorescence, and Western blot. The 6-OHDA rats displayed a significant reduction in dopaminergic neurons in the SN and a decreased time on rota-rod test and a marked decrease in daily fecal production and fecal water content. The amplitude of colonic spontaneous contraction was obviously decreased in 6-OHDA rats. Blocking D1-like receptor and β3-adrenoceptor (β3-AR) significantly reduced the inhibition of DA and NE on the colonic motility, respectively, whereas the 5-HT and 5-HT4 receptor agonists promoted the colonic motility. Moreover, DA content was increased in the colonic muscularis externa of 6-OHDA rats. The protein expression of β3-ARs was notably upregulated, but 5-HT4 receptors were significantly decreased in the colonic muscularis externa of 6-OHDA rats. We conclude that enhanced DA and β3-ARs and decreased 5-HT4 receptors may be contributed to the colonic dysmotility and constipation observed in 6-OHDA rats.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Yun Li
- Department of Immunology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Chenzhe Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Ruifang Fan
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Ping Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Lifei Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Feng Hong
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Xiaoyan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Yue Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Lisheng Li
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China.
| | - Jinxia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Zhang X, Li Y, Zhang X, Duan Z, Zhu J. Regulation of transepithelial ion transport in the rat late distal colon by the sympathetic nervous system. Physiol Res 2014; 64:103-10. [PMID: 25194126 DOI: 10.33549/physiolres.932795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The colorectum (late distal colon) is innervated by the sympathetic nervous system, and many colorectal diseases are related to disorders of the sympathetic nervous system. The sympathetic regulation of colorectal ion transport is rarely reported. The present study aims to investigate the effect of norepinephrine (NE) in the normal and catecholamine-depleted condition to clarify the regulation of the sympathetic adrenergic system in ion transport in the rat colorectum. NE-induced ion transport in the rats colorectum was measured by short-circuit current (I(sc)) recording; the expression of beta-adrenoceptors and NE transporter (NET) were quantified by real-time PCR, and western blotting. When the endogenous catecholamine was depleted by reserpine, the baseline I(sc) in the colorectum was increased significantly comparing to controls. NE evoked downward deltaI(sc) in colorectum of treated rats was 1.8-fold of controls. The expression of beta(2)-adrenoceptor protein in the colorectal mucosa was greater than the control, though the mRNA level was reduced. However, NET expression was significantly lower in catecholamine-depleted rats compared to the controls. In conclusion, the sympathetic nervous system plays an important role in regulating basal ion transport in the colorectum. Disorders of sympathetic neurotransmitters result in abnormal ion transport, beta-adrenoceptor and NET are involved in the process.
Collapse
Affiliation(s)
- X Zhang
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, China, Key Laboratory for Medical Tissue Regeneration of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China. or/and
| | | | | | | | | |
Collapse
|
13
|
Song J, Zheng L, Zhang X, Feng X, Fan R, Sun L, Hong F, Zhang Y, Zhu J. Upregulation of β1-adrenoceptors is involved in the formation of gastric dysmotility in the 6-hydroxydopamine rat model of Parkinson's disease. Transl Res 2014; 164:22-31. [PMID: 24467967 DOI: 10.1016/j.trsl.2014.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 01/01/2014] [Accepted: 01/03/2014] [Indexed: 11/16/2022]
Abstract
Gastrointestinal dysmotility is one of the nonmotor symptoms of Parkinson's disease (PD). Gastroparesis and upregulated β-adrenoceptors (β-ARs) have been reported in rats with bilateral microinjection of 6-hydroxydopamine (6-OHDA) in the substantia nigra, but the underlying mechanism is unclear. The aim of the current study is to investigate the role of β-ARs in gastroparesis in 6-OHDA rats. Gastric motility was studied through strain gauge measurement. Immunofluorescence, real-time reverse transcription-polymerase chain reaction and Western blotting were performed to examine the expression of β-ARs. Norepinephrine (NE) inhibited gastric motility in a dose-dependent fashion in both control and 6-OHDA rats, but much stronger adrenergic reactivity was observed in the 6-OHDA rats. The inhibition of gastric motility by NE in both control and 6-OHDA rats was not affected by tetrodotoxin, a neural sodium channel blocker. Blocking β1-AR or β2-AR did not affect the inhibition of strip contraction by NE in control rats, but β1-AR blockage obviously enhanced the half maximal inhibitory concentration value of NE in 6-OHDA rats. Selective inhibition of β3-AR blocked the effect of NE significantly in both control and 6-OHDA rats. The protein expression of β1-AR, but not β2-AR and β3-AR in gastric muscularis externa was increased significantly in 6-OHDA rats. In conclusion, β3-AR involves the regulation of gastric motility in control rats, whereas the upregulation of β1-AR is responsible for enhanced NE reactivity in 6-OHDA rats and therefore is involved in the formation of gastroparesis. The effect of both β1-AR and β3-AR on gastric motility is independent of the enteric nervous system.
Collapse
Affiliation(s)
- Jin Song
- Gastrointestinal Research Group, Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lifei Zheng
- Gastrointestinal Research Group, Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoli Zhang
- Gastrointestinal Research Group, Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoyan Feng
- Gastrointestinal Research Group, Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ruifang Fan
- Gastrointestinal Research Group, Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lu Sun
- Gastrointestinal Research Group, Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Feng Hong
- Gastrointestinal Research Group, Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yue Zhang
- Gastrointestinal Research Group, Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jinxia Zhu
- Gastrointestinal Research Group, Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Distinctive expression and cellular distribution of dopamine receptors in the pancreatic islets of rats. Cell Tissue Res 2014; 357:597-606. [DOI: 10.1007/s00441-014-1894-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/10/2014] [Indexed: 11/27/2022]
|
15
|
Feng XY, Li Y, Li LS, Li XF, Zheng LF, Zhang XL, Fan RF, Song J, Hong F, Zhang Y, Zhu JX. Dopamine D1 receptors mediate dopamine-induced duodenal epithelial ion transport in rats. Transl Res 2013; 161:486-94. [PMID: 23276732 DOI: 10.1016/j.trsl.2012.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/01/2012] [Accepted: 12/04/2012] [Indexed: 02/08/2023]
Abstract
Dopamine (DA) is synthesized in gastrointestinal epithelial cells and performs important regulatory effects on the duodenal mucosa. However, the underlying mechanism remains largely unknown. The present study investigated the effect of DA on the duodenal epithelial ion transport in rats by means of short-circuit current (ISC), real-time pH titration, enzyme-linked immunosorbent assay, and immunohistochemistry. The results indicate that basolateral, but not apical, application of DA induced a concentration-dependent ISC downward deflection with an apparent IC50 of 5.34 μmol/L. Basolateral application of dopaminergic receptor D1 (D1) antagonist, SCH-23390, inhibited DA-induced change in ISC (△ISC) in a dose-dependent manner. D1 agonist, SKF38393, mimicked the effect of DA on the ISC. The clear immunoreactivity of D1 subtype D5 (D1b) was at the both apical and basolatoral sides of Brunner's glands and intestinal crypts. Basolateral pretreatment with adenylate cyclase inhibitor, MDL12330A, significantly inhibited DA- and forskolin-induced △ISC. DA and SKF38393 increased the level of intracellular cyclic adenosine monophosphate (cAMP) from 1.55 ± 0.11 to 2.07 ± 0.11 and 5.91 ± 0.25 pmol/L·mg(-1), respectively. Furthermore, the serosal DA-induced △ISC was remarkably inhibited by apical administration of K(+) channel blockers, Ba(2+) and tetraethylammonium, but not by Cl(-) channel blockers. Serosal DA and D1 agonist did not affect duodenal HCO3(-) secretion. In conclusion, the present results demonstrate that serosal DA is able to promote rat duodenal epithelial K(+) secretion, not HCO3(-) secretion through D1-mediated and cAMP-dependent pathway. The study provides a new insight in the modulation of DA on the ion transport of duodenal epithelia in rats.
Collapse
Affiliation(s)
- Xiao-Yan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cai QQ, Zheng LF, Fan RF, Lian H, Zhou L, Song HY, Tang YY, Feng XY, Guo ZK, Wang ZY, Zhu JX. Distribution of dopamine receptors D1- and D2-immunoreactive neurons in the dorsal motor nucleus of vagus in rats. Auton Neurosci 2013; 176:48-53. [PMID: 23403122 DOI: 10.1016/j.autneu.2013.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/10/2013] [Accepted: 01/13/2013] [Indexed: 02/06/2023]
Abstract
The dorsal motor nucleus of vagus (DMV) plays an important role in the regulation of gastrointestinal function. Dopamine (DA) exerts potent neuromodulatory effects on the motoneurons in the DMV via dopamine receptors (DRs). However, the distribution of DRs and their neurochemical phenotypes in the DMV are unclear. In the present study, the distribution of DRs D1- and D2-immunoreactive (IR) neurons and their neurochemical phenotypes in the DMV of rats were investigated using a double-labeling immunofluorescence technique combined with confocal microscopy. The results indicated that a considerable quantity of D1 and D2 was expressed throughout the DMV. A large amount of choline acetyltransferase (ChAT)-IR and a few tyrosine hydroxylase (TH)-IR neurons were observed in the DMV. Nearly all of the neurons were also D1-IR and D2-IR. In conclusion, the present study demonstrates the wide distribution of D1 and D2 in the cholinergic and catecholaminergic neurons in the DMV of rats. The DRs might play an important role in the regulation of DA on the activity of cholinergic and catecholaminergic neurons in the DMV.
Collapse
Affiliation(s)
- Qing-Qing Cai
- Key Laboratory for Medical Tissue Regeneration of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Franklin JM, Carrasco GA. Cannabinoid-induced enhanced interaction and protein levels of serotonin 5-HT(2A) and dopamine D₂ receptors in rat prefrontal cortex. J Psychopharmacol 2012; 26:1333-47. [PMID: 22791651 PMCID: PMC3746962 DOI: 10.1177/0269881112450786] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent evidence suggests that non-selective cannabinoid receptor agonists may regulate serotonin 2A (5-HT(2A)) receptor neurotransmission in brain. The molecular mechanisms of this regulation are unknown, but could involve cannabinoid-induced enhanced interaction between 5-HT(2A) and dopamine D2 (D₂) receptors. Here, we present experimental evidence that Sprague-Dawley rats treated with a non-selective cannabinoid receptor agonist (CP55,940, 50 µg/kg, 7 days, i.p.) showed enhanced co-immunoprecipitation of 5-HT(2A) and D₂ receptors and enhanced membrane-associated expression of D₂ and 5-HT(2A) receptors in prefrontal cortex (PFCx). Furthermore, 5-HT(2A) receptor mRNA levels were increased in PFCx, suggesting a cannabinoid-induced upregulation of 5-HT(2A) receptors. To date, two cannabinoids receptors have been found in brain, CB1 and CB2 receptors. We used selective cannabinoid agonists in a neuronal cell line to study mechanisms that could mediate this 5-HT(2A) receptor upregulation. We found that selective CB2 receptor agonists upregulate 5-HT(2A) receptors by a mechanism that seems to involve activation of Gα(i) G-proteins, ERK1/2, and AP-1 transcription factor. We hypothesize that the enhanced cannabinoid-induced interaction between 5-HT(2A) and D₂ receptors and in 5-HT(2A) and D₂ receptors protein levels in the PFCx might provide a molecular mechanism by which activation of cannabinoid receptors might be contribute to the pathophysiology of some cognitive and mood disorders.
Collapse
Affiliation(s)
| | - Gonzalo A. Carrasco
- Correspondence: Gonzalo A. Carrasco, PhD, Department of Pharmacology and Toxicology, University of Kansas, School of Pharmacy, 1251 Wescoe Hall Drive, 3048B Malott Hall, Lawrence, KS 66045, Phone: 785-864-1974, Fax: 785-864-5219,
| |
Collapse
|
18
|
Cellular localization of dopamine receptors in the gastric mucosa of rats. Biochem Biophys Res Commun 2011; 417:197-203. [PMID: 22155235 DOI: 10.1016/j.bbrc.2011.11.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/16/2011] [Indexed: 11/23/2022]
Abstract
Dopamine (DA) plays a critical role in the protection of gastric mucosa and is mediated through corresponding receptors. However, the details of the expression of DA receptors (D1-D5) in the gastric mucosa are lacking. The present study investigated the expression and cellular localization of DA receptors in rat gastric mucosa by means of real-time PCR and immunofluorescent techniques. The results indicated that the mRNA expressions of all five subtypes of DA receptors were found in the gastric mucosa, among which the D2 level was the highest. The immunopositive cells of D1-D3 and D5 were primarily localized to the basilar gland of the epithelial layer in gastric corpus, but D4 immunoreactivity (IR) was only observed in the enteric nerve plexus. The D1, D2, and D5 IR were found in pepsin C-IR cells except D3. No IR of any DA receptor was detected in the H(+)/K(+)-ATPase- or mucin 6-IR cells. In conclusion, for the first time, this study demonstrates the predominant distribution of DA receptors in the chief cells, not the parietal and mucous neck cells, in rat gastric mucosa, thus suggesting that DA may not directly regulate the function of parietal cells or mucous neck cells, but it may modulate the function of chief cells through the D1, D2, and D5 receptors.
Collapse
|
19
|
Meana C, Bordallo J, Bordallo C, Suárez L, Cantabrana B, Sánchez M. Functional effects of polyamines via activation of human β1- and β2-adrenoceptors stably expressed in CHO cells. Pharmacol Rep 2011; 62:696-706. [PMID: 20885010 DOI: 10.1016/s1734-1140(10)70327-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 01/19/2010] [Indexed: 11/24/2022]
Abstract
Polyamines mediate acute metabolic effects and cardiac hypertrophy associated with β-adrenoceptor stimulation. They may also modulate β-adrenoceptors, causing functional responses in rat atria and tracheal smooth muscle. The aim of this study was to determine whether polyamines interact with human β(1)- and β(2)-adrenoceptors and the functional consequences of such an interaction. Chinese hamster ovary (CHO) cells stably transfected with human β(1)- and β(2)-adrenoceptors were used to evaluate the effect of polyamines binding to β-adrenoceptors, cAMP production and morphological changes, which were pharmacologically validated by investigating the effects of the β-adrenoceptor agonists, isoproterenol and salbutamol. Polyamines interacted with human β(1)- and β(2)-adrenoceptors, as shown by the displacement of [(125)I]iodocyanopindolol in the binding assay. Putrescine showed higher affinity to β(1)- than β(2)-adrenoceptors. Spermidine and spermine produced partial displacement (approximately 50%) and, at the highest concentration, the effect was reversed. Putrescine and spermine acutely increased cAMP and, in a serum-free medium, induced a stellate-like form in cells, which was inhibited by propranolol, a β-blocker. A 10 to 15 h incubation with putrescine produced a spindle-like form and spatial organization via β-adrenoceptor activation, evidenced by the antagonizing effect by propranolol and lack of effect in wild-type CHO cells. Additionally, it decreased cell proliferation independently of β-adrenoceptor activation. Spermine caused cell death via fetal bovine serum-dependent and -independent mechanisms. The results suggest that putrescine may act as a non-selective and low affinity agonist of human β(1)- and β(2)-adrenoceptors, eliciting morphological changes. These findings may be of importance in physiology and in diseases involving β-adrenoceptor functionality.
Collapse
Affiliation(s)
- Clara Meana
- Farmacología, Departamento de Medicina, Universidad de Oviedo, Julián Clavería 6, Oviedo 33006, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Zhang XH, Ji T, Guo H, Liu SM, Li Y, Zheng LF, Zhang Y, Zhang XF, Duan DP, Zhu JX. Expression and activation of β-adrenoceptors in the colorectal mucosa of rat and human. Neurogastroenterol Motil 2010; 22:e325-34. [PMID: 20879995 DOI: 10.1111/j.1365-2982.2010.01598.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The functions of the distal colon are regulated by local and extrinsic neural pathways. In previous studies, we have found that dopamine (DA) and norepinephrine (NE) could evoke colonic ion transport by activating β-adrenoceptors. The present study aims to investigate the segmental differences in expression and activation of β-adrenoceptors in the distal colon in physiological and pathophysiological conditions. METHODS Real-time PCR, immunofluorescence, and Western blotting were used to detect the expression of β-adrenoceptors in the rat and human distal colon. Short-circuit current measurements (Isc) were used to assess the role of β-adrenoceptors in ion transport. KEY RESULTS DA and NE caused greater suppression of baseline Isc in distal colon adjacent to the rectum than in segments further away from the anus. These responses were inhibited by selective antagonists of β₁- and β₂-adrenoceptors, but not β₃-adrenoceptor. The expression levels of β₁- and β₂-adrenoceptors in colonic mucosa were higher in colorectum than the regions away from the anus of rats and humans. In wrap-restraint stress (2 h), DA-, NE-induced ΔIsc and the expression of β-adrenoceptors in the colorectum were significantly reduced. However, when endogenous catecholamines were depleted by 6-hydroxydopamine (75 mg kg(-1), i.p., 3 days), DA-, NE-induced ΔIsc as well as the expression of β-adrenoceptors were significantly enhanced in the rat colorectum but not in more proximal regions of the distal colon. CONCLUSIONS & INFERENCES β₁- and β₂-adrenoceptors are predominantly expressed in the colorectal mucosa. Perturbation of endogenous catecholamine levels influences the expression and activation of β-adrenoceptors in the colorectal region.
Collapse
Affiliation(s)
- X H Zhang
- Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lyte M, Vulchanova L, Brown DR. Stress at the intestinal surface: catecholamines and mucosa-bacteria interactions. Cell Tissue Res 2010; 343:23-32. [PMID: 20941511 DOI: 10.1007/s00441-010-1050-0] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 09/01/2010] [Indexed: 02/08/2023]
Abstract
Psychological stress has profound effects on gastrointestinal function, and investigations over the past few decades have examined the mechanisms by which neural and hormonal stress mediators act to modulate gut motility, epithelial barrier function and inflammatory states. With its cellular diversity and large commensal bacterial population, the intestinal mucosa and its overlying mucous environment constitute a highly interactive environment for eukaryotic host cells and prokaryotic bacteria. The elaboration of stress mediators, particularly norepinephrine, at this interface influences host cells engaged in mucosal protection and the bacteria which populate the mucosal surface and gut lumen. This review will address growing evidence that norepinephrine and, in some cases, other mediators of the adaptation to stress modulate mucosal interactions with enteric bacteria. Stress-mediated changes in this delicate interplay may shift the microbial colonization patterns on the mucosal surface and alter the susceptibility of the host to infection. Moreover, changes in host-microbe interactions in the digestive tract may also influence ongoing neural activity in stress-responsive brain areas.
Collapse
Affiliation(s)
- Mark Lyte
- Department of Pharmacy Practice, Texas Tech University Health Sciences Center, 3601 4th Street, MS 8162, Lubbock, TX 79430-8162, USA.
| | | | | |
Collapse
|
22
|
Lammers WJEP, Karam SM. Emerging excellence in neurogastroenterology and motility research in the Arabian Peninsula. Neurogastroenterol Motil 2010; 22:946-949. [PMID: 20701686 DOI: 10.1111/j.1365-2982.2010.01579.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- W J E P Lammers
- Department of Physiology and Faculty of Medicine & Health Sciences, UAE University, Al Ain, United Arab Emirates.
| | | |
Collapse
|
23
|
Singh AK, Riederer B, Krabbenhöft A, Rausch B, Bonhagen J, Lehmann U, de Jonge HR, Donowitz M, Yun C, Weinman EJ, Kocher O, Hogema BM, Seidler U. Differential roles of NHERF1, NHERF2, and PDZK1 in regulating CFTR-mediated intestinal anion secretion in mice. J Clin Invest 2009; 119:540-50. [PMID: 19221439 PMCID: PMC2648694 DOI: 10.1172/jci35541] [Citation(s) in RCA: 288] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 01/07/2009] [Indexed: 01/29/2023] Open
Abstract
The epithelial anion channel CFTR interacts with multiple PDZ domain-containing proteins. Heterologous expression studies have demonstrated that the Na+/H+ exchanger regulatory factors, NHERF1, NHERF2, and PDZK1 (NHERF3), modulate CFTR membrane retention, conductivity, and interactions with other transporters. To study their biological roles in vivo, we investigated CFTR-dependent duodenal HCO3- secretion in mouse models of Nherf1, Nherf2, and Pdzk1 loss of function. We found that Nherf1 ablation strongly reduced basal as well as forskolin-stimulated (FSK-stimulated) HCO3- secretory rates and blocked beta2-adrenergic receptor (beta2-AR) stimulation. Conversely, Nherf2-/- mice displayed augmented FSK-stimulated HCO3- secretion. Furthermore, although lysophosphatidic acid (LPA) inhibited FSK-stimulated HCO3- secretion in WT mice, this effect was lost in Nherf2-/- mice. Pdzk1 ablation reduced basal, but not FSK-stimulated, HCO3- secretion. In addition, laser microdissection and quantitative PCR revealed that the beta2-AR and the type 2 LPA receptor were expressed together with CFTR in duodenal crypts and that colocalization of the beta2-AR and CFTR was reduced in the Nherf1-/- mice. These data suggest that the NHERF proteins differentially modulate duodenal HCO3- secretion: while NHERF1 is an obligatory linker for beta2-AR stimulation of CFTR, NHERF2 confers inhibitory signals by coupling the LPA receptor to CFTR.
Collapse
Affiliation(s)
- Anurag Kumar Singh
- Department of Gastroenterology, Hepatology, and Endocrinology, and
Department of Pathology, Hannover Medical School, Hannover, Germany.
Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Medicine and Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Brigitte Riederer
- Department of Gastroenterology, Hepatology, and Endocrinology, and
Department of Pathology, Hannover Medical School, Hannover, Germany.
Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Medicine and Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Anja Krabbenhöft
- Department of Gastroenterology, Hepatology, and Endocrinology, and
Department of Pathology, Hannover Medical School, Hannover, Germany.
Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Medicine and Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Brigitte Rausch
- Department of Gastroenterology, Hepatology, and Endocrinology, and
Department of Pathology, Hannover Medical School, Hannover, Germany.
Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Medicine and Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Janina Bonhagen
- Department of Gastroenterology, Hepatology, and Endocrinology, and
Department of Pathology, Hannover Medical School, Hannover, Germany.
Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Medicine and Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ulrich Lehmann
- Department of Gastroenterology, Hepatology, and Endocrinology, and
Department of Pathology, Hannover Medical School, Hannover, Germany.
Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Medicine and Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Hugo R. de Jonge
- Department of Gastroenterology, Hepatology, and Endocrinology, and
Department of Pathology, Hannover Medical School, Hannover, Germany.
Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Medicine and Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark Donowitz
- Department of Gastroenterology, Hepatology, and Endocrinology, and
Department of Pathology, Hannover Medical School, Hannover, Germany.
Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Medicine and Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Chris Yun
- Department of Gastroenterology, Hepatology, and Endocrinology, and
Department of Pathology, Hannover Medical School, Hannover, Germany.
Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Medicine and Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Edward J. Weinman
- Department of Gastroenterology, Hepatology, and Endocrinology, and
Department of Pathology, Hannover Medical School, Hannover, Germany.
Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Medicine and Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Olivier Kocher
- Department of Gastroenterology, Hepatology, and Endocrinology, and
Department of Pathology, Hannover Medical School, Hannover, Germany.
Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Medicine and Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Boris M. Hogema
- Department of Gastroenterology, Hepatology, and Endocrinology, and
Department of Pathology, Hannover Medical School, Hannover, Germany.
Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Medicine and Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology, and Endocrinology, and
Department of Pathology, Hannover Medical School, Hannover, Germany.
Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Medicine and Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|