1
|
Abstract
Developmental processes in animals are influenced by colonization and/or signaling from microbial symbionts. Here, we show that bacteria from the environment are linked to development of a symbiotic organ that houses a bacterial consortium in female Hawaiian bobtail squid, Euprymna scolopes. In addition to the well-characterized light organ association with the bioluminescent bacterium Vibrio fischeri, female E. scolopes house a simple bacterial community in a reproductive organ, the accessory nidamental gland (ANG). In order to understand the influences of bacteria on ANG development, squid were raised in the laboratory under conditions where exposure to environmental microorganisms was experimentally manipulated. Under conditions where hosts were exposed to depleted environmental bacteria, ANGs were completely absent or stunted, a result independent of the presence of the light organ symbiont V. fischeri. When squid were raised in the laboratory with substrate from the host's natural environment containing the native microbiota, normal ANG development was observed, and the bacterial communities were similar to wild-caught animals. Analysis of the bacterial communities from ANGs and substrates of wild-caught and laboratory-raised animals suggests that certain bacterial groups, namely, the Verrucomicrobia, are linked to ANG development. The ANG community composition was also experimentally manipulated. Squid raised with natural substrate supplemented with a specific ANG bacterial strain, Leisingera sp. JC1, had high proportions of this strain in the ANG, suggesting that once ANG development is initiated, specific strains can be introduced and subsequently colonize the organ. Overall, these data suggest that environmental bacteria are required for development of the ANG in E. scolopes. IMPORTANCE Microbiota have profound effects on animal and plant development. Hosts raised axenically or without symbionts often suffer negative outcomes resulting in developmental defects or reduced organ function. Using defined experimental conditions, we demonstrate that environmental bacteria are required for the formation of a female-specific symbiotic organ in the Hawaiian bobtail squid, Euprymna scolopes. Although nascent tissues from this organ that are involved with bacterial recruitment formed initially, the mature organ failed to develop and was absent or severely reduced in sexually mature animals that were not exposed to microbiota from the host's natural environment. This is the first example of complete organ development relying on exposure to symbiotic bacteria in an animal host. This study broadens the use of E. scolopes as a model organism for studying the influence of beneficial bacteria on animal development.
Collapse
|
2
|
Wang M, Ruan L, Liu M, Liu Z, He J, Zhang L, Wang Y, Shi H, Chen M, Yang F, Zeng R, He J, Guo C, Chen J. The genome of a vestimentiferan tubeworm (Ridgeia piscesae) provides insights into its adaptation to a deep-sea environment. BMC Genomics 2023; 24:72. [PMID: 36774470 PMCID: PMC9921365 DOI: 10.1186/s12864-023-09166-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/03/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND Vestimentifera (Polychaeta, Siboglinidae) is a taxon of deep-sea worm-like animals living in deep-sea hydrothermal vents, cold seeps, and organic falls. The morphology and lifespan of Ridgeia piscesae, which is the only vestimentiferan tubeworm species found in the hydrothermal vents on the Juan de Fuca Ridge, vary greatly according to endemic environment. Recent analyses have revealed the genomic basis of adaptation in three vent- and seep-dwelling vestimentiferan tubeworms. However, the evolutionary history and mechanism of adaptation in R. piscesae, a unique species in the family Siboglinidae, remain to be investigated. RESULT We assembled a draft genome of R. piscesae collected at the Cathedral vent of the Juan de Fuca Ridge. Comparative genomic analysis showed that vent-dwelling tubeworms with a higher growth rate had smaller genome sizes than seep-dwelling tubeworms that grew much slower. A strong positive correlation between repeat content and genome size but not intron size and the number of protein-coding genes was identified in these deep-sea tubeworm species. Evolutionary analysis revealed that Ridgeia pachyptila and R. piscesae, the two tubeworm species that are endemic to hydrothermal vents of the eastern Pacific, started to diverge between 28.5 and 35 million years ago. Four genes involved in cell proliferation were found to be subject to positive selection in the genome of R. piscesae. CONCLUSION Ridgeia pachyptila and R. piscesae started to diverge after the formation of the Gorda/Juan de Fuca/Explorer ridge systems and the East Pacific Rise. The high growth rates of vent-dwelling tubeworms might be derived from their small genome sizes. Cell proliferation is important for regulating the growth rate in R. piscesae.
Collapse
Affiliation(s)
- Muhua Wang
- grid.12981.330000 0001 2360 039XState Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China ,grid.12981.330000 0001 2360 039XChina-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Lingwei Ruan
- grid.453137.70000 0004 0406 0561State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005 China
| | - Meng Liu
- grid.410753.4Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Zixuan Liu
- grid.12981.330000 0001 2360 039XState Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| | - Jian He
- grid.12981.330000 0001 2360 039XState Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China ,grid.12981.330000 0001 2360 039XChina-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Long Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| | - Yuanyuan Wang
- grid.12981.330000 0001 2360 039XState Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| | - Hong Shi
- grid.453137.70000 0004 0406 0561State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005 China
| | - Mingliang Chen
- grid.453137.70000 0004 0406 0561State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005 China
| | - Feng Yang
- grid.453137.70000 0004 0406 0561State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005 China
| | - Runying Zeng
- grid.453137.70000 0004 0406 0561State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005 China
| | - Jianguo He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China. .,China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Changjun Guo
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China. .,China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Jianming Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China. .,Fujian Key Laboratory On Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
3
|
de Oliveira AL, Mitchell J, Girguis P, Bright M. Novel insights on obligate symbiont lifestyle and adaptation to chemosynthetic environment as revealed by the giant tubeworm genome. Mol Biol Evol 2021; 39:6454105. [PMID: 34893862 PMCID: PMC8789280 DOI: 10.1093/molbev/msab347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mutualism between the giant tubeworm Riftia pachyptila and its endosymbiont Candidatus Endoriftia persephone has been extensively researched over the past 40 years. However, the lack of the host whole genome information has impeded the full comprehension of the genotype/phenotype interface in Riftia. Here we described the high-quality draft genome of Riftia, its complete mitogenome, and tissue-specific transcriptomic data. The Riftia genome presents signs of reductive evolution, with gene family contractions exceeding expansions. Expanded gene families are related to sulphur metabolism, detoxification, anti-oxidative stress, oxygen transport, immune system, and lysosomal digestion, reflecting evolutionary adaptations to the vent environment and endosymbiosis. Despite the derived body plan, the developmental gene repertoire in the gutless tubeworm is extremely conserved with the presence of a near intact and complete Hox cluster. Gene expression analyses establishes that the trophosome is a multi-functional organ marked by intracellular digestion of endosymbionts, storage of excretory products and haematopoietic functions. Overall, the plume and gonad tissues both in contact to the environment harbour highly expressed genes involved with cell cycle, programmed cell death, and immunity indicating a high cell turnover and defence mechanisms against pathogens. We posit that the innate immune system plays a more prominent role into the establishment of the symbiosis during the infection in the larval stage, rather than maintaining the symbiostasis in the trophosome. This genome bridges four decades of physiological research in Riftia, whilst simultaneously provides new insights into the development, whole organism functions and evolution in the giant tubeworm.
Collapse
Affiliation(s)
| | - Jessica Mitchell
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Peter Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Monika Bright
- Department of Functional and Evolutionary Ecology, University of Vienna, Austria
| |
Collapse
|
4
|
Abstract
All animals are associated with microorganisms; hence, host-microbe interactions are of fundamental importance for life on earth. However, we know little about the molecular basis of these interactions. Therefore, we studied the deep-sea Riftia pachyptila symbiosis, a model association in which the tubeworm host is associated with only one phylotype of endosymbiotic bacteria and completely depends on this sulfur-oxidizing symbiont for nutrition. Using a metaproteomics approach, we identified both metabolic interaction processes, such as substrate transfer between the two partners, and interactions that serve to maintain the symbiotic balance, e.g., host efforts to control the symbiont population or symbiont strategies to modulate these host efforts. We suggest that these interactions are essential principles of mutualistic animal-microbe associations. The deep-sea tubeworm Riftia pachyptila lacks a digestive system but completely relies on bacterial endosymbionts for nutrition. Although the symbiont has been studied in detail on the molecular level, such analyses were unavailable for the animal host, because sequence information was lacking. To identify host-symbiont interaction mechanisms, we therefore sequenced the Riftia transcriptome, which served as a basis for comparative metaproteomic analyses of symbiont-containing versus symbiont-free tissues, both under energy-rich and energy-limited conditions. Our results suggest that metabolic interactions include nutrient allocation from symbiont to host by symbiont digestion and substrate transfer to the symbiont by abundant host proteins. We furthermore propose that Riftia maintains its symbiont by protecting the bacteria from oxidative damage while also exerting symbiont population control. Eukaryote-like symbiont proteins might facilitate intracellular symbiont persistence. Energy limitation apparently leads to reduced symbiont biomass and increased symbiont digestion. Our study provides unprecedented insights into host-microbe interactions that shape this highly efficient symbiosis.
Collapse
|
5
|
Li Y, Tassia MG, Waits DS, Bogantes VE, David KT, Halanych KM. Genomic adaptations to chemosymbiosis in the deep-sea seep-dwelling tubeworm Lamellibrachia luymesi. BMC Biol 2019; 17:91. [PMID: 31739792 PMCID: PMC6862839 DOI: 10.1186/s12915-019-0713-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/24/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Symbiotic relationships between microbes and their hosts are widespread and diverse, often providing protection or nutrients, and may be either obligate or facultative. However, the genetic mechanisms allowing organisms to maintain host-symbiont associations at the molecular level are still mostly unknown, and in the case of bacterial-animal associations, most genetic studies have focused on adaptations and mechanisms of the bacterial partner. The gutless tubeworms (Siboglinidae, Annelida) are obligate hosts of chemoautotrophic endosymbionts (except for Osedax which houses heterotrophic Oceanospirillales), which rely on the sulfide-oxidizing symbionts for nutrition and growth. Whereas several siboglinid endosymbiont genomes have been characterized, genomes of hosts and their adaptations to this symbiosis remain unexplored. RESULTS Here, we present and characterize adaptations of the cold seep-dwelling tubeworm Lamellibrachia luymesi, one of the longest-lived solitary invertebrates. We sequenced the worm's ~ 688-Mb haploid genome with an overall completeness of ~ 95% and discovered that L. luymesi lacks many genes essential in amino acid biosynthesis, obligating them to products provided by symbionts. Interestingly, the host is known to carry hydrogen sulfide to thiotrophic endosymbionts using hemoglobin. We also found an expansion of hemoglobin B1 genes, many of which possess a free cysteine residue which is hypothesized to function in sulfide binding. Contrary to previous analyses, the sulfide binding mediated by zinc ions is not conserved across tubeworms. Thus, the sulfide-binding mechanisms in sibgolinids need to be further explored, and B1 globins might play a more important role than previously thought. Our comparative analyses also suggest the Toll-like receptor pathway may be essential for tolerance/sensitivity to symbionts and pathogens. Several genes related to the worm's unique life history which are known to play important roles in apoptosis, cell proliferation, and aging were also identified. Last, molecular clock analyses based on phylogenomic data suggest modern siboglinid diversity originated in 267 mya (± 70 my) support previous hypotheses indicating a Late Mesozoic or Cenozoic origins of approximately 50-126 mya for vestimentiferans. CONCLUSIONS Here, we elucidate several specific adaptations along various molecular pathways that link phenome to genome to improve understanding of holobiont evolution. Our findings of adaptation in genomic mechanisms to reducing environments likely extend to other chemosynthetic symbiotic systems.
Collapse
Affiliation(s)
- Yuanning Li
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, Auburn, AL, 36849, USA.
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St, New Haven, CT, 06511, USA.
| | - Michael G Tassia
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, Auburn, AL, 36849, USA
| | - Damien S Waits
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, Auburn, AL, 36849, USA
| | - Viktoria E Bogantes
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, Auburn, AL, 36849, USA
| | - Kyle T David
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, Auburn, AL, 36849, USA
| | - Kenneth M Halanych
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
6
|
Piquet B, Shillito B, Lallier FH, Duperron S, Andersen AC. High rates of apoptosis visualized in the symbiont-bearing gills of deep-sea Bathymodiolus mussels. PLoS One 2019; 14:e0211499. [PMID: 30716127 PMCID: PMC6361440 DOI: 10.1371/journal.pone.0211499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/15/2019] [Indexed: 12/03/2022] Open
Abstract
Symbiosis between Bathymodiolus and Gammaproteobacteria allows these deep-sea mussels to live in toxic environments such as hydrothermal vents and cold seeps. The quantity of endosymbionts within the gill-bacteriocytes appears to vary according to the hosts environment; however, the mechanisms of endosymbiont population size regulation remain obscure. We investigated the possibility of a control of endosymbiont density by apoptosis, a programmed cell death, in three mussel species. Fluorometric TUNEL and active Caspase-3-targeting antibodies were used to visualize and quantify apoptotic cells in mussel gills. To control for potential artefacts due to depressurization upon specimen recovery from the deep-sea, the apoptotic rates between mussels recovered unpressurised, versus mussels recovered in a pressure-maintaining device, were compared in two species from hydrothermal vents on the Mid-Atlantic Ridge: Bathymodiolus azoricus and B. puteoserpentis. Results show that pressurized recovery had no significant effect on the apoptotic rate in the gill filaments. Apoptotic levels were highest in the ciliated zone and in the circulating hemocytes, compared to the bacteriocyte zone. Apoptotic gill-cells in B. aff. boomerang from cold seeps off the Gulf of Guinea show similar distribution patterns. Deep-sea symbiotic mussels have much higher rates of apoptosis in their gills than the coastal mussel Mytilus edulis, which lacks chemolithoautotrophic symbionts. We discuss how apoptosis might be one of the mechanisms that contribute to the adaptation of deep-sea mussels to toxic environments and/or to symbiosis.
Collapse
Affiliation(s)
- Bérénice Piquet
- Sorbonne Université, CNRS, Lab. Adaptation et Diversité en Milieu Marin, AD2M, Team: Adaptation et Biologie des Invertébrés marins en Conditions Extrêmes (UMR 7144), ABICE, Station Biologique de Roscoff, SBR, Roscoff, France
- Sorbonne Université, MNHN, CNRS, IRD, UCN, UA, Lab. Biologie des Organismes et Ecosystèmes Aquatiques BOREA (UMR 7208), Team: Adaptation aux Milieux Extrêmes, AMEX, 7 Quai Saint-Bernard, Paris, France
| | - Bruce Shillito
- Sorbonne Université, MNHN, CNRS, IRD, UCN, UA, Lab. Biologie des Organismes et Ecosystèmes Aquatiques BOREA (UMR 7208), Team: Adaptation aux Milieux Extrêmes, AMEX, 7 Quai Saint-Bernard, Paris, France
| | - François H. Lallier
- Sorbonne Université, CNRS, Lab. Adaptation et Diversité en Milieu Marin, AD2M, Team: Adaptation et Biologie des Invertébrés marins en Conditions Extrêmes (UMR 7144), ABICE, Station Biologique de Roscoff, SBR, Roscoff, France
| | - Sébastien Duperron
- Sorbonne Université, MNHN, CNRS, IRD, UCN, UA, Lab. Biologie des Organismes et Ecosystèmes Aquatiques BOREA (UMR 7208), Team: Adaptation aux Milieux Extrêmes, AMEX, 7 Quai Saint-Bernard, Paris, France
- Muséum National d’Histoire Naturelle, CNRS, Lab. Mécanismes de Communication et Adaptation des Micro-organismes (UMR 7245), Team: Cyanobactéries, Cyanotoxines et Environnement, CCE, 12 rue Buffon, Paris, France
- Institut Universitaire de France, Paris, France
- * E-mail: (ACA); (SD)
| | - Ann C. Andersen
- Sorbonne Université, CNRS, Lab. Adaptation et Diversité en Milieu Marin, AD2M, Team: Adaptation et Biologie des Invertébrés marins en Conditions Extrêmes (UMR 7144), ABICE, Station Biologique de Roscoff, SBR, Roscoff, France
- * E-mail: (ACA); (SD)
| |
Collapse
|
7
|
Laurich JR, Dove R, Paillard C, Dufour SC. Life and death in facultative chemosymbioses: control of bacterial population dynamics in the Thyasiridae. Symbiosis 2018; 75:123-133. [DOI: 10.1007/s13199-017-0525-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Kahn AS, Leys SP. The role of cell replacement in benthic-pelagic coupling by suspension feeders. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160484. [PMID: 28018632 PMCID: PMC5180130 DOI: 10.1098/rsos.160484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/11/2016] [Indexed: 05/30/2023]
Abstract
Benthic-pelagic coupling through suspension feeders and their detrital pathways is integral to carbon transport in oceans. In food-poor ecosystems however, a novel mechanism of carbon recycling has been proposed that involves direct uptake of dissolved carbon by suspension feeders followed by shedding of cells as particulate carbon. We studied cell replacement rates in a range of cold-water sponge species to determine how universal this mechanism might be. We show that cell replacement rates of feeding epithelia in explants vary from 30 hours up to 7 days, and change during different seasons and life-history stages. We also found that feeding epithelia are not replaced through direct replication but instead arise from a population of stem cells that differentiate and integrate into epithelial tissues. Our results reveal a surprising amount of complexity in the control of cell processes in sponges, with cell turnover depending on environmental conditions and using stem cells as rate-limiting mechanisms. Our results also suggest that for species in cold water with high particulate organic matter, cell turnover is not the mechanism delivering carbon flux to surrounding communities.
Collapse
Affiliation(s)
| | - Sally P. Leys
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, CanadaT6G 2E9
| |
Collapse
|
9
|
Kahn AS, Leys SP. The role of cell replacement in benthic-pelagic coupling by suspension feeders. ROYAL SOCIETY OPEN SCIENCE 2016. [PMID: 28018632 DOI: 10.5061/dryad.1787f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Benthic-pelagic coupling through suspension feeders and their detrital pathways is integral to carbon transport in oceans. In food-poor ecosystems however, a novel mechanism of carbon recycling has been proposed that involves direct uptake of dissolved carbon by suspension feeders followed by shedding of cells as particulate carbon. We studied cell replacement rates in a range of cold-water sponge species to determine how universal this mechanism might be. We show that cell replacement rates of feeding epithelia in explants vary from 30 hours up to 7 days, and change during different seasons and life-history stages. We also found that feeding epithelia are not replaced through direct replication but instead arise from a population of stem cells that differentiate and integrate into epithelial tissues. Our results reveal a surprising amount of complexity in the control of cell processes in sponges, with cell turnover depending on environmental conditions and using stem cells as rate-limiting mechanisms. Our results also suggest that for species in cold water with high particulate organic matter, cell turnover is not the mechanism delivering carbon flux to surrounding communities.
Collapse
Affiliation(s)
- Amanda S Kahn
- Department of Biological Sciences , University of Alberta , Edmonton, Alberta , Canada T6G 2E9
| | - Sally P Leys
- Department of Biological Sciences , University of Alberta , Edmonton, Alberta , Canada T6G 2E9
| |
Collapse
|
10
|
Klose J, Aistleitner K, Horn M, Krenn L, Dirsch V, Zehl M, Bright M. Trophosome of the Deep-Sea Tubeworm Riftia pachyptila Inhibits Bacterial Growth. PLoS One 2016; 11:e0146446. [PMID: 26730960 PMCID: PMC4701499 DOI: 10.1371/journal.pone.0146446] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/17/2015] [Indexed: 12/14/2022] Open
Abstract
The giant tubeworm Riftia pachyptila lives in symbiosis with the chemoautotrophic gammaproteobacterium Cand. Endoriftia persephone. Symbionts are released back into the environment upon host death in high-pressure experiments, while microbial fouling is not involved in trophosome degradation. Therefore, we examined the antimicrobial effect of the tubeworm's trophosome and skin. The growth of all four tested Gram-positive, but only of one of the tested Gram-negative bacterial strains was inhibited by freshly fixed and degrading trophosome (incubated up to ten days at either warm or cold temperature), while no effect on Saccharomyces cerevisiae was observed. The skin did not show antimicrobial effects. A liquid chromatography-mass spectrometric analysis of the ethanol supernatant of fixed trophosomes lead to the tentative identification of the phospholipids 1-palmitoleyl-2-lyso-phosphatidylethanolamine, 2-palmitoleyl-1-lyso-phosphatidylethanolamine and the free fatty acids palmitoleic, palmitic and oleic acid, which are known to have an antimicrobial effect. As a result of tissue autolysis, the abundance of the free fatty acids increased with longer incubation time of trophosome samples. This correlated with an increasing growth inhibition of Bacillus subtilis and Listeria welshimeri, but not of the other bacterial strains. Therefore, the free fatty acids produced upon host degradation could be the cause of inhibition of at least these two bacterial strains.
Collapse
Affiliation(s)
- Julia Klose
- Department of Limnology and Bio-Oceanography, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Karin Aistleitner
- Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Matthias Horn
- Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Liselotte Krenn
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Verena Dirsch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Martin Zehl
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Monika Bright
- Department of Limnology and Bio-Oceanography, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| |
Collapse
|
11
|
Endosymbionts escape dead hydrothermal vent tubeworms to enrich the free-living population. Proc Natl Acad Sci U S A 2015; 112:11300-5. [PMID: 26283348 DOI: 10.1073/pnas.1501160112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Theory predicts that horizontal acquisition of symbionts by plants and animals must be coupled to release and limited dispersal of symbionts for intergenerational persistence of mutualisms. For deep-sea hydrothermal vent tubeworms (Vestimentifera, Siboglinidae), it has been demonstrated that a few symbiotic bacteria infect aposymbiotic host larvae and grow in a newly formed organ, the trophosome. However, whether viable symbionts can be released to augment environmental populations has been doubtful, because (i) the adult worms lack obvious openings and (ii) the vast majority of symbionts has been regarded as terminally differentiated. Here we show experimentally that symbionts rapidly escape their hosts upon death and recruit to surfaces where they proliferate. Estimating symbiont release from our experiments taken together with well-known tubeworm density ranges, we suggest a few million to 1.5 billion symbionts seeding the environment upon death of a tubeworm clump. In situ observations show that such clumps have rapid turnover, suggesting that release of large numbers of symbionts may ensure effective dispersal to new sites followed by active larval colonization. Moreover, release of symbionts might enable adaptations that evolve within host individuals to spread within host populations and possibly to new environments.
Collapse
|
12
|
Zimmermann J, Lott C, Weber M, Ramette A, Bright M, Dubilier N, Petersen JM. Dual symbiosis with co-occurring sulfur-oxidizing symbionts in vestimentiferan tubeworms from a Mediterranean hydrothermal vent. Environ Microbiol 2014; 16:3638-56. [DOI: 10.1111/1462-2920.12427] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/31/2014] [Accepted: 02/09/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Judith Zimmermann
- Max Planck Institute for Marine Microbiology, Celsiusstrasse; Bremen Germany
| | - Christian Lott
- Max Planck Institute for Marine Microbiology, Celsiusstrasse; Bremen Germany
- Elba Field Station; HYDRA Institute for Marine Sciences; Fetovaia Campo nell'Elba (LI) Italy
| | - Miriam Weber
- Max Planck Institute for Marine Microbiology, Celsiusstrasse; Bremen Germany
- Elba Field Station; HYDRA Institute for Marine Sciences; Fetovaia Campo nell'Elba (LI) Italy
| | - Alban Ramette
- Max Planck Institute for Marine Microbiology, Celsiusstrasse; Bremen Germany
| | - Monika Bright
- Department of Limnology and Oceanography; University of Vienna; Althanstrasse Vienna Austria
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Celsiusstrasse; Bremen Germany
| | - Jillian M. Petersen
- Max Planck Institute for Marine Microbiology, Celsiusstrasse; Bremen Germany
| |
Collapse
|
13
|
Bright M, Eichinger I, von Salvini-Plawen L. The metatrochophore of a deep-sea hydrothermal vent vestimentiferan (Polychaeta: Siboglinidae). ORG DIVERS EVOL 2012; 13:163-188. [PMID: 26074729 PMCID: PMC4461187 DOI: 10.1007/s13127-012-0117-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 11/03/2012] [Indexed: 01/02/2023]
Abstract
Vestimentiferans (Siboglinidae, Polychaeta) live as juveniles and adults in an obligate mutualistic association with thiotrophic bacteria. Since their development is aposymbiotic, metatrochophores of vestimentiferans from the East Pacific Rise colonizing deep-sea hydrothermal vents are infected with the specific symbiont, develop the trophosome, and reduce their digestive system. To gain insight into the anatomy and ultrastructure and to compare this stage with metatrochophores from other siboglinids, we serial sectioned and reconstructed three specimens using light and transmission electron microscopy. The metatrochophore was composed of a prostomium, a small peristomium, two chaetigers (or two chaetigers and one additional segment without chaetae), and a minute pygidium. A digestive system and an intraepidermal nervous system were developed. Larval organs such as the prototroch, the neurotroch, and an apical organ were present, along with juvenile/adult organs such as tentacles, uncini, pyriform glands, and the anlage of the nephridial organ. We propose that in vestimentiferans, the vestimentum is the head arising from the prostomium, peristomium, and the anterior part of the first chaetiger. In frenulates, in contrast, the head is composed on the one hand of the cephalic lobe arising from the prostomium and on the other of the forepart developing from the peristomium and the anterior part of the first chaetiger. In frenulates the muscular septum between the forepart and trunk develops later than the first two chaetigers. Since this septum has no counterpart in vestimentiferans, the forepart-trunk border of frenulates is not considered homologous with the vestimentum-trunk border in vestimentiferans. The obturacular region in vestimentiferans does not appear to be a body region but rather the head appendages arising from the first chaetiger. In contrast, the tentacles in frenulates are prostomial head appendages. In both taxa, the trunk is the posterior part of the first chaetiger, and the opisthosoma is the following chaetigers and the pygidium. Comparisons with other polychaetes suggest that two larval segments are autapomorphic for the monophyletic Siboglinidae.
Collapse
Affiliation(s)
- Monika Bright
- Department of Marine Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Irmgard Eichinger
- Department of Marine Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | | |
Collapse
|
14
|
Nyholm SV, Song P, Dang J, Bunce C, Girguis PR. Expression and putative function of innate immunity genes under in situ conditions in the symbiotic hydrothermal vent tubeworm Ridgeia piscesae. PLoS One 2012; 7:e38267. [PMID: 22701617 PMCID: PMC3372519 DOI: 10.1371/journal.pone.0038267] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 05/05/2012] [Indexed: 11/19/2022] Open
Abstract
The relationships between hydrothermal vent tubeworms and sulfide-oxidizing bacteria have served as model associations for understanding chemoautotrophy and endosymbiosis. Numerous studies have focused on the physiological and biochemical adaptations that enable these symbioses to sustain some of the highest recorded carbon fixation rates ever measured. However, far fewer studies have explored the molecular mechanisms underlying the regulation of host and symbiont interactions, specifically those mediated by the innate immune system of the host. To that end, we conducted a series of studies where we maintained the tubeworm, Ridgeia piscesae, in high-pressure aquaria and examined global and quantitative changes in gene expression via high-throughput transcriptomics and quantitative real-time PCR (qPCR). We analyzed over 32,000 full-length expressed sequence tags as well as 26 Mb of transcript sequences from the trophosome (the organ that houses the endosymbiotic bacteria) and the plume (the gas exchange organ in contact with the free-living microbial community). R. piscesae maintained under conditions that promote chemoautotrophy expressed a number of putative cell signaling and innate immunity genes, including pattern recognition receptors (PRRs), often associated with recognizing microbe-associated molecular patterns (MAMPs). Eighteen genes involved with innate immunity, cell signaling, cell stress and metabolite exchange were further analyzed using qPCR. PRRs, including five peptidoglycan recognition proteins and a Toll-like receptor, were expressed significantly higher in the trophosome compared to the plume. Although PRRs are often associated with mediating host responses to infection by pathogens, the differences in expression between the plume and trophosome also implicate similar mechanisms of microbial recognition in interactions between the host and symbiont. We posit that regulation of this association involves a molecular "dialogue" between the partners that includes interactions between the host's innate immune system and the symbiont.
Collapse
Affiliation(s)
- Spencer V. Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail: (SVN); (PRG)
| | - Pengfei Song
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Jeanne Dang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Corey Bunce
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Peter R. Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (SVN); (PRG)
| |
Collapse
|
15
|
Gros O, Elisabeth NH, Gustave SDD, Caro A, Dubilier N. Plasticity of symbiont acquisition throughout the life cycle of the shallow-water tropical lucinid Codakia orbiculata (Mollusca: Bivalvia). Environ Microbiol 2012; 14:1584-95. [PMID: 22672589 DOI: 10.1111/j.1462-2920.2012.02748.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In marine invertebrates that acquire their symbionts from the environment, these are generally only taken up during early developmental stages. In the symbiosis between lucinid clams and their intracellular sulfur-oxidizing bacteria, it has been shown that the juveniles acquire their symbionts from an environmental stock of free-living symbiont forms, but it is not known if adult clams are still competent to take up symbiotic bacteria from the environment. In this study, we investigated symbiont acquisition in adult specimens of the lucinid clam Codakia orbiculata, using transmission electron microscopy, fluorescence in situ hybridization, immunohistochemistry and PCR. We show here that adults that had no detectable symbionts after starvation in aquaria for 6 months, rapidly reacquired symbionts within days after being returned to their natural environments in the field. Control specimens that were starved and then exposed to seawater aquaria with sulfide did not reacquire symbionts. This indicates that the reacquisition of symbionts in the starved clams returned to the field was not caused by high division rates of a small pool of remaining symbionts that we were not able to detect with the methods used here. Immunohistochemistry with an antibody against actin, a protein involved in the phagocytosis of intracellular bacteria, showed that actin was expressed at the apical ends of the gill cells that took up symbionts, providing further evidence that the symbionts were acquired from the environment. Interestingly, actin expression was also observed in symbiont-containing cells of untreated lucinids freshly collected from the environment, indicating that symbiont acquisition from the environment occurs continuously in these clams throughout their lifetime.
Collapse
Affiliation(s)
- Olivier Gros
- UMR-CNRS 7138, Systématique-Adaptation-Evolution, Equipe Biologie de la mangrove, Université des Antilles et de la Guyane, UFR des Sciences Exactes et Naturelles, Département de Biologie, Pointe-à-Pitre Cedex, Guadeloupe, France.
| | | | | | | | | |
Collapse
|
16
|
Dirks U, Gruber-Vodicka HR, Leisch N, Bulgheresi S, Egger B, Ladurner P, Ott JA. Bacterial symbiosis maintenance in the asexually reproducing and regenerating flatworm Paracatenula galateia. PLoS One 2012; 7:e34709. [PMID: 22509347 PMCID: PMC3317999 DOI: 10.1371/journal.pone.0034709] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/05/2012] [Indexed: 12/14/2022] Open
Abstract
Bacteriocytes set the stage for some of the most intimate interactions between animal and bacterial cells. In all bacteriocyte possessing systems studied so far, de novo formation of bacteriocytes occurs only once in the host development, at the time of symbiosis establishment. Here, we present the free-living symbiotic flatworm Paracatenula galateia and its intracellular, sulfur-oxidizing bacteria as a system with previously undescribed strategies of bacteriocyte formation and bacterial symbiont transmission. Using thymidine analogue S-phase labeling and immunohistochemistry, we show that all somatic cells in adult worms - including bacteriocytes - originate exclusively from aposymbiotic stem cells (neoblasts). The continued bacteriocyte formation from aposymbiotic stem cells in adult animals represents a previously undescribed strategy of symbiosis maintenance and makes P. galateia a unique system to study bacteriocyte differentiation and development. We also provide morphological and immunohistochemical evidence that P. galateia reproduces by asexual fragmentation and regeneration (paratomy) and, thereby, vertically transmits numerous symbiont-containing bacteriocytes to its asexual progeny. Our data support the earlier reported hypothesis that the symbiont population is subjected to reduced bottleneck effects. This would justify both the codiversification between Paracatenula hosts and their Candidatus Riegeria symbionts, and the slow evolutionary rates observed for several symbiont genes.
Collapse
Affiliation(s)
- Ulrich Dirks
- Department of Marine Biology, University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
17
|
Elisabeth NH, Gustave SD, Gros O. Cell proliferation and apoptosis in gill filaments of the lucinid Codakia orbiculata (Montagu, 1808) (Mollusca: Bivalvia) during bacterial decolonization and recolonization. Microsc Res Tech 2012; 75:1136-46. [DOI: 10.1002/jemt.22041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/22/2012] [Indexed: 11/06/2022]
|
18
|
Schimak MP, Toenshoff ER, Bright M. Simultaneous 16S and 18S rRNA fluorescence in situ hybridization (FISH) on LR White sections demonstrated in Vestimentifera (Siboglinidae) tubeworms. Acta Histochem 2012; 114:122-30. [PMID: 21507466 PMCID: PMC3278570 DOI: 10.1016/j.acthis.2011.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/18/2011] [Accepted: 03/20/2011] [Indexed: 12/01/2022]
Abstract
Traditional morphological identification of invertebrate marine species is limited in early life history stages for many taxa. In this study, we demonstrate, by example of Vestimentiferan tubeworms (Siboglinidae, Polychaeta), that the simultaneous fluorescence in situ hybridization (FISH) of both eukaryotic host and bacterial symbiont cells is possible on a single semi-thin (1 μm) section. This allows the identification of host specimens to species level as well as offering visualization of bacteria distributed within the host tissue. Previously published 18S rRNA host-specific oligonucleotide probes for Riftia pachyptila, Tevnia jerichonana and a newly designed Oasisia alvinae probe, as well as a 16S rRNA probe targeting symbionts found in all host species, were applied. A number of standard fixation and hybridization parameters were tested and optimized for the best possible signal intensity and cellular resolution. Ethanol conserved samples embedded in LR White low viscosity resin yielded the best results with regard to both signal intensity and resolution. We show that extended storage times of specimens does not affect the quality of signals attained by FISH and use our protocol to identify morphologically unidentifiable tubeworm individuals from a small data set, conforming to previous findings in succession studies of the Siboglinidae family.
Collapse
Affiliation(s)
- Mario P Schimak
- University of Vienna, Department of Marine Biology, Austria.
| | | | | |
Collapse
|
19
|
Abstract
Diverse bacterial lineages form beneficial infections with eukaryotic hosts. The origins, evolution, and breakdown of these mutualisms represent important evolutionary transitions. To examine these key events, we synthesize data from diverse interactions between bacteria and eukaryote hosts. Five evolutionary transitions are investigated, including the origins of bacterial associations with eukaryotes, the origins and subsequent stable maintenance of bacterial mutualism with hosts, the capture of beneficial symbionts via the evolution of strict vertical transmission within host lineages, and the evolutionary breakdown of bacterial mutualism. Each of these transitions has occurred many times in the history of bacterial-eukaryote symbiosis. We investigate these evolutionary events across the bacterial domain and also among a focal set of well studied bacterial mutualist lineages. Subsequently, we generate a framework for examining evolutionary transitions in bacterial symbiosis and test hypotheses about the selective, ecological, and genomic forces that shape these events.
Collapse
|
20
|
Eichinger I, Klepal W, Schmid M, Bright M. Organization and microanatomy of the Sclerolinum contortum trophosome (Polychaeta, Siboglinidae). THE BIOLOGICAL BULLETIN 2011; 220:140-153. [PMID: 21551450 DOI: 10.1086/bblv220n2p140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The trophosome-an organ especially evolved to accommodate symbiotic bacteria-is a key character of the polychaete family Siboglinidae. Astonishingly, the trophosomes vary in organization and origin between the different siboglinid taxa. The trophosome of the small genus Sclerolinum was nearly unknown until now. Here we investigated the trophosome of S. contortum from the Gulf of Mexico, using light and electron microscopy. We show that this organ derives from the visceral mesoderm and propose that the trophosome of the sister clade Vestimentifera and Sclerolinum is a homologous character. Like that of juvenile vestimentiferans, the trophosome of Sclerolinum trophosome is simply organized. This study reveals that the Sclerolinum trophosome exhibits two regions that differ in the organization of host tissue and the size and shape of the symbionts. We suggest that a specific cell cycle within the symbiont-housing organ is directed along the longitudinal body axis, with a region of proliferation anteriorly and a region of degradation posteriorly. Using Raman microspectroscopy we demonstrate that the endosymbionts of S. contortum from the Gulf of Mexico contain sulfur vesicles, and we argue for a chemoautotrophic sulfur-oxidizing metabolism.
Collapse
|
21
|
Katz S, Klepal W, Bright M. The Osedax trophosome: organization and ultrastructure. THE BIOLOGICAL BULLETIN 2011; 220:128-139. [PMID: 21551449 DOI: 10.1086/bblv220n2p128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The polychaete family Siboglinidae, which is currently construed as comprising the Frenulata, Monilifera (composed of Sclerolinum), Vestimentifera, and Osedax, has become known for its specialized symbiont-housing organ called the trophosome. This organ replaced the digestive system of the worms and is located in the elongated trunk region in Frenulata, Sclerolinum, and Vestimentifera. Currently two types of trophosomes have been described: in the taxa Frenulata and Sclerolinum the bacteriocytes originate from endoderm, and in Vestimentifera they originate from mesoderm. In Osedax, a trophosome was described as lacking (Rouse et al., 2004), but bacteriocytes are located in Osedax's characteristic root tissue. Here, we argue for a consistent name for the symbiont-housing tissue, namely trophosome, as in other siboglinids. In this study we provide morphological evidence that in Osedax the bacteriocytes are derived from somatic mesoderm. We show that the trophosome in Osedax is an apolar tissue composed of bacteriocytes and nonsymbiotic cells. As in vestimentiferans, a specific cell cycle was identified; however, in this case it is directed from the posterior to the anterior end of the worms instead of from the center toward the periphery. Comparison of all siboglinid trophosomes and re-evaluation of their body regions allows us to discuss whether the trophosomes are homologous and to hypothesize about the organization of the last common ancestor of Siboglinidae.
Collapse
Affiliation(s)
- Sigrid Katz
- Department of Marine Biology, Faculty of Life Sciences, University of Vienna, Austria
| | | | | |
Collapse
|