1
|
Huang X, Wei B, Chen L, Yang L, Zheng C, Wang Y. Degeneration mechanisms and advancements in optimization for preparation and crosslinking strategy of pericardium-based bioprosthetic heart valves. Acta Biomater 2025:S1742-7061(25)00386-1. [PMID: 40419072 DOI: 10.1016/j.actbio.2025.05.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 05/01/2025] [Accepted: 05/23/2025] [Indexed: 05/28/2025]
Abstract
Valvular heart disease (VHD), clinically manifested as the malfunction of heart valves, greatly threatens public health worldwide. The morbidity and mortality of VHD increase significantly with age, and the high prevalence of VHD in aging society has prompted the urgency for effective treatment. Prosthetic heart valve replacement is currently recognized as the gold standard for VHD treatment. Bioprosthetic heart valves (BHVs), generally manufactured from glutaraldehyde crosslinked xenogeneic tissue, exhibited better hemodynamics and lower thrombogenicity than mechanical heart valves (MHVs) and could be implanted by transcatheter valve replacement systems, which markedly improved the efficiency of VHD therapy, especially for the elderly patients. However, BHVs degenerate within 10-15 years after implantation, which is greatly associated with their defects including cytotoxicity, calcification, immune response, matrix degradation, mechanical damage, and thrombosis. To prolong the service life of BHVs, recent studies have developed a series of innovative modification strategies to improve the biocompatibility, mechanical performance, matrix components stability, anticalcification, and antithrombotic properties of conventional glutaraldehyde crosslinked BHVs. Moreover, a series of new crosslinking and modification strategies have been proposed and developed to fabricate non-glutaraldehyde crosslinked BHVs with good stability, biocompatibility, hemocompatibility, anticalcification property, durability, and hydrodynamics. In this review, we first summarized the defects of BHVs and the related reasons from the perspective of biomaterials, and then comprehensively detailed the functional modification strategies for BHVs based on glutaraldehyde crosslinking. We provided detailed insights into novel non-glutaraldehyde crosslinking and modification strategies for BHVs. Finally, the current challenges and prospects of BHVs were also discussed. STATEMENT OF SIGNIFICANCE: Bioprosthetic heart valves (BHVs) currently face challenges such as cytotoxicity, thrombosis, calcification, and immunoinflammatory responses, which contribute to structural valve degeneration and reduce the longevity of BHVs. This review provides a comprehensive introduction to the detailed defects associated with glutaraldehyde crosslinked BHVs from the perspective of biomaterials. It then thoroughly elaborates on the modification strategies based on glutaraldehyde crosslinking, as well as detailed insights into novel non-glutaraldehyde crosslinking strategies for BHVs. Finally, the challenges and prospects facing BHVs are discussed.
Collapse
Affiliation(s)
- Xueyu Huang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, China
| | - Bangquan Wei
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, China
| | - Lepeng Chen
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, China
| | - Li Yang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, China
| | - Cheng Zheng
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, China; Research Unit of Minimally Invasive Treatment of Structural Heart Disease, Chinese Academy of Medical Sciences.
| |
Collapse
|
2
|
Pruchniewski M, Sawosz E, Sosnowska-Ławnicka M, Ostrowska A, Łojkowski M, Koczoń P, Nakielski P, Kutwin M, Jaworski S, Strojny-Cieślak B. Nanostructured graphene oxide enriched with metallic nanoparticles as a biointerface to enhance cell adhesion through mechanosensory modifications. NANOSCALE 2023; 15:18639-18659. [PMID: 37975795 DOI: 10.1039/d3nr03581f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Nanostructuring is a process involving surface manipulation at the nanometric level, which improves the mechanical and biological properties of biomaterials. Specifically, it affects the mechanotransductive perception of the microenvironment of cells. Mechanical force conversion into an electrical or chemical signal contributes to the induction of a specific cellular response. The relationship between the cells and growth surface induces a biointerface-modifying cytophysiology and consequently a therapeutic effect. In this study, we present the fabrication of graphene oxide (GO)-based nanofilms decorated with metallic nanoparticles (NPs) as potential coatings for biomaterials. Our investigation showed the effect of decorating GO with metallic NPs for the modification of the physicochemical properties of nanostructures in the form of nanoflakes and nanofilms. A comprehensive biocompatibility screening panel revealed no disturbance in the metabolic activity of human fibroblasts (HFFF2) and bone marrow stroma cells (HS-5) cultivated on the GO nanofilms decorated with gold and copper NPs, whereas a significant cytotoxic effect of the GO nanocomplex decorated with silver NPs was demonstrated. The GO nanofilm decorated with gold NPs beneficially managed early cell adhesion as a result of the transient upregulation of α1β5 integrin expression, acceleration of cellspreading, and formation of elongated filopodia. Additionally, the cells, sensing the substrate derived from the nanocomplex enriched with gold NPs, showed reduced elasticity and altered levels of vimentin expression. In the future, GO nanocomplexes decorated with gold NPs can be incorporated in the structure of architecturally designed biomimetic biomaterials as biocompatible nanostructuring agents with proadhesive properties.
Collapse
Affiliation(s)
- Michał Pruchniewski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland.
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland.
| | - Malwina Sosnowska-Ławnicka
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland.
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland.
| | - Maciej Łojkowski
- Faculty of Material Sciences and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Kutwin
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland.
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland.
| | - Barbara Strojny-Cieślak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland.
| |
Collapse
|
3
|
Reid JA, Dwyer KD, Schmitt PR, Soepriatna AH, Coulombe KLK, Callanan A. Architected fibrous scaffolds for engineering anisotropic tissues. Biofabrication 2021; 13:10.1088/1758-5090/ac0fc9. [PMID: 34186522 PMCID: PMC8686077 DOI: 10.1088/1758-5090/ac0fc9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Mimicking the native three-dimensional microenvironment is of crucial importance when biofabricating a new healthcare material. One aspect of the native tissue that is often omitted when designing a suitable scaffold is its anisotropy. Not only is matching native mechanical properties important when designing implantable scaffolds or healthcare materials, but matching physiological structure is also important as many cell populations respond differently to fiber orientation. Therefore, novel aligned electrospun scaffolds with varying fiber angles and spacing of bundles were created and mechanically characterized. Through controlling the angle between the fibers in each layer of the scaffold, a range of different physiological anisotropic mechanical properties were achieved that encompasses values found in native tissues. Extrapolation of this mechanical data allowed for any native tissue's anisotropic Young's modulus to be mimicked by electrospinning fibers at a particular angle. These electrospun scaffolds were then incorporated with cell-laden hydrogels to create hybrid structures that contain the benefits of both scaffolding techniques with the ability to encapsulate cells in the hydrogel. To conclude, this study develops a novel bundled fiber scaffold that was architected to yield anisotropic properties matching native tissues.
Collapse
Affiliation(s)
- James Alexander Reid
- Institure for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, United States of America
- Joint first authorship
| | - Kiera D Dwyer
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, United States of America
- Joint first authorship
| | - Phillip R Schmitt
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, United States of America
| | - Arvin H Soepriatna
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, United States of America
| | - Kareen LK Coulombe
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, United States of America
| | - Anthony Callanan
- Institure for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Development of a decellularized meniscus matrix-based nanofibrous scaffold for meniscus tissue engineering. Acta Biomater 2021; 128:175-185. [PMID: 33823327 DOI: 10.1016/j.actbio.2021.03.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/25/2022]
Abstract
The meniscus plays a critical role in knee mechanical function but is commonly injured given its central load bearing role. In the adult, meniscus repair is limited, given the low number of endogenous cells, the density of the matrix, and the limited vascularity. Menisci are fibrocartilaginous tissues composed of a micro-/nano- fibrous extracellular matrix (ECM) and a mixture of chondrocyte-like and fibroblast-like cells. Here, we developed a fibrous scaffold system that consists of bioactive components (decellularized meniscus ECM (dME) within a poly(e-caprolactone) material) fashioned into a biomimetic morphology (via electrospinning) to support and enhance meniscus cell function and matrix production. This work supports that the incorporation of dME into synthetic nanofibers increased hydrophilicity of the scaffold, leading to enhanced meniscus cell spreading, proliferation, and fibrochondrogenic gene expression. This work identifies a new biomimetic scaffold for therapeutic strategies to substitute or replace injured meniscus tissue. STATEMENT OF SIGNIFICANCE: In this study, we show that a scaffold electrospun from a combination of synthetic materials and bovine decellularized meniscus ECM provides appropriate signals and a suitable template for meniscus fibrochondrocyte spreading, proliferation, and secretion of collagen and proteoglycans. Material characterization and in vitro cell studies support that this new bioactive material is susceptible to enzymatic digestion and supports meniscus-like tissue formation.
Collapse
|
5
|
Sankar D, Mony U, Rangasamy J. Combinatorial effect of plasma treatment, fiber alignment and fiber scale of poly (ε-caprolactone)/collagen multiscale fibers in inducing tenogenesis in non-tenogenic media. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112206. [PMID: 34225858 DOI: 10.1016/j.msec.2021.112206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022]
Abstract
Tendon being a hypocellular, low vascularized tissue often requires assistance for restoration after complete tear. Tendon tissue engineering aims in the development of suitable scaffold that could support the regeneration of tendon after damage. The success of such scaffolds is dependent on its integration with the native tissue which in turn is influenced by the cell-material interaction. In this work aligned poly(ε-caprolactone)/collagen (PCL/collagen) multiscale fibers were developed and plasma treatment using argon, nitrogen and its combination was accessed for inducing tenogenic differentiation in mesenchymal stem cells. The developed fibers mimicked tendon extracellular matrix (ECM) which upon plasma treatment maintained moderate hydrophilicity. Oxygen and nitrogen containing groups were observed to be incorporated after argon and nitrogen treatment respectively. Statistically significant (p < 0.001) enhancement was observed in average and root mean square (RMS) roughness after plasma treatment with the maximum in argon treated fibers. Vitronectin was competitively (statistically significant, p < 0.05) adsorbed after argon and combination treatment whereas nitrogen treatment led to the competitive adsorption of fibronectin (statistically significant, p < 0.05). Human mesenchymal stem cells (hMSCs) showed enhanced proliferation and attachment on plasma treated fibers. Increased porosity due to the presence of sacrificial collagen nanofibers improved cell infiltration which was further enhanced upon plasma treatment. RhoA activation was observed (statistically significant, p < 0.05) on aligned PCL/collagen multiscale fibers and PCL microfibers, which proved its impact on tenogenic differentiation. Further enhancement in rhoA expression was observed on argon (p < 0.01) and combination plasma (p < 0.05) treated fibers. Tenogenic differentiation of hMSCs was enhanced (statistically significant) on argon plasma treated aligned fibers which was confirmed by the expression of scleraxis, mohawk (early markers) and tenomodulin (late marker) at protein level and mohawk, collagen I, collagen III (early markers), thrombospondin 4 and tenascin C (late markers) at gene level. Thus argon plasma treatment on aligned fibers is an effective method to induce tenogenesis even in non-tenogenic media.
Collapse
Affiliation(s)
- Deepthi Sankar
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Ullas Mony
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India.
| | - Jayakumar Rangasamy
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India.
| |
Collapse
|
6
|
Preparation and Characterization of Electrospun Collagen Based Composites for Biomedical Applications. MATERIALS 2020; 13:ma13183961. [PMID: 32906790 PMCID: PMC7559754 DOI: 10.3390/ma13183961] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 01/22/2023]
Abstract
Electrospinning is a widely used technology for obtaining nanofibers from synthetic and natural polymers. In this study, electrospun mats from collagen (C), polyethylene terephthalate (PET) and a blend of the two (C-PET) were prepared and stabilized through a cross-linking process. The aim of this research was to prepare and characterize the nanofiber structure by Fourier-transform infrared with attenuated total reflectance spectroscopy (FTIR-ATR) in close correlation with dynamic vapor sorption (DVS). The studies indicated that C-PET nanofibrous mats shows improved mechanical properties compared to collagen samples. A correlation between morphological, structural and cytotoxic proprieties of the studied samples were emphasized and the results suggest that the prepared nanofiber mats could be a promising candidate for tissue-engineering applications, especially dermal applications.
Collapse
|
7
|
Munj HR, Lannutti JJ, Tomasko DL. Understanding drug release from PCL/gelatin electrospun blends. J Biomater Appl 2016; 31:933-949. [DOI: 10.1177/0885328216673555] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Electrospinning is one of the efficient processes to fabricate polymeric fibrous scaffolds for several biomedical applications. Several studies have published to demonstrate drug release from electrospun scaffolds. Blends of natural and synthetic electrospun fibers provide excellent platform to combine mechanical and bioactive properties. Drug release from polymer blends is a complex process. Drug release from polymer can be dominated by one or more of following mechanisms: polymer erosion, relaxation, and degradation. In this study, electrospun polycaprolactone (PCL)–gelatin blends are investigated to understand release mechanism of Rhodamine B dye. Also, this article summarizes the effect of high-pressure carbon dioxide on drug loading and release from PCL–gelatin fibers. Results indicate that release media diffusion is a dominant mechanism for PCL–gelatin electrospun fibers. Thickness of electrospun mat becomes critical for blends with gelatin. As gelatin is highly soluble in water and has tendency of gelation, it affects diffusion of release media in and out of scaffold. This article is a key step forward in understanding release from electrospun blends.
Collapse
Affiliation(s)
- Hrishikesh R Munj
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, USA
| | - John J Lannutti
- Materials Science and Engineering, Ohio State University, Columbus, OH, USA
| | - David L Tomasko
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
Diaz Quiroz JF, Li Y, Aparicio C, Echeverri K. Development of a 3D matrix for modeling mammalian spinal cord injury in vitro. Neural Regen Res 2016; 11:1810-1815. [PMID: 28123426 PMCID: PMC5204238 DOI: 10.4103/1673-5374.194751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Spinal cord injury affects millions of people around the world, however, limited therapies are available to improve the quality of life of these patients. Spinal cord injury is usually modeled in rats and mice using contusion or complete transection models and this has led to a deeper understanding of the molecular and cellular complexities of the injury. However, it has not to date led to development of successful novel therapies, this is in part due to the complexity of the injury and the difficulty of deciphering the exact roles and interactions of different cells within this complex environment. Here we developed a collagen matrix that can be molded into the 3D tubular shape with a lumen and can hence support cell interactions in a similar architecture to a spinal cord. We show that astrocytes can be successfully grown on this matrix in vitro and when injured, the cells respond as they do in vivo and undergo reactive gliosis, one of the steps that lead to formation of a glial scar, the main barrier to spinal cord regeneration. In the future, this system can be used to quickly assess the effect of drugs on glial scar protein activity or to perform live imaging of labeled cells after exposure to drugs.
Collapse
Affiliation(s)
- Juan Felipe Diaz Quiroz
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA; Current address: Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Yuping Li
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Conrado Aparicio
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Karen Echeverri
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
9
|
Thomas V, Nozik D, Patel H, Singh RK, Vohra YK. Biohybrid Fibro-Porous Vascular Scaffolds: Effect of Crosslinking on Properties. ACTA ACUST UNITED AC 2015; 1718. [PMID: 26082566 DOI: 10.1557/opl.2015.490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tubular grafts were fabricated from blends of polycaprolactone (PCL) and poly(glycolide -co-caprolactone) (PGC) polymers and coated with an extracellular matrix containing collagens, laminin, and proteoglycans, but not growth factors (HuBiogel™). Multifunctional scaffolds from polymer blends and membrane proteins provide the necessary biomechanics and biological functions for tissue regeneration. Two crosslinking agents, a natural crosslinker namely genipin (Gp) and a carbodiimide reagent namely 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), were used for further stabilizing the protein matrix and the effect of crosslinking was evaluated for structural, morphological, mechanical properties using SEM, DSC and DMA. SEM images and fiber diameter distribution showed fiber-size between 0.2 µm to 1 µm with the majority of fiber diameters being under 500 nm, indicating upper range of protein fiber-sizes (for example, collagen fibers in extracellular matrix are in 50 to 500 nm diameter range). HB coating did not affect the mechanical properties, but increased its hydrophilicity of the graft. Overall data showed that PCL/PGC blends with 3:1 mass ratio exhibited mechanical properties comparable to those of human native arteries (tensile strength of 1-2 MPa and Young's modulus of <10 MPa). Additionally, the effect of crosslinking on coating stability was investigated to assure the retention of proteins on scaffold for effective cell-matrix interactions.
Collapse
Affiliation(s)
- Vinoy Thomas
- Department of Materials Science & Engineering, University of Alabama at Birmingham (UAB), BEC 254, 1720 2 Avenue South, Birmingham, AL 35294, U.S.A ; UAB Center for Nanoscale Materials and Biointegration, Birmingham, AL 35294, U.S.A
| | - Danna Nozik
- Brown University, Providence, RI 02912, U.S.A
| | - Harsh Patel
- Department of Materials Science & Engineering, University of Alabama at Birmingham (UAB), BEC 254, 1720 2 Avenue South, Birmingham, AL 35294, U.S.A
| | - Raj K Singh
- Vivo Bioscience, Inc. Birmingham, AL 35205, U.S.A
| | - Yogesh K Vohra
- UAB Center for Nanoscale Materials and Biointegration, Birmingham, AL 35294, U.S.A
| |
Collapse
|
10
|
He C, Nie W, Feng W. Engineering of biomimetic nanofibrous matrices for drug delivery and tissue engineering. J Mater Chem B 2014; 2:7828-7848. [PMID: 32262073 DOI: 10.1039/c4tb01464b] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biomimetic nanofibers have emerged as promising candidates for drug delivery and tissue engineering applications. In this paper, recent advances on the fabrication and application of biomimetic nanofibers as drug carriers and scaffolding materials are reviewed. First, we delineate the three popular nanofiber fabrication techniques including electrospinning, phase separation and molecular self-assembly, covering the principal materials used for different techniques and surface functionalization strategies for nanofibers. Furthermore, we focus our interest on the nanofiber-based delivery strategies and underlying kinetics for growth factors and other bioactive molecules, following which we summarize the recent advances in the development of these nanofibrous matrices for bone, vascular and neural tissue engineering applications. Finally, research challenges and future trends in the related areas are discussed.
Collapse
Affiliation(s)
- Chuanglong He
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| | | | | |
Collapse
|
11
|
|
12
|
Lyu S, Huang C, Yang H, Zhang X. Electrospun fibers as a scaffolding platform for bone tissue repair. J Orthop Res 2013; 31:1382-9. [PMID: 23580466 PMCID: PMC4083683 DOI: 10.1002/jor.22367] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 03/11/2013] [Indexed: 02/04/2023]
Abstract
The purpose of the study is to investigate the effects of electrospun fiber diameter and orientation on differentiation and ECM organization of bone marrow stromal cells (BMSCs), in attempt to provide rationale for fabrication of a periosteum mimetic for bone defect repair. Cellular growth, differentiation, and ECM organization were analyzed on PLGA-based random and aligned fibers using fluorescent microscopy, gene analyses, electron scanning microscopy (SEM), and multiphoton laser scanning microscopy (MPLSM). BMSCs on aligned fibers had a reduced number of ALP+ colony at Day 10 as compared to the random fibers of the same size. However, the ALP+ area in the aligned fibers increased to a similar level as the random fibers at Day 21 following stimulation with osteogenic media. Compared with the random fibers, BMSCs on the aligned fibers showed a higher expression of OSX and RUNX2. Analyses of ECM on decellularized spun fibers showed highly organized ECM arranged according to the orientation of the spun fibers, with a broad size distribution of collagen fibers in a range of 40-2.4 μm. Taken together, our data support the use of submicron-sized electrospun fibers for engineering of oriented fibrous tissue mimetic, such as periosteum, for guided bone repair and reconstruction.
Collapse
Affiliation(s)
- Seungyoun Lyu
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
| | - Chunlan Huang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Hong Yang
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
13
|
Baylan N, Bhat S, Ditto M, Lawrence JG, Lecka-Czernik B, Yildirim-Ayan E. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold. Biomed Mater 2013; 8:045011. [PMID: 23804651 DOI: 10.1088/1748-6041/8/4/045011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is an increasing demand for an injectable cell coupled three-dimensional (3D) scaffold to be used as bone fracture augmentation material. To address this demand, a novel injectable osteogenic scaffold called PN-COL was developed using cells, a natural polymer (collagen type-I), and a synthetic polymer (polycaprolactone (PCL)). The injectable nanofibrous PN-COL is created by interspersing PCL nanofibers within pre-osteoblast cell embedded collagen type-I. This simple yet novel and powerful approach provides a great benefit as an injectable bone scaffold over other non-living bone fracture stabilization polymers, such as polymethylmethacrylate and calcium content resin-based materials. The advantages of injectability and the biomimicry of collagen was coupled with the structural support of PCL nanofibers, to create cell encapsulated injectable 3D bone scaffolds with intricate porous internal architecture and high osteoconductivity. The effects of PCL nanofiber inclusion within the cell encapsulated collagen matrix has been evaluated for scaffold size retention and osteocompatibility, as well as for MC3T3-E1 cells osteogenic activity. The structural analysis of novel bioactive material proved that the material is chemically stable enough in an aqueous solution for an extended period of time without using crosslinking reagents, but it is also viscous enough to be injected through a syringe needle. Data from long-term in vitro proliferation and differentiation data suggests that novel PN-COL scaffolds promote the osteoblast proliferation, phenotype expression, and formation of mineralized matrix. This study demonstrates for the first time the feasibility of creating a structurally competent, injectable, cell embedded bone tissue scaffold. Furthermore, the results demonstrate the advantages of mimicking the hierarchical architecture of native bone with nano- and micro-size formation through introducing PCL nanofibers within macron-size collagen fibers and in promoting osteoblast phenotype progression for bone regeneration.
Collapse
Affiliation(s)
- Nuray Baylan
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA
| | | | | | | | | | | |
Collapse
|
14
|
Alvarez-Perez MA, Guarino V, Cirillo V, Ambrosio L. Basic protocols to investigate hMSC behavior onto electrospun fibers. Methods Mol Biol 2013; 1058:109-117. [PMID: 23700278 DOI: 10.1007/7651_2013_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Human mesenchymal stem cells (hMSC) currently represent a major cell resource in the research laboratory, to study differentiated-cell behavior in 3D scaffolds during the regeneration processes. Adhesion and differentiation of stem cells to a specific phenotype are achieved by culturing them in apposite culture media under precise conditions. Meanwhile, hydrolytic degradation of polymeric scaffolds allows implanted cells to synthesize their own extracellular matrix in situ after implantation so that the degeneration of the foreign scaffold is temporally matched by creation of the new innate one. In this context, structural properties and biochemical signals may concur to influence the cell response to the environmental stimuli during the culture. So, it becomes mandatory to introduce robust protocols to treat hMSC alone-before the culture-and in combination with the scaffolds for the next investigation by scanning electron microscopy. Here, we describe the protocols used to manage hMSC before and during the culture in order to obtain more detailed information on cell mechanisms mediated by polymeric scaffolds.
Collapse
Affiliation(s)
- Marco A Alvarez-Perez
- Institute of Composite and Biomedical Materials, National Research Council of Italy, Naples, Italy
| | | | | | | |
Collapse
|
15
|
Hutmacher DW, Duda G, Guldberg RE. Endogenous musculoskeletal tissue regeneration. Cell Tissue Res 2012; 347:485-8. [DOI: 10.1007/s00441-012-1357-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 01/31/2012] [Indexed: 01/04/2023]
|