1
|
Zhang T, Ai D, Wei P, Xu Y, Bi Z, Ma F, Li F, Chen XJ, Zhang Z, Zou X, Guo Z, Zhao Y, Li JL, Ye M, Feng Z, Zhang X, Zheng L, Yu J, Li C, Tu T, Zeng H, Lei J, Zhang H, Hong T, Zhang L, Luo B, Li Z, Xing C, Jia C, Li L, Sun W, Ge WP. The subcommissural organ regulates brain development via secreted peptides. Nat Neurosci 2024; 27:1103-1115. [PMID: 38741020 DOI: 10.1038/s41593-024-01639-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
The subcommissural organ (SCO) is a gland located at the entrance of the aqueduct of Sylvius in the brain. It exists in species as distantly related as amphioxus and humans, but its function is largely unknown. Here, to explore its function, we compared transcriptomes of SCO and non-SCO brain regions and found three genes, Sspo, Car3 and Spdef, that are highly expressed in the SCO. Mouse strains expressing Cre recombinase from endogenous promoter/enhancer elements of these genes were used to genetically ablate SCO cells during embryonic development, resulting in severe hydrocephalus and defects in neuronal migration and development of neuronal axons and dendrites. Unbiased peptidomic analysis revealed enrichment of three SCO-derived peptides, namely, thymosin beta 4, thymosin beta 10 and NP24, and their reintroduction into SCO-ablated brain ventricles substantially rescued developmental defects. Together, these data identify a critical role for the SCO in brain development.
Collapse
Affiliation(s)
- Tingting Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Daosheng Ai
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Pingli Wei
- Department of Chemistry and School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Ying Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Zhanying Bi
- Chinese Institute for Brain Research, Beijing, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Fengfei Ma
- Department of Chemistry and School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Fengzhi Li
- Chinese Institute for Brain Research, Beijing, China
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xing-Jun Chen
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Zhaohuan Zhang
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaoxiao Zou
- Chinese Institute for Brain Research, Beijing, China
- Changping Laboratory, Beijing, China
| | - Zongpei Guo
- Chinese Institute for Brain Research, Beijing, China
| | - Yue Zhao
- Chinese Institute for Brain Research, Beijing, China
| | - Jun-Liszt Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Meng Ye
- Chinese Institute for Brain Research, Beijing, China
- Changping Laboratory, Beijing, China
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ziyan Feng
- Chinese Institute for Brain Research, Beijing, China
| | | | - Lijun Zheng
- Chinese Institute for Brain Research, Beijing, China
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jie Yu
- Chinese Institute for Brain Research, Beijing, China
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Chunli Li
- National Institute of Biological Sciences, Beijing, China
| | - Tianqi Tu
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, China
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jianfeng Lei
- Medical Imaging laboratory of Core Facility Center, Capital Medical University, Beijing, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, China
| | - Tao Hong
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Benyan Luo
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Zhen Li
- Chinese Institute for Brain Research, Beijing, China
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, Department of Bioinformatics, School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chenxi Jia
- State Key Laboratory of Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Lingjun Li
- Department of Chemistry and School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| | - Wenzhi Sun
- Chinese Institute for Brain Research, Beijing, China.
- School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing, China.
- Changping Laboratory, Beijing, China.
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Zhang T, Ai D, Wei P, Xu Y, Bi Z, Ma F, Li F, Chen XJ, Zhang Z, Zou X, Guo Z, Zhao Y, Li JL, Ye M, Feng Z, Zhang X, Zheng L, Yu J, Li C, Tu T, Zeng H, Lei J, Zhang H, Hong T, Zhang L, Luo B, Li Z, Xing C, Jia C, Li L, Sun W, Ge WP. The subcommissural organ regulates brain development via secreted peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.30.587415. [PMID: 38585720 PMCID: PMC10996762 DOI: 10.1101/2024.03.30.587415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The subcommissural organ (SCO) is a gland located at the entrance of the aqueduct of Sylvius in the brain. It exists in species as distantly related as amphioxus and humans, but its function is largely unknown. To explore its function, we compared transcriptomes of SCO and non-SCO brain regions and found three genes, Sspo, Car3, and Spdef, that are highly expressed in the SCO. Mouse strains expressing Cre recombinase from endogenous promoter/enhancer elements of these genes were used to genetically ablate SCO cells during embryonic development, resulting in severe hydrocephalus and defects in neuronal migration and development of neuronal axons and dendrites. Unbiased peptidomic analysis revealed enrichment of three SCO-derived peptides, namely thymosin beta 4, thymosin beta 10, and NP24, and their reintroduction into SCO-ablated brain ventricles substantially rescued developmental defects. Together, these data identify a critical role for the SCO in brain development.
Collapse
Affiliation(s)
- Tingting Zhang
- Academy for Advanced Interdisciplinary Studies (AAIS), Peking University, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Daosheng Ai
- Academy for Advanced Interdisciplinary Studies (AAIS), Peking University, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Pingli Wei
- Department of Chemistry and School of Pharmacy, University of Wisconsin-Madison, Wisconsin 53705, USA
| | - Ying Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Zhanying Bi
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Fengfei Ma
- Department of Chemistry and School of Pharmacy, University of Wisconsin-Madison, Wisconsin 53705, USA
| | - Fengzhi Li
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing 100875, China
| | - Xing-jun Chen
- Academy for Advanced Interdisciplinary Studies (AAIS), Peking University, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Zhaohuan Zhang
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Xiaoxiao Zou
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
- Changping Laboratory, Beijing 102206, China
| | - Zongpei Guo
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Yue Zhao
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Jun-Liszt Li
- Academy for Advanced Interdisciplinary Studies (AAIS), Peking University, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Meng Ye
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Changping Laboratory, Beijing 102206, China
| | - Ziyan Feng
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Xinshuang Zhang
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Lijun Zheng
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jie Yu
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Chunli Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Tianqi Tu
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing 100053, China
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, Washington 98109, USA
| | - Jianfeng Lei
- Medical Imaging laboratory of Core Facility Center, Capital Medical University, Beijing 100054, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing 100053, China
| | - Tao Hong
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing 100053, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Benyan Luo
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zhen Li
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, Department of Bioinformatics, School of Public Health, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Chenxi Jia
- State Key Laboratory of Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lingjun Li
- Department of Chemistry and School of Pharmacy, University of Wisconsin-Madison, Wisconsin 53705, USA
| | - Wenzhi Sun
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Woo-ping Ge
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing 100053, China
- Changping Laboratory, Beijing 102206, China
| |
Collapse
|
3
|
Stanic K, Vera A, González M, Recabal A, Astuya A, Torrejón M, Montecinos H, Caprile T. Complementary expression of EphA7 and SCO-spondin during posterior commissure development. Front Neuroanat 2014; 8:49. [PMID: 25009468 PMCID: PMC4068196 DOI: 10.3389/fnana.2014.00049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/02/2014] [Indexed: 12/05/2022] Open
Abstract
Bilaterally symmetric organisms need to exchange information between the two sides of their bodies in order to integrate sensory inputs and coordinate motor control. This exchange occurs through commissures formed by neurons that project axons across the midline to the contralateral side of the central nervous system. The posterior commissure is the first transversal axonal tract of the embryonic vertebrate brain. It is located in the dorsal portion of the prosomere 1, at the caudal diencephalon. The axons of the posterior commissure principally come from neurons of ventrolateral and dorsolateral pretectal nuclei (parvocellular and magnocellular nucleus of the posterior commissure, respectively) that extend their axons toward the dorsal region. The trajectory of these axons can be divided into the following three stages: (1) dorsal axon extension towards the lateral roof plate; (2) fasciculation in the lateral roof plate; and (3) midline decision of turning to the ipsilateral side or continuing to the opposite side. The mechanisms and molecules that guide the axons during these steps are unknown. In the present work, immunohistochemical and in situ hybridization analyses were performed, with results suggesting the participation of EphA7 in guiding axons from the ventral to the dorsal region of the prosomere 1 through the generation of an axonal corridor limited by repulsive EphA7 walls. At the lateral roof plate, the axons became fasciculated in presence of SCO-spondin until reaching the midline. Finally, EphA7 expression was observed in the diencephalic midline roof plate, specifically in the region where some axons turn to the ipsilateral side, suggesting its participation in this decision. In summary, the present work proposes a mechanism of posterior commissure formation orchestrated by the complementary expression of the axon guidance cues SCO-spondin and EphA7.
Collapse
Affiliation(s)
- Karen Stanic
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción , Chile
| | - América Vera
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción , Chile
| | - Melissa González
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción , Chile
| | - Antonia Recabal
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción , Chile
| | - Allison Astuya
- Laboratory of Cell Culture and Marine Genomics, Marine Biotechnology Unit, Faculty of Natural and Oceanographic Sciences and Program COPAS Sur-Austral, University of Concepción, Concepción , Chile
| | - Marcela Torrejón
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción , Chile
| | - Hernán Montecinos
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción , Chile
| | - Teresa Caprile
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción , Chile
| |
Collapse
|
4
|
Vera A, Stanic K, Montecinos H, Torrejón M, Marcellini S, Caprile T. SCO-spondin from embryonic cerebrospinal fluid is required for neurogenesis during early brain development. Front Cell Neurosci 2013; 7:80. [PMID: 23761733 PMCID: PMC3669746 DOI: 10.3389/fncel.2013.00080] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 05/09/2013] [Indexed: 02/04/2023] Open
Abstract
The central nervous system (CNS) develops from the neural tube, a hollow structure filled with embryonic cerebrospinal fluid (eCSF) and surrounded by neuroepithelial cells. Several lines of evidence suggest that the eCSF contains diffusible factors regulating the survival, proliferation, and differentiation of the neuroepithelium, although these factors are only beginning to be uncovered. One possible candidate as eCSF morphogenetic molecule is SCO-spondin, a large glycoprotein whose secretion by the diencephalic roof plate starts at early developmental stages. In vitro, SCO-spondin promotes neuronal survival and differentiation, but its in vivo function still remains to be elucidated. Here we performed in vivo loss of function experiments for SCO-spondin during early brain development by injecting and electroporating a specific shRNA expression vector into the neural tube of chick embryos. We show that SCO-spondin knock down induces an increase in neuroepithelial cells proliferation concomitantly with a decrease in cellular differentiation toward neuronal lineages, leading to hyperplasia in both the diencephalon and the mesencephalon. In addition, SCO-spondin is required for the correct morphogenesis of the posterior commissure and pineal gland. Because SCO-spondin is secreted by the diencephalon, we sought to corroborate the long-range function of this protein in vitro by performing gain and loss of function experiments on mesencephalic explants. We find that culture medium enriched in SCO-spondin causes an increased neurodifferentiation of explanted mesencephalic region. Conversely, inhibitory antibodies against SCO-spondin cause a reduction in neurodifferentiation and an increase of mitosis when such explants are cultured in eCSF. Our results suggest that SCO-spondin is a crucial eCSF diffusible factor regulating the balance between proliferation and differentiation of the brain neuroepithelial cells.
Collapse
Affiliation(s)
- A Vera
- Department of Cell Biology, Faculty of Biological Sciences, University of Concepción Biobío Region, Chile
| | | | | | | | | | | |
Collapse
|
5
|
Grondona JM, Hoyo-Becerra C, Visser R, Fernández-Llebrez P, López-Ávalos MD. The subcommissural organ and the development of the posterior commissure. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 296:63-137. [PMID: 22559938 DOI: 10.1016/b978-0-12-394307-1.00002-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Growing axons navigate through the developing brain by means of axon guidance molecules. Intermediate targets producing such signal molecules are used as guideposts to find distal targets. Glial, and sometimes neuronal, midline structures represent intermediate targets when axons cross the midline to reach the contralateral hemisphere. The subcommissural organ (SCO), a specialized neuroepithelium located at the dorsal midline underneath the posterior commissure, releases SCO-spondin, a large glycoprotein belonging to the thrombospondin superfamily that shares molecular domains with axonal pathfinding molecules. Several evidences suggest that the SCO could be involved in the development of the PC. First, both structures display a close spatiotemporal relationship. Second, certain mutants lacking an SCO present an abnormal PC. Third, some axonal guidance molecules are expressed by SCO cells. Finally, SCO cells, the Reissner's fiber (the aggregated form of SCO-spondin), or synthetic peptides from SCO-spondin affect the neurite outgrowth or neuronal aggregation in vitro.
Collapse
Affiliation(s)
- Jesús M Grondona
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Spain.
| | | | | | | | | |
Collapse
|
6
|
Chatoui H, El Hiba O, Elgot A, Gamrani H. The rat SCO responsiveness to prolonged water deprivation: Implication of Reissner's fiber and serotonin system. C R Biol 2012; 335:253-60. [DOI: 10.1016/j.crvi.2012.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/24/2012] [Accepted: 03/25/2012] [Indexed: 10/28/2022]
|
7
|
Stanic K, Montecinos H, Caprile T. Subdivisions of chick diencephalic roof plate: implication in the formation of the posterior commissure. Dev Dyn 2011; 239:2584-93. [PMID: 20730872 DOI: 10.1002/dvdy.22387] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The subcommissural organ (SCO) is a roof plate differentiation located in the caudal diencephalon under the posterior commissure (PC). A role for SCO and its secretory product, SCO-spondin, in the formation of the PC has been proposed. Here, we provide immunohistochemical evidence to suggest that SCO is anatomically divided in a bilateral region positive for SCO-spondin that surrounds a negative medial region. Remarkably, axons contacting the lateral region are highly fasciculated, in sharp contrast with the defasciculated axons of the medial region. In addition, lateral axon fascicles run toward the midline inside of tunnels limited by the basal prolongations of SCO cells and extracellular SCO-spondin. Our in vitro data in collagen gel matrices show that SCO-spondin induces axonal growth and fasciculation of pretectal explants. Together, our findings support the idea that SCO-spondin participates in the guidance and fasciculation of axons of the PC.
Collapse
Affiliation(s)
- Karen Stanic
- Department of Cell Biology, University of Concepción, Chile
| | | | | |
Collapse
|
8
|
Barros CS, Franco SJ, Müller U. Extracellular matrix: functions in the nervous system. Cold Spring Harb Perspect Biol 2011; 3:a005108. [PMID: 21123393 DOI: 10.1101/cshperspect.a005108] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An astonishing number of extracellular matrix glycoproteins are expressed in dynamic patterns in the developing and adult nervous system. Neural stem cells, neurons, and glia express receptors that mediate interactions with specific extracellular matrix molecules. Functional studies in vitro and genetic studies in mice have provided evidence that the extracellular matrix affects virtually all aspects of nervous system development and function. Here we will summarize recent findings that have shed light on the specific functions of defined extracellular matrix molecules on such diverse processes as neural stem cell differentiation, neuronal migration, the formation of axonal tracts, and the maturation and function of synapses in the peripheral and central nervous system.
Collapse
Affiliation(s)
- Claudia S Barros
- The Scripps Research Institute, Department of Cell Biology, Dorris Neuroscience Center, La Jolla, California 92037, USA
| | | | | |
Collapse
|
9
|
Bermúdez-Silva FJ, Pérez J, Cifuentes M, Pérez-Martín M, Grondona JM, López-Avalos MD, Estivill-Torrús G, Fernández-Llebrez P. A sensitive method to analyse the effect of putative regulatory ligands on the release of glycoprotein from primary cultures of dispersed bovine subcommissural organ cells. J Neurosci Methods 2010; 191:239-43. [PMID: 20619293 DOI: 10.1016/j.jneumeth.2010.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/14/2010] [Accepted: 07/01/2010] [Indexed: 11/29/2022]
Abstract
The subcommissural organ (SCO) releases into the cerebrospinal fluid (CSF) large glycoproteins that polymerize forming the Reissner's fibre (RF), which is involved in CSF circulation and homeostasis. We obtained high purity primary cultures of bovine secretory SCO cells and measured glycoprotein release by a reliable and sensitive ELISA method. We also analysed the effect of regulatory ligands known to control the secretory activity of the SCO. Cells cultured for short time (4h) released a high amount of glycoproteins that decreased with time. In young cultures, ATP increased and serotonin inhibited secretion rate. By contrast the acetylcholine agonist carbachol and high potassium did not evoke any detectable change in SCO glycoprotein release. These results support not only the suitability of the methodological approach but an important role of both ATP and serotonin in regulating SCO secretory activity as well.
Collapse
Affiliation(s)
- F J Bermúdez-Silva
- Laboratorio de Medicina Regenerativa, Fundación IMABIS, Avenida Carlos Haya 82, 29010 Málaga, Spain
| | | | | | | | | | | | | | | |
Collapse
|