1
|
Shaukat I, Bakhos-Douaihy D, Zhu Y, Seaayfan E, Demaretz S, Frachon N, Weber S, Kömhoff M, Vargas-Poussou R, Laghmani K. New insights into the role of endoplasmic reticulum-associated degradation in Bartter Syndrome Type 1. Hum Mutat 2021; 42:947-968. [PMID: 33973684 DOI: 10.1002/humu.24217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
Mutations in Na-K-2Cl co-transporter, NKCC2, lead to type I Bartter syndrome (BS1), a life-threatening kidney disease. Yet, our knowledge of the molecular regulation of NKCC2 mutants remains poor. Here, we aimed to identify the molecular pathogenic mechanisms of one novel and three previously reported missense NKCC2 mutations. Co-immunolocalization studies revealed that all NKCC2 variants are not functional because they are not expressed at the cell surface due to retention in the endoplasmic reticulum (ER). Cycloheximide chase assays together with treatment by protein degradation and mannose trimming inhibitors demonstrated that the defect in NKCC2 maturation arises from ER retention and associated degradation (ERAD). Small interfering RNA (siRNA) knock-down experiments revealed that the ER lectin OS9 is involved in the ERAD of NKCC2 mutants. 4-phenyl butyric acid (4-PBA) treatment mimicked OS9 knock-down effect on NKCC2 mutants by stabilizing their immature forms. Importantly, out of the four studied mutants, only one showed an increased protein maturation upon treatment with glycerol. In summary, our study reveals that BS1 is among diseases linked to the ERAD pathway. Moreover, our data open the possibility that maturation of some ER retained NKCC2 variants is correctable by chemical chaperones offering, therefore, promising avenues in elucidating the molecular pathways governing the ERAD of NKCC2 folding mutants.
Collapse
Affiliation(s)
- Irfan Shaukat
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| | - Dalal Bakhos-Douaihy
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| | - Yingying Zhu
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| | - Elie Seaayfan
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| | - Sylvie Demaretz
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| | - Nadia Frachon
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| | - Stefanie Weber
- Division of Pediatric Nephrology and Transplantation, University Children's Hospital, Philipps-University, Marburg, Germany
| | - Martin Kömhoff
- Division of Pediatric Nephrology and Transplantation, University Children's Hospital, Philipps-University, Marburg, Germany
| | | | - Kamel Laghmani
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| |
Collapse
|
2
|
Marcoux A, Tremblay LE, Slimani S, Fiola M, Mac‐Way F, Garneau AP, Isenring P. Molecular characteristics and physiological roles of Na + -K + -Cl - cotransporter 2. J Cell Physiol 2021; 236:1712-1729. [PMID: 32776569 PMCID: PMC7818487 DOI: 10.1002/jcp.29997] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/28/2020] [Accepted: 07/24/2020] [Indexed: 12/23/2022]
Abstract
Na+ -K+ -Cl- cotransporter 2 (NKCC2; SLC12A1) is an integral membrane protein that comes as three splice variants and mediates the cotranslocation of Na+ , K+ , and Cl- ions through the apical membrane of the thick ascending loop of Henle (TALH). In doing so, and through the involvement of other ion transport systems, it allows this nephron segment to reclaim a large fraction of the ultrafiltered Na+ , Cl- , Ca2+ , Mg2+ , and HCO3- loads. The functional relevance of NKCC2 in human is illustrated by the many abnormalities that result from the inactivation of this transport system through the use of loop diuretics or in the setting of inherited disorders. The following presentation aims at discussing the physiological roles and molecular characteristics of Na+ -K+ -Cl- cotransport in the TALH and those of the individual NKCC2 splice variants more specifically. Many of the historical and recent data that have emerged from the experiments conducted will be outlined and their larger meaning will also be placed into perspective with the aid of various hypotheses.
Collapse
Affiliation(s)
- Andree‐Anne Marcoux
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| | - Laurence E. Tremblay
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| | - Samira Slimani
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| | - Marie‐Jeanne Fiola
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| | - Fabrice Mac‐Way
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| | - Alexandre P. Garneau
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
- Cardiometabolic Axis, School of Kinesiology and Physical Activity SciencesUniversity of MontréalMontréalQuebecCanada
| | - Paul Isenring
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| |
Collapse
|
3
|
Klug NR, Chechneva OV, Hung BY, O'Donnell ME. High glucose-induced effects on Na +-K +-2Cl - cotransport and Na +/H + exchange of blood-brain barrier endothelial cells: involvement of SGK1, PKCβII, and SPAK/OSR1. Am J Physiol Cell Physiol 2021; 320:C619-C634. [PMID: 33406028 DOI: 10.1152/ajpcell.00177.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hyperglycemia exacerbates edema formation and worsens neurological outcome in ischemic stroke. Edema formation in the early hours of stroke involves transport of ions and water across an intact blood-brain barrier (BBB), and swelling of astrocytes. We showed previously that high glucose (HG) exposures of 24 hours to 7 days increase abundance and activity of BBB Na+-K+-2Cl- cotransport (NKCC) and Na+/H+ exchange 1 (NHE1). Further, bumetanide and HOE-642 inhibition of these transporters significantly reduces edema and infarct following middle cerebral artery occlusion in hyperglycemic rats, suggesting that NKCC and NHE1 are effective therapeutic targets for reducing edema in hyperglycemic stroke. The mechanisms underlying hyperglycemia effects on BBB NKCC and NHE1 are not known. In the present study we investigated whether serum-glucocorticoid regulated kinase 1 (SGK1) and protein kinase C beta II (PKCβII) are involved in HG effects on BBB NKCC and NHE1. We found transient increases in phosphorylated SGK1 and PKCβII within the first hour of HG exposure, after 5-60 min for SGK1 and 5 min for PKCβII. However, no changes were observed in cerebral microvascular endothelial cell SGK1 or PKCβII abundance or phosphorylation (activity) after 24 or 48 h HG exposures. Further, we found that HG-induced increases in NKCC and NHE1 abundance were abolished by inhibition of SGK1 but not PKCβII, whereas the increases in NKCC and NHE activity were abolished by inhibition of either kinase. Finally, we found evidence that STE20/SPS1-related proline/alanine-rich kinase and oxidative stress-responsive kinase-1 (SPAK/OSR1) participate in the HG-induced effects on BBB NKCC.
Collapse
Affiliation(s)
- Nicholas R Klug
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Olga V Chechneva
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Benjamin Y Hung
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Martha E O'Donnell
- Department of Physiology and Membrane Biology, University of California, Davis, California
| |
Collapse
|
4
|
Zheng LF, Ji T, Guo ZH, Wang T, Xiu XL, Liu XY, Li SC, Sun L, Xue H, Zhang Y, Zhu JX. Na+-K+-2Cl- cotransporter 2 located in the human and murine gastric mucosa is involved in secretagogue-induced gastric acid secretion and is downregulated in lipopolysaccharide-treated mice. Eur J Pharmacol 2020; 880:173162. [DOI: 10.1016/j.ejphar.2020.173162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/18/2020] [Accepted: 04/29/2020] [Indexed: 01/07/2023]
|
5
|
Molecular features and physiological roles of K +-Cl - cotransporter 4 (KCC4). Biochim Biophys Acta Gen Subj 2017; 1861:3154-3166. [PMID: 28935604 DOI: 10.1016/j.bbagen.2017.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/15/2017] [Indexed: 12/27/2022]
Abstract
A K+-Cl- cotransport system was documented for the first time during the mid-seventies in sheep and goat red blood cells. It was then described as a Na+-independent and ouabain-insensitive ion carrier that could be stimulated by cell swelling and N-ethylmaleimide (NEM), a thiol-reacting agent. Twenty years later, this system was found to be dispensed by four different isoforms in animal cells. The first one was identified in the expressed sequence tag (EST) database by Gillen et al. based on the assumption that it would be homologous to the Na+-dependent K+-Cl- cotransport system for which the molecular identity had already been uncovered. Not long after, the three other isoforms were once again identified in the EST databank. Among those, KCC4 has generated much interest a few years ago when it was shown to sustain distal renal acidification and hearing development in mouse. As will be seen in this review, many additional roles were ascribed to this isoform, in keeping with its wide distribution in animal species. However, some of them have still not been confirmed through animal models of gene inactivation or overexpression. Along the same line, considerable knowledge has been acquired on the mechanisms by which KCC4 is regulated and the environmental cues to which it is sensitive. Yet, it is inferred to some extent from historical views and extrapolations.
Collapse
|
6
|
Singh R, Kursan S, Almiahoub MY, Almutairi MM, Garzón-Muvdi T, Alvarez-Leefmans FJ, Di Fulvio M. Plasma Membrane Targeting of Endogenous NKCC2 in COS7 Cells Bypasses Functional Golgi Cisternae and Complex N-Glycosylation. Front Cell Dev Biol 2017; 4:150. [PMID: 28101499 PMCID: PMC5209364 DOI: 10.3389/fcell.2016.00150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/14/2016] [Indexed: 12/04/2022] Open
Abstract
Na+K+2Cl− co-transporters (NKCCs) effect the electroneutral movement of Na+-K+ and 2Cl− ions across the plasma membrane of vertebrate cells. There are two known NKCC isoforms, NKCC1 (Slc12a2) and NKCC2 (Slc12a1). NKCC1 is a ubiquitously expressed transporter involved in cell volume regulation, Cl− homeostasis and epithelial salt secretion, whereas NKCC2 is abundantly expressed in kidney epithelial cells of the thick ascending loop of Henle, where it plays key roles in NaCl reabsorption and electrolyte homeostasis. Although NKCC1 and NKCC2 co-transport the same ions with identical stoichiometry, NKCC1 actively co-transports water whereas NKCC2 does not. There is growing evidence showing that NKCC2 is expressed outside the kidney, but its function in extra-renal tissues remains unknown. The present study shows molecular and functional evidence of endogenous NKCC2 expression in COS7 cells, a widely used mammalian cell model. Endogenous NKCC2 is primarily found in recycling endosomes, Golgi cisternae, Golgi-derived vesicles, and to a lesser extent in the endoplasmic reticulum. Unlike NKCC1, NKCC2 is minimally hybrid/complex N-glycosylated under basal conditions and yet it is trafficked to the plasma membrane region of hyper-osmotically challenged cells through mechanisms that require minimal complex N-glycosylation or functional Golgi cisternae. Control COS7 cells exposed to slightly hyperosmotic (~6.7%) solutions for 16 h were not shrunken, suggesting that either one or both NKCC1 and NKCC2 may participate in cell volume recovery. However, NKCC2 targeted to the plasma membrane region or transient over-expression of NKCC2 failed to rescue NKCC1 in COS7 cells where NKCC1 had been silenced. Further, COS7 cells in which NKCC1, but not NKCC2, was silenced exhibited reduced cell size compared to control cells. Altogether, these results suggest that NKCC2 does not participate in cell volume recovery and therefore, NKCC1 and NKCC2 are functionally different Na+K+2Cl− co-transporters.
Collapse
Affiliation(s)
- Richa Singh
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Shams Kursan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Mohamed Y Almiahoub
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Mohammed M Almutairi
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Tomás Garzón-Muvdi
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Francisco J Alvarez-Leefmans
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Mauricio Di Fulvio
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| |
Collapse
|
7
|
Zhang X, Li Y, Liu C, Fan R, Wang P, Zheng L, Hong F, Feng X, Zhang Y, Li L, Zhu J. Alteration of enteric monoamines with monoamine receptors and colonic dysmotility in 6-hydroxydopamine-induced Parkinson's disease rats. Transl Res 2015; 166:152-62. [PMID: 25766133 DOI: 10.1016/j.trsl.2015.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/26/2015] [Accepted: 02/12/2015] [Indexed: 11/30/2022]
Abstract
Constipation is common in Parkinson's disease (PD), in which monoamines (dopamine [DA], norepinephrine [NE], and 5-hydroxytryptamine [5-HT]) play an important role. Rats microinjected with 6-hydroxydopamine (6-OHDA) into the bilateral substantia nigra (SN) exhibit constipation, but the role of monoamines and their receptors is not clear. In the present study, colonic motility, monoamine content, and the expression of monoamine receptors were examined using strain gauge force transducers, ultraperformance liquid chromatography tandem mass spectrometry, immunofluorescence, and Western blot. The 6-OHDA rats displayed a significant reduction in dopaminergic neurons in the SN and a decreased time on rota-rod test and a marked decrease in daily fecal production and fecal water content. The amplitude of colonic spontaneous contraction was obviously decreased in 6-OHDA rats. Blocking D1-like receptor and β3-adrenoceptor (β3-AR) significantly reduced the inhibition of DA and NE on the colonic motility, respectively, whereas the 5-HT and 5-HT4 receptor agonists promoted the colonic motility. Moreover, DA content was increased in the colonic muscularis externa of 6-OHDA rats. The protein expression of β3-ARs was notably upregulated, but 5-HT4 receptors were significantly decreased in the colonic muscularis externa of 6-OHDA rats. We conclude that enhanced DA and β3-ARs and decreased 5-HT4 receptors may be contributed to the colonic dysmotility and constipation observed in 6-OHDA rats.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Yun Li
- Department of Immunology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Chenzhe Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Ruifang Fan
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Ping Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Lifei Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Feng Hong
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Xiaoyan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Yue Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Lisheng Li
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China.
| | - Jinxia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Castrop H, Schießl IM. Physiology and pathophysiology of the renal Na-K-2Cl cotransporter (NKCC2). Am J Physiol Renal Physiol 2014; 307:F991-F1002. [PMID: 25186299 DOI: 10.1152/ajprenal.00432.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Na-K-2Cl cotransporter (NKCC2; BSC1) is located in the apical membrane of the epithelial cells of the thick ascending limb of the loop of Henle (TAL). NKCC2 facilitates ∼20–25% of the reuptake of the total filtered NaCl load. NKCC2 is therefore one of the transport proteins with the highest overall reabsorptive capacity in the kidney. Consequently, even subtle changes in NKCC2 transport activity considerably alter the renal reabsorptive capacity for NaCl and eventually lead to perturbations of the salt and water homoeostasis. In addition to facilitating the bulk reabsorption of NaCl in the TAL, NKCC2 transport activity in the macula densa cells of the TAL constitutes the initial step of the tubular-vascular communication within the juxtaglomerular apparatus (JGA); this communications allows the TAL to modulate the preglomerular resistance of the afferent arteriole and the renin secretion from the granular cells of the JGA. This review provides an overview of our current knowledge with respect to the general functions of NKCC2, the modulation of its transport activity by different regulatory mechanisms, and new developments in the pathophysiology of NKCC2-dependent renal NaCl transport.
Collapse
Affiliation(s)
- Hayo Castrop
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Ina Maria Schießl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
9
|
Song J, Zheng L, Zhang X, Feng X, Fan R, Sun L, Hong F, Zhang Y, Zhu J. Upregulation of β1-adrenoceptors is involved in the formation of gastric dysmotility in the 6-hydroxydopamine rat model of Parkinson's disease. Transl Res 2014; 164:22-31. [PMID: 24467967 DOI: 10.1016/j.trsl.2014.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 01/01/2014] [Accepted: 01/03/2014] [Indexed: 11/16/2022]
Abstract
Gastrointestinal dysmotility is one of the nonmotor symptoms of Parkinson's disease (PD). Gastroparesis and upregulated β-adrenoceptors (β-ARs) have been reported in rats with bilateral microinjection of 6-hydroxydopamine (6-OHDA) in the substantia nigra, but the underlying mechanism is unclear. The aim of the current study is to investigate the role of β-ARs in gastroparesis in 6-OHDA rats. Gastric motility was studied through strain gauge measurement. Immunofluorescence, real-time reverse transcription-polymerase chain reaction and Western blotting were performed to examine the expression of β-ARs. Norepinephrine (NE) inhibited gastric motility in a dose-dependent fashion in both control and 6-OHDA rats, but much stronger adrenergic reactivity was observed in the 6-OHDA rats. The inhibition of gastric motility by NE in both control and 6-OHDA rats was not affected by tetrodotoxin, a neural sodium channel blocker. Blocking β1-AR or β2-AR did not affect the inhibition of strip contraction by NE in control rats, but β1-AR blockage obviously enhanced the half maximal inhibitory concentration value of NE in 6-OHDA rats. Selective inhibition of β3-AR blocked the effect of NE significantly in both control and 6-OHDA rats. The protein expression of β1-AR, but not β2-AR and β3-AR in gastric muscularis externa was increased significantly in 6-OHDA rats. In conclusion, β3-AR involves the regulation of gastric motility in control rats, whereas the upregulation of β1-AR is responsible for enhanced NE reactivity in 6-OHDA rats and therefore is involved in the formation of gastroparesis. The effect of both β1-AR and β3-AR on gastric motility is independent of the enteric nervous system.
Collapse
Affiliation(s)
- Jin Song
- Gastrointestinal Research Group, Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lifei Zheng
- Gastrointestinal Research Group, Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoli Zhang
- Gastrointestinal Research Group, Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoyan Feng
- Gastrointestinal Research Group, Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ruifang Fan
- Gastrointestinal Research Group, Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lu Sun
- Gastrointestinal Research Group, Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Feng Hong
- Gastrointestinal Research Group, Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yue Zhang
- Gastrointestinal Research Group, Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jinxia Zhu
- Gastrointestinal Research Group, Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Xue H, Zhang ZJ, Li XS, Sun HM, Kang Q, Wu B, Wang YX, Zou WJ, Zhou DS. Localization and vasopressin regulation of the Na +-K +-2Cl - cotransporter in the distal colonic epithelium. World J Gastroenterol 2014; 20:4692-4701. [PMID: 24782621 PMCID: PMC4000505 DOI: 10.3748/wjg.v20.i16.4692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/09/2014] [Accepted: 03/05/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether Na+-K+-2Cl- cotransporter (NKCC2) is expressed in the mouse distal colonic epithelia and whether it is regulated by vasopressin in the colon.
METHODS: The mRNA expression of NKCC2 in the mouse colonic mucosa was examined by reverse transcription-polymerase chain reaction. NKCC trafficking in the colon stimulated by 1-D-amino(8-D-arginine)-vasopressin (dDAVP) infusion (10 ng/mouse, intraperitoneal injection ) within 15 min, 30 min and 1h was investigated by laser confocal scanning microscopy. Total and membrane NKCC2 expression in the colonic mucosa from control and dDAVP-treated mice was detected by Western blotting. Short circuit current method was performed to determine regulation of NKCC2 by vasopressin in the colon.
RESULTS: NKCC2 was predominantly located in the apical region of the surface of the distal colonic epithelia; by comparison, a large amount of NKCC1 was distributed in the basolateral membrane of the lower crypt epithelia of the mouse distal colon. Short-term treatment with dDAVP, a V2-type receptor-specific vasopressin analog, induced NKCC2 re-distribution, i.e., NKCC2 traffics to the apical membrane after dDAVP stimulation. In contrast, no obvious NKCC1 membrane translocation was observed. Western blotting results confirmed that membrane NKCC2 had significantly higher abundance in the dDAVP-treated mouse colonic mucosa relative to that in the untreated control, which is consistent with our immunostaining data. Moreover, the short-circuit current method combined with a NKCC2 inhibitor demonstrated that NKCC2 was also activated by serosal vasopressin in isolated distal colonic mucosa.
CONCLUSION: Our results provide direct evidence that vasopressin also plays an important role in the colonic epithelia by stimulating NKCC2 trafficking to the apical membrane and inducing NKCC2-mediated ion transport.
Collapse
|
11
|
Zhu W, Begum G, Pointer K, Clark PA, Yang SS, Lin SH, Kahle KT, Kuo JS, Sun D. WNK1-OSR1 kinase-mediated phospho-activation of Na+-K+-2Cl- cotransporter facilitates glioma migration. Mol Cancer 2014; 13:31. [PMID: 24555568 PMCID: PMC3936893 DOI: 10.1186/1476-4598-13-31] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 02/13/2014] [Indexed: 12/22/2022] Open
Abstract
Background The bumetanide (BMT)-sensitive Na+-K+-2Cl- cotransporter isoform 1 (NKCC1) maintains cell volume homeostasis by increasing intracellular K+ and Cl- content via regulatory volume increase (RVI). Expression levels of NKCC1 positively correlate with the histological grade and severity of gliomas, the most common primary adult brain tumors, and up-regulated NKCC1 activity facilitates glioma cell migration and apoptotic resistance to the chemotherapeutic drug temozolomide (TMZ). However, the cellular mechanisms underlying NKCC1 functional up-regulation in glioma and in response to TMZ administration remain unknown. Methods Expression of NKCC1 and its upstream kinases With-No-K (Lysine) kinase 1 (WNK1) and oxidative stress-responsive kinase-1 (OSR1) in different human glioma cell lines and glioma specimens were detected by western blotting and immunostaining. Live cell imaging and microchemotaxis assay were applied to record glioma cell movements under different treatment conditions. Fluorescence indicators were utilized to measure cell volume, intracellular K+ and Cl- content to reflect the activity of NKCC1 on ion transportation. Small interfering RNA (siRNA)-mediated knockdown of WNK1 or OSR1 was used to explore their roles in regulation of NKCC1 activity in glioma cells. Results of different treatment groups were compared by one-way ANOVA using the Bonferroni post-hoc test in the case of multiple comparisons. Results We show that compared to human neural stem cells and astrocytes, human glioma cells exhibit robust increases in the activation and phosphorylation of NKCC1 and its two upstream regulatory kinases, WNK1 and OSR1. siRNA-mediated knockdown of WNK1 or OSR1 reduces intracellular K+ and Cl- content and RVI in glioma cells by abolishing NKCC1 regulatory phospho-activation. Unexpectedly, TMZ activates the WNK1/OSR1/NKCC1 signaling pathway and enhances glioma migration. Pharmacological inhibition of NKCC1 with its potent inhibitor BMT or siRNA knockdown of WNK1 or OSR1 significantly decreases glioma cell migration after TMZ treatment. Conclusion Together, our data show a novel role for the WNK1/OSR1/NKCC1 pathway in basal and TMZ-induced glioma migration, and suggest that glioma treatment with TMZ might be improved by drugs that inhibit elements of the WNK1/OSR1/NKCC1 signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|