1
|
Zhang D, Zhu Z, Wen K, Zhang S, Liu J. Netrin‑4 promotes VE‑cadherin expression in endothelial cells through the NF‑κB signaling pathway. Exp Ther Med 2024; 28:351. [PMID: 39071904 PMCID: PMC11273250 DOI: 10.3892/etm.2024.12640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024] Open
Abstract
Netrin-4 (NTN4), a secreted protein from the Netrin family, has been recognized for its role in vascular development, endothelial homeostasis and angiogenesis. Vascular endothelial (VE)-cadherin is a specialized adhesion protein located at the intercellular junctions of endothelial cells (ECs), and regulates migration, proliferation and permeability. To date, the relationship between NTN4 and VE-cadherin in ECs remains unclear. In the present study, human umbilical vein ECs (HUVECs) were transfected with NTN4 overexpression plasmid, resulting in NTN4 overexpression. Reverse transcription-quantitative PCR and western blotting were used to determine gene and protein expression. CCK8, wound healing, and Transwell assays were performed to evaluate cell proliferation, migration and permeability. NTN4 overexpression decreased HUVEC viability and migration. In addition, NTN4 overexpression increased the expression of VE-cadherin and decreased the permeability of HUVECs. Subsequent studies showed that NTN4 overexpression increased the NF-κB protein level and decreased IκB-α protein expression in HUVECs. In HUVECs treated with NF-κB inhibitor pyrrolidine dithiocarbamate, the expression of VE-cadherin failed to increase with NTN4 overexpression. Taken together, the results indicated that NTN4 overexpression increased VE-cadherin expression through the activation of the NF-κB signaling pathway in HUVECs. The present findings revealed a novel regulatory mechanism for VE-cadherin expression and suggested a novel avenue for future research on the role of NTN4 in endothelial barrier-related diseases.
Collapse
Affiliation(s)
- Datong Zhang
- Department of Orthodontics, School of Dentistry, Shandong University, Jinan, Shandong 250100, P.R. China
| | - Zhiying Zhu
- Institute of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Keting Wen
- Institute of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Shijie Zhang
- Department of Orthodontics, School of Dentistry, Shandong University, Jinan, Shandong 250100, P.R. China
- Department of Stomatology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ju Liu
- Institute of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
2
|
Bala V, Patel V, Sewell-Loftin MK. Cadherin Expression Is Regulated by Mechanical Phenotypes of Fibroblasts in the Perivascular Matrix. Cells Tissues Organs 2024; 213:446-463. [PMID: 38768571 PMCID: PMC11576492 DOI: 10.1159/000539319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
INTRODUCTION The influence of mechanical forces generated by stromal cells in the perivascular matrix is thought to be a key regulator in controlling blood vessel growth. Cadherins are mechanosensors that facilitate and maintain cell-cell interactions and blood vessel integrity, but little is known about how stromal cells regulate cadherin signaling in the vasculature. Our objective was to investigate the relationship between mechanical phenotypes of stromal cells with cadherin expression in 3D tissue engineering models of vascular growth. METHODS Stromal cell lines were subjected to a bead displacement assay to track matrix distortions and characterize mechanical phenotypes in 3D microtissue models. These cells included human ventricular cardiac (NHCF), dermal (NHDF), lung (NHLF), breast cancer-associated (CAF), and normal breast fibroblasts (NBF). Cells were embedded in a fibrin matrix (10 mg/mL) with fluorescent tracker beads; images were collected every 30 min. We also studied endothelial cells (ECs) in co-culture with mechanically active or inactive stromal cells and quantified N-Cad, OB-Cad, and VE-Cad expression using immunofluorescence. RESULTS Bead displacement studies identified mechanically active stromal cells (CAFs, NHCFs, NHDFs) that generate matrix distortions and mechanically inactive cells (NHLFs, NBFs). CAFs, NHCFs, and NHDFs displaced the matrix with an average magnitude of 3.17 ± 0.11 μm, 3.13 ± 0.06 μm, and 2.76 ± 0.05 μm, respectively, while NHLFs and NBFs displaced the matrix with an average of 1.82 ± 0.05 μm and 2.66 ± 0.06 μm in fibrin gels. Compared to ECs only, CAFs + ECs as well as NBFs + ECs in 3D co-culture significantly decreased expression of VE-Cad; in addition, Pearson's Correlation Coefficient for N-Cad and VE-Cad showed a strong correlation (>0.7), suggesting cadherin colocalization. Using a microtissue model, we demonstrated that mechanical phenotypes associated with increased matrix deformations correspond to enhanced angiogenic growth. The results could suggest a mechanism to control tight junction regulation in developing vascular beds for tissue engineering scaffolds or understanding vascular growth during developmental processes. CONCLUSION Our studies provide novel data for how mechanical phenotype of stromal cells in combination with secreted factor profiles is related to cadherin regulation, localization, and vascularization potential in 3D microtissue models.
Collapse
Affiliation(s)
- Vaishali Bala
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Vidhi Patel
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Mary Kathryn Sewell-Loftin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham AL 35233
| |
Collapse
|
3
|
Fareed SA, Almilaibary AA, Nooh HZ, Hassan SM. Ameliorating effect of gum arabic on the liver tissues of the uremic rats; A biochemical and histological study. Tissue Cell 2022; 76:101799. [DOI: 10.1016/j.tice.2022.101799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/26/2022]
|
4
|
Zhang H, Chen Z, Zhang A, Gupte AA, Hamilton DJ. The Role of Calcium Signaling in Melanoma. Int J Mol Sci 2022; 23:ijms23031010. [PMID: 35162934 PMCID: PMC8835635 DOI: 10.3390/ijms23031010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Calcium signaling plays important roles in physiological and pathological conditions, including cutaneous melanoma, the most lethal type of skin cancer. Intracellular calcium concentration ([Ca2+]i), cell membrane calcium channels, calcium related proteins (S100 family, E-cadherin, and calpain), and Wnt/Ca2+ pathways are related to melanogenesis and melanoma tumorigenesis and progression. Calcium signaling influences the melanoma microenvironment, including immune cells, extracellular matrix (ECM), the vascular network, and chemical and physical surroundings. Other ionic channels, such as sodium and potassium channels, are engaged in calcium-mediated pathways in melanoma. Calcium signaling serves as a promising pharmacological target in melanoma treatment, and its dysregulation might serve as a marker for melanoma prediction. We documented calcium-dependent endoplasmic reticulum (ER) stress and mitochondria dysfunction, by targeting calcium channels and influencing [Ca2+]i and calcium homeostasis, and attenuated drug resistance in melanoma management.
Collapse
Affiliation(s)
- Haoran Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.Z.); (A.Z.); (A.A.G.)
- Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Zhe Chen
- Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Aijun Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.Z.); (A.Z.); (A.A.G.)
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, TX 77030, USA
| | - Anisha A. Gupte
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.Z.); (A.Z.); (A.A.G.)
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, TX 77030, USA
| | - Dale J. Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.Z.); (A.Z.); (A.A.G.)
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-(713)-441-4483
| |
Collapse
|
5
|
Han JK, Shin Y, Sohn MH, Choi SB, Shin D, You Y, Shin JY, Seo JS, Kim HS. Direct conversion of adult human fibroblasts into functional endothelial cells using defined factors. Biomaterials 2021; 272:120781. [PMID: 33848809 DOI: 10.1016/j.biomaterials.2021.120781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 12/02/2020] [Accepted: 03/20/2021] [Indexed: 02/06/2023]
Abstract
We aimed to directly convert adult human dermal fibroblasts (aHDFs) into functional endothelial cells (ECs). Lentiviral vectors encoding endothelial transcription factors (TFs) were constructed. We examined whether five TFs (FOXO1, ER71, KLF2, TAL1, and LMO2) used for the generation of mouse induced ECs (iECs) could convert the aHDFs into human iECs. Twenty-eight days after transduction with lentiviral constructs, 32.1 ± 5.1% cells expressed vascular endothelial (VE)-cadherin. Factor screening revealed that only three factors (3F: ER71, KLF2, and TAL1) were necessary to induce VE-cadherin (+) cells (49.4 ± 3.5%). However, whole transcriptome sequencing showed that VE-cadherin (+) cells were not completely reprogrammed. Mature iECs double-positive for VE-cadherin/Pecam1 (DP cells) with a cobblestone appearance were obtained at a frequency of only 5.1 ± 0.6%. Using whole transcriptome analysis, the potential factors that could block the conversion were screened. Among candidates TWIST1-knockdown enhanced efficiency of conversion. Rosiglitazone, an inhibitor of epithelial-mesenchymal transition (EMT), also improved the conversion efficiency. Moreover, a 2nd second-stage conversion process, in which VE-cadherin (+) cells were incubated for additional two weeks, further enhanced the efficiency. The final protocol for 6 weeks yielded a conversion rate of 19.6 ± 3.0% iECs, defined by DP cells depicting the nature of mature ECs in various analyses. Further analyses revealed that the genetic and epigenetic profiles of iECs resembled those of functional ECs. Collectively, aHDFs can be converted into functional ECs through the transduction of ER71, KLF2, and TAL1, combined with two EMT inhibitors (siTWIST1 and rosiglitazone), followed by 2nd stage conversion.
Collapse
Affiliation(s)
- Jung-Kyu Han
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Youngchul Shin
- Strategic Center of Cell and Bio Therapy for Heart, Diabetes and Cancer, Seoul National University Hospital, Seoul, South Korea; Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Min-Hwan Sohn
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea; Gong-Wu Genomic Medicine Institute, Seoul National University Bundang Hospital, Seongnam, South Korea; Precision Medicine Center, Seoul National University Bundang Hospital, Seongnam, South Korea; Macrogen Inc., Seoul, South Korea
| | - Saet-Byeol Choi
- Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Dasom Shin
- Strategic Center of Cell and Bio Therapy for Heart, Diabetes and Cancer, Seoul National University Hospital, Seoul, South Korea; Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Youngrang You
- Strategic Center of Cell and Bio Therapy for Heart, Diabetes and Cancer, Seoul National University Hospital, Seoul, South Korea; Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Jong-Yeon Shin
- Gong-Wu Genomic Medicine Institute, Seoul National University Bundang Hospital, Seongnam, South Korea; Precision Medicine Center, Seoul National University Bundang Hospital, Seongnam, South Korea; Macrogen Inc., Seoul, South Korea
| | - Jeong-Sun Seo
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea; Gong-Wu Genomic Medicine Institute, Seoul National University Bundang Hospital, Seongnam, South Korea; Precision Medicine Center, Seoul National University Bundang Hospital, Seongnam, South Korea; Macrogen Inc., Seoul, South Korea; Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Hyo-Soo Kim
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea.
| |
Collapse
|
6
|
The cell-cell junctions of mammalian testes. III. Absence of an endothelial cell layer covering the peritubular wall of the seminiferous tubules-an immunocytochemical correction of a 50-year-old error in the literature. Cell Tissue Res 2019; 379:75-92. [PMID: 31713729 DOI: 10.1007/s00441-019-03116-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/22/2019] [Indexed: 12/28/2022]
Abstract
In the molecular biological and ultrastructural studies of the peritubular wall cells encasing the seminiferous tubules of mammalian testes, we found it necessary to characterize the outermost cell layer bordering on the interstitial space in detail. For half a century, the extremely thin cells of this monolayer have in the literature been regarded as part of a lymphatic endothelium, in particular in rodents. However, our double-label immunofluorescence microscopical results have shown that in all six mammalian species examined, including three rodent ones (rat, mouse, guinea pig), this classification is not correct: the very attenuated cells of this monolayer are not of lymphatic endothelial nature as they do not contain established endothelial marker molecules. In particular, they do not contain claudin-5-positive tight junctions, VE-cadherin-positive adherens junctions, "lymph vessel endothelium hyaluronan receptor 1" (LYVE-1), podoplanin, protein myozap and "von Willebrand Factor" (vWF). By contrast and as controls, all these established marker molecules for the lymphatic endothelial cell type are found in the endothelia of the lymph and-partly also-blood vessels located nearby in the interstitial space. Thus, our results provide evidence that the monolayer cells covering the peritubular wall do not contain endothelial marker molecules and hence are not endothelial cells. We discuss possible methodological reasons for the maintenance of this incorrect cell type classification in the literature and emphasize the value of molecular analyses using multiple cell type-specific markers, also with respect to physiology and medical sciences.
Collapse
|
7
|
Wang X, Tao T, Song D, Mao H, Liu M, Wang J, Liu X. Calreticulin stabilizes F-actin by acetylating actin and protects microvascular endothelial cells against microwave radiation. Life Sci 2019; 232:116591. [PMID: 31228513 DOI: 10.1016/j.lfs.2019.116591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/06/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023]
Abstract
AIMS Calreticulin (CRT) is a multifunctional protein that protects endothelial cells by alleviating actin cytoskeleton injury, but the underlying mechanism remains unclear. CRT was recently identified as a novel acyltransferase; acetylation at the N-terminus of actin monomers strengthens actin polymerization. This study was undertaken to determine whether CRT protects human microvascular endothelial cells (HMECs) against microwave radiation through actin acetylation. MATERIALS AND METHODS We prepared a eukaryotic-derived recombinant CRT and incubated the HMECs with it prior to microwave exposure. We then assessed cell injury and endothelial function, detected actin polymerization and acetylation after HMECs exposure to S-band high-power microwaves. Coimmunoprecipitation, pull-down, and ex vitro acetylation reaction were performed to determine whether actin is a novel substrate of CRT acyltransferase. Finally, we employed the mutant experiments to demonstrate the acetylation sites contributing to CRT acetyltransferase activity. KEY FINDINGS Microwave radiation induced severe cell injury and endothelial contact dysfunction, reduced the polymerization of actin filaments, and destroyed the actin arrangement, ultimately reducing acetylated actin expression. CRT treatment upregulated actin acetylation levels, promoted polymerization, and facilitated thicker and longer F-actin stress fibre formation. Pre-incubation with CRT rescued microwave-induced cell injury, decreased actin acetylation, and rendered the actin cytoskeleton radiation-retardant. The level of acetyl-actin was positively correlated with actin polymerization. Actin was identified as a novel substrate of CRT, being acetylated mainly through the CRT P-domain at lys-206 and -207. SIGNIFICANCE This work provides a better understanding of the underlying mechanism of CRT-induced cytoprotection, and suggests a novel therapeutic target for microwave radiation-related diseases with endothelial dysfunction.
Collapse
Affiliation(s)
- Xiaoreng Wang
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China
| | - Tianqi Tao
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China
| | - Dandan Song
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China
| | - Huimin Mao
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China
| | - Mi Liu
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China
| | - Jianli Wang
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China
| | - Xiuhua Liu
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
8
|
Maciel RAP, Cunha RS, Busato V, Franco CRC, Gregório PC, Dolenga CJR, Nakao LS, Massy ZA, Boullier A, Pecoits-Filho R, Stinghen AEM. Uremia Impacts VE-Cadherin and ZO-1 Expression in Human Endothelial Cell-to-Cell Junctions. Toxins (Basel) 2018; 10:toxins10100404. [PMID: 30301260 PMCID: PMC6215219 DOI: 10.3390/toxins10100404] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/16/2018] [Accepted: 09/29/2018] [Indexed: 12/16/2022] Open
Abstract
Endothelial dysfunction in uremia can result in cell-to-cell junction loss and increased permeability, contributing to cardiovascular diseases (CVD) development. This study evaluated the impact of the uremic milieu on endothelial morphology and cell junction’s proteins. We evaluated (i) serum levels of inflammatory biomarkers in a cohort of chronic kidney disease (CKD) patients and the expression of VE-cadherin and Zonula Occludens-1 (ZO-1) junction proteins on endothelial cells (ECs) of arteries removed from CKD patients during renal transplant; (ii) ECs morphology in vitro under different uremic conditions, and (iii) the impact of uremic toxins p-cresyl sulfate (PCS), indoxyl sulfate (IS), and inorganic phosphate (Pi) as well as of total uremic serum on VE-cadherin and ZO-1 gene and protein expression in cultured ECs. We found that the uremic arteries had lost their intact and continuous endothelial morphology, with a reduction in VE-cadherin and ZO-1 expression. In cultured ECs, both VE-cadherin and ZO-1 protein expression decreased, mainly after exposure to Pi and uremic serum groups. VE-cadherin mRNA expression was reduced while ZO-1 was increased after exposure to PCS, IS, Pi, and uremic serum. Our findings show that uremia alters cell-to-cell junctions leading to an increased endothelial damage. This gives a new perspective regarding the pathophysiological role of uremia in intercellular junctions and opens new avenues to improve cardiovascular outcomes in CKD patients.
Collapse
Affiliation(s)
- Rayana A P Maciel
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 80050-540, Brazil.
| | - Regiane S Cunha
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 80050-540, Brazil.
| | - Valentina Busato
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 80050-540, Brazil.
| | - Célia R C Franco
- Cell Biology Department, Universidade Federal do Paraná, Curitiba 80050-540, Brazil.
| | - Paulo C Gregório
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 80050-540, Brazil.
| | - Carla J R Dolenga
- Basic Pathology Department, Universidade Federal do Paraná, Curitiba 80050-540, Brazil.
| | - Lia S Nakao
- Basic Pathology Department, Universidade Federal do Paraná, Curitiba 80050-540, Brazil.
| | - Ziad A Massy
- Division of Nephrology, Ambroise Paré University Hospital, APHP, Boulogne-Billancourt, 92100 Paris, France and Inserm U1018, Team 5, CESP, UVSQ, Paris-Saclay University, 94800 Villejuif, France.
| | - Agnès Boullier
- Universitè de Picardie Jules Verne, MP3CV and CHU d'Amiens, 80025 Amiens, France.
| | - Roberto Pecoits-Filho
- Pontifícia Universidade Católica do Paraná, School of Medicine, Curitiba 80215-901, Brazil.
| | - Andréa E M Stinghen
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 80050-540, Brazil.
| |
Collapse
|
9
|
Franke WW, Rickelt S, Zimbelmann R, Dörflinger Y, Kuhn C, Frey N, Heid H, Rosin-Arbesfeld R. Striatins as plaque molecules of zonulae adhaerentes in simple epithelia, of tessellate junctions in stratified epithelia, of cardiac composite junctions and of various size classes of lateral adherens junctions in cultures of epithelia- and carcinoma-derived cells. Cell Tissue Res 2014; 359:779-97. [PMID: 25501894 PMCID: PMC4341017 DOI: 10.1007/s00441-014-2053-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/05/2014] [Indexed: 11/29/2022]
Abstract
Proteins of the striatin family (striatins 1–4; sizes ranging from 90 to 110 kDa on SDS-polyacrylamide gel electrophoresis) are highly homologous in their amino acid sequences but can differ in their cell-type-specific gene expression patterns and biological functions. In various cell types, we have found one, two or three polypeptides of this evolutionarily old and nearly ubiquitous family of proteins known to serve as scaffold proteins for diverse protein complexes. Light and electron microscopic immunolocalization methods have revealed striatins in mammalian cell-cell adherens junctions (AJs). In simple epithelia, we have localized striatins as constitutive components of the plaques of the subapical zonulae adhaerentes of cells, including intestinal, glandular, ductal and urothelial cells and hepatocytes. Striatins colocalize with E-cadherin or E–N-cadherin heterodimers and with the plaque proteins α- and β-catenin, p120 and p0071. In some epithelia and carcinomas and in cultured cells derived therefrom, striatins are also seen in lateral AJs. In stratified epithelia and in corresponding squamous cell carcinomas, striatins can be found in plaques of some forms of tessellate junctions. Moreover, striatins are major plaque proteins of composite junctions (CJs; areae compositae) in the intercalated disks connecting cardiomyocytes, colocalizing with other CJ molecules, including plectin and ankyrin-G. We discuss the “multimodulator” scaffold roles of striatins in the initiation and regulation of the formation of various complex particles and structures. We propose that striatins are included in the diagnostic candidate list of proteins that, in the CJs of human hearts, can occur in mutated forms in the pathogeneses of hereditary cardiomyopathies, as seen in some types of genetically determined heart damage in boxer dogs.
Collapse
Affiliation(s)
- Werner W Franke
- Helmholtz Group for Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Tseng JC, Chang LC, Jiang BY, Liu YC, Chen HJ, Yu CT, Hua CC. Elevated circulating levels of tissue factor-positive microvesicles are associated with distant metastasis in lung cancer. J Cancer Res Clin Oncol 2014; 140:61-7. [PMID: 24169761 DOI: 10.1007/s00432-013-1544-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/18/2013] [Indexed: 12/21/2022]
Abstract
PURPOSE Microvesicles (MV) in the blood stream are associated with distant metastasis in cancer. Platelet or endothelial cell-related MV actively participate in thrombogenesis, which is an important step in cancer metastasis. This study investigated the correlations between MV levels of platelet-poor plasma and distant metastasis in lung cancer. METHODS Platelet-poor plasma from 44 treatment-naive lung cancer (23 with distant metastasis) and 19 normal subjects was used to determine the levels of glycoprotein Iβ (CD42) + platelet MV (PMV), P-selectin (CD62P) + PMV, VE-cadherin (CD144) + endothelial MV (EMV), tissue factor (CD142) + MV, thrombin-antithrombin complex and vascular endothelial growth factor (VEGF). RESULTS The level of CD142 + MV was significant (odds ratio 5.86, 95 % confidence interval 1.31-38.3) in predicting distant metastasis in lung cancer, and a cutoff value of 2.668 (after logarithm transformation) in the ROC curve had a specificity of 90 % and a sensitivity of 59 %. The presence of distant metastasis showed a significant correlation between CD144 + EMV and VEGF, but not between CD144 + EMV and CD42 + PMV or CD62P + PMV in lung cancer subjects. CONCLUSIONS The finding of CD142 + MV in platelet-poor plasma may be useful for suggesting distant metastasis in lung cancer. In addition to thrombogenesis, interaction between VE-cadherin and VEGF may be needed for successful metastasis in lung cancer.
Collapse
Affiliation(s)
- Jo-Chi Tseng
- Department of Internal Medicine, Chang Gung Memory Hospital, Keelung, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
11
|
A Peculiarly Cerebroid Convex Zygo-Dodecahedron is an Axiomatically Balanced “House of Blues”: The Circle of Fifths to the Circle of Willis to Cadherin Cadenzas. Symmetry (Basel) 2012. [DOI: 10.3390/sym4040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Zhang P, Men J, Fu Y, Shan T, Ye J, Wu Y, Tao Z, Liu L, Jiang H. Contribution of SATB2 to the stronger osteogenic potential of bone marrow stromal cells from craniofacial bones. Cell Tissue Res 2012; 350:425-37. [DOI: 10.1007/s00441-012-1487-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 08/15/2012] [Indexed: 12/01/2022]
|
13
|
The adhering junctions of valvular interstitial cells: molecular composition in fetal and adult hearts and the comings and goings of plakophilin-2 in situ, in cell culture and upon re-association with scaffolds. Cell Tissue Res 2012; 348:295-307. [DOI: 10.1007/s00441-011-1315-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
|
14
|
Werling AM, Doerflinger Y, Brandner JM, Fuchs F, Becker JC, Schrama D, Kurzen H, Goerdt S, Peitsch WK. Homo- and heterotypic cell-cell contacts in Merkel cells and Merkel cell carcinomas: heterogeneity and indications for cadherin switching. Histopathology 2011; 58:286-303. [PMID: 21323954 DOI: 10.1111/j.1365-2559.2011.03748.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Merkel cell carcinomas (MCCs) are rare but aggressive tumours associated recently with Merkel cell polyomavirus (MCV). As development and progression of several types of carcinomas can be promoted by changes in cell adhesion proteins, the aim of this study was to examine homo- and heterotypic cell contacts of Merkel cells and MCCs. METHODS AND RESULTS Merkel cells of healthy glabrous epidermis and 52 MCCs were analysed by double-label immunostaining, immunofluorescence and confocal microscopy. Merkel cells were connected to keratinocytes by E- and P-cadherin, desmoglein 2 and desmocollin 2. In contrast, the vast majority of MCCs (90%) contained N-cadherin, but only 67% and 65% contained E- and P-cadherin, respectively. Interestingly, P-cadherin was absent significantly more frequently in lymph node metastases than in primary tumours and by trend in more advanced clinical stages. Moreover, major subsets of MCCs synthesized desmoglein 2 and, surprisingly, tight junction proteins. No significant differences were observed upon stratification for MCV DNA, detected in 84% of tumours by real-time polymerase chain reaction. CONCLUSIONS Assuming that MCCs originate from Merkel cells, our data indicate a switch from E- and P-cadherin to N-cadherin during tumorigenesis. Whether the unexpected heterogeneity of junctional proteins can be exploited for prognostic and therapeutic purposes will need to be examined.
Collapse
Affiliation(s)
- Anna M Werling
- Department of Dermatology, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pieperhoff S, Barth M, Rickelt S, Franke WW. Desmosomal molecules in and out of adhering junctions: normal and diseased States of epidermal, cardiac and mesenchymally derived cells. Dermatol Res Pract 2010; 2010:139167. [PMID: 20671973 PMCID: PMC2909724 DOI: 10.1155/2010/139167] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/23/2010] [Indexed: 11/18/2022] Open
Abstract
Current cell biology textbooks mention only two kinds of cell-to-cell adhering junctions coated with the cytoplasmic plaques: the desmosomes (maculae adhaerentes), anchoring intermediate-sized filaments (IFs), and the actin microfilament-anchoring adherens junctions (AJs), including both punctate (puncta adhaerentia) and elongate (fasciae adhaerentes) structures. In addition, however, a series of other junction types has been identified and characterized which contain desmosomal molecules but do not fit the definition of desmosomes. Of these special cell-cell junctions containing desmosomal glycoproteins or proteins we review the composite junctions (areae compositae) connecting the cardiomyocytes of mature mammalian hearts and their importance in relation to human arrhythmogenic cardiomyopathies. We also emphasize the various plakophilin-2-positive plaques in AJs (coniunctiones adhaerentes) connecting proliferatively active mesenchymally-derived cells, including interstitial cells of the heart and several soft tissue tumor cell types. Moreover, desmoplakin has also been recognized as a constituent of the plaques of the complexus adhaerentes connecting certain lymphatic endothelial cells. Finally, we emphasize the occurrence of the desmosomal transmembrane glycoprotein, desmoglein Dsg2, out of the context of any junction as dispersed cell surface molecules in certain types of melanoma cells and melanocytes. This broadening of our knowledge on the diversity of AJ structures indicates that it may still be too premature to close the textbook chapters on cell-cell junctions.
Collapse
Affiliation(s)
- Sebastian Pieperhoff
- Helmholtz Group for Cell Biology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, Canada V6T 1Z4
| | - Mareike Barth
- Helmholtz Group for Cell Biology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Steffen Rickelt
- Helmholtz Group for Cell Biology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Werner W. Franke
- Helmholtz Group for Cell Biology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- Progen Biotechnik GmbH, Maaßstraße 30, 69123 Heidelberg, Germany
| |
Collapse
|
16
|
|
17
|
Rickelt S, Winter-Simanowski S, Noffz E, Kuhn C, Franke WW. Upregulation of plakophilin-2 and its acquisition to adherens junctions identifies a novel molecular ensemble of cell-cell-attachment characteristic for transformed mesenchymal cells. Int J Cancer 2009; 125:2036-48. [PMID: 19551809 DOI: 10.1002/ijc.24552] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In contrast to the desmosome-containing epithelial and carcinoma cells, normal and malignantly transformed cells derived from mesenchymal tissues and tumors are connected only by adherens junctions (AJs) containing N-cadherins and/or cadherin-11, anchored in a cytoplasmic plaque assembled by alpha- and beta-catenin, plakoglobin, proteins p120 and p0071. Here, we report that the AJs of many malignantly transformed cell lines are characterized by the additional presence of plakophilin-2 (Pkp2), a protein hitherto known only as a major component of desmosomal plaques, i.e., AJs of epithelia and carcinomatous cells. This massive acquisition of Pkp2 and its integration into AJ plaques of a large number of transformed cell lines is demonstrated with biochemical and immunolocalization techniques. Upregulation of Pkp2 and its integration into AJs has also been noted in some soft tissue tumors insitu and some highly proliferative colonies of cultured mesenchymal stem cells. As Pkp2 has recently been identified as a functionally important major regulatory organizer in AJs and related junctions in epithelial cells and cardiomyocytes, we hypothesize that the integration of Pkp2 into AJs of "soft tissue tumor" cells also can serve functions in the upregulation of proliferation, the promotion of malignant growth in general as well as the close-packing of diverse kinds of cells and the metastatic behavior of such tumors. We propose to examine its presence in transformed mesenchymal cells and related tumors and to use it as an additional diagnostic criterion.
Collapse
Affiliation(s)
- Steffen Rickelt
- Helmholtz Group for Cell Biology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
18
|
Barth M, Schumacher H, Kuhn C, Akhyari P, Lichtenberg A, Franke WW. Cordial connections: molecular ensembles and structures of adhering junctions connecting interstitial cells of cardiac valves in situ and in cell culture. Cell Tissue Res 2009; 337:63-77. [PMID: 19475424 DOI: 10.1007/s00441-009-0806-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 04/06/2009] [Indexed: 01/19/2023]
Abstract
Remarkable efforts have recently been made in the tissue engineering of heart valves to improve the results of valve transplantations and replacements, including the design of artificial valves. However, knowledge of the cell and molecular biology of valves and, specifically, of valvular interstitial cells (VICs) remains limited. Therefore, our aim has been to determine and localize the molecules forming the adhering junctions (AJs) that connect VICs in situ and in cell culture. Using biochemical and immunolocalization methods at the light- and electron-microscopic levels, we have identified, in man, cow, sheep and rat, the components of VIC-connecting AJs in situ and in cell culture. These AJs contain, in addition to the transmembrane glycoproteins N-cadherin and cadherin-11, the typical plaque proteins alpha- and beta-catenin as well as plakoglobin and p120, together with minor amounts of protein p0071, i.e. a total of five plaque proteins of the armadillo family. While we can exclude the occurrence of desmogleins, desmocollins and desmoplakin, we have noted with surprise that AJs of VICs in cell cultures, but not those growing in the valve tissue, contain substantial amounts of the desmosomal plaque protein, plakophilin-2. Clusters of AJs occur not only on the main VIC cell bodies but are also found widely dispersed on their long filopodia thus forming, in the tissue, a meshwork that, together with filopodial attachments to paracrystalline collagen fiber bundles, establishes a three-dimensional suprastructure, the role of which is discussed with respect to valve formation, regeneration and function.
Collapse
Affiliation(s)
- Mareike Barth
- Helmholtz Group/Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Tissue-Specific Targeting Based on Markers Expressed Outside Endothelial Cells. ADVANCES IN GENETICS 2009; 67:61-102. [DOI: 10.1016/s0065-2660(09)67003-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|