1
|
Yu L, Jin H, Xia H, Wang X, Wang L, Li D, Zhao J, Sang Y, Qiu J, Lu N, Liu H, Yang N. Polylactic acid/chitosan-IKVAV Janus film serving as a dual functional platform for spinal cord injury repair. NANOSCALE 2024; 16:21991-22000. [PMID: 39513718 DOI: 10.1039/d4nr02248c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The repair of traumatic spinal cord injury (SCI) remains a challenge due to the non-regenerative nature of functional neurons in adults. Neural stem cell (NSC)-based therapy has emerged as a promising approach for the treatment of SCI by replacing the damaged neurons with differentiated stem cells. However, directing the neuronal differentiation of implanted stem cells in the injury microenvironment is of great difficulty, especially considering that SCI is generally associated with severe fibrotic tissue infiltration, neuron inflammation, and tissue adhesion. Here, we propose a dual functional Janus film capable of preventing tissue adhesion and promoting the neuronal differentiation of stem cells for the treatment of SCI. The Janus film is composed of a layer of polylactic acid (PLA) and a layer of chitosan (CS) grafted with IKVAV peptides. The PLA layer prevents the invasion of the fibrotic tissue, while the IKVAV peptide-grafted CS layer offers support for NSC implantation and thus the neuronal differentiation of the NSCs. When serving as the dura patch, the Janus films seeded with NSCs promote the recovery of motor function and the regeneration of the injured spinal cord tissue of SCI rats. This dual functional Janus film holds great promise for treating SCI in combination with stem cell therapy.
Collapse
Affiliation(s)
- Liyang Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Haoyong Jin
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250100, P. R. China.
- Shandong Key Laboratory of Brain Function Remodeling, Jinan 250117, P. R. China
| | - He Xia
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Xiaoxiong Wang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250100, P. R. China
| | - Liang Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Dezheng Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Jiangli Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250100, P. R. China.
- Shandong Key Laboratory of Brain Function Remodeling, Jinan 250117, P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Jichuan Qiu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Ning Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China.
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250100, P. R. China.
- Shandong Key Laboratory of Brain Function Remodeling, Jinan 250117, P. R. China
| |
Collapse
|
2
|
Micropattern-based nerve guidance conduit with hundreds of microchannels and stem cell recruitment for nerve regeneration. NPJ Regen Med 2022; 7:62. [PMID: 36261427 PMCID: PMC9582221 DOI: 10.1038/s41536-022-00257-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 10/05/2022] [Indexed: 11/12/2022] Open
Abstract
Guiding the regrowth of thousands of nerve fibers within a regeneration-friendly environment enhances the regeneration capacity in the case of peripheral nerve injury (PNI) and spinal cord injury (SCI). Although clinical treatments are available and several studies have been conducted, the development of nerve guidance conduits (NGCs) with desirable properties, including controllable size, hundreds of nerve bundle-sized microchannels, and host stem-cell recruitment, remains challenging. In this study, the micropattern-based fabrication method was combined with stem-cell recruitment factor (substance P, SP) immobilization onto the main material to produce a size-tunable NGC with hundreds of microchannels with stem-cell recruitment capability. The SP-immobilized multiple microchannels aligned the regrowth of nerve fibers and recruited the host stem cells, which enhanced the functional regeneration capacity. This method has wide applicability in the modification and augmentation of NGCs, such as bifurcated morphology or directional topographies on microchannels. Additional improvements in fabrication will advance the regeneration technology and improve the treatment of PNI/SCI.
Collapse
|
3
|
Zou Y, Yin Y, Xiao Z, Zhao Y, Han J, Chen B, Xu B, Cui Y, Ma X, Dai J. Transplantation of collagen sponge-based three-dimensional neural stem cells cultured in a RCCS facilitates locomotor functional recovery in spinal cord injury animals. Biomater Sci 2022; 10:915-924. [PMID: 35044381 DOI: 10.1039/d1bm01744f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Numerous studies have indicated that microgravity induces various changes in the cellular functions of neural stem cells (NSCs), and the use of microgravity to culture tissue engineered seed cells for the treatment of nervous system diseases has drawn increasing attention. The goal of this study was to verify the efficacy of collagen sponge-based 3-dimensional (3D) NSCs cultured in a rotary cell culture system (RCCS) in treating spinal cord injury (SCI). The Basso-Beattie-Bresnahan score, inclined plane test, and electrophysiology results all indicated that 3D cultured NSCs cultured in a RCCS had better therapeutic effects than those cultured in a traditional cell culture environment, suggesting that the microgravity provided by the RCCS could enhance the therapeutic effect of 3D cultured NSCs. Our study indicates the feasibility of combining the RCCS with collagen sponge-based 3D cell culture for producing tissue engineered seed cells for the treatment of SCI. This novel and effective method shows promise for application in cell-based therapy for SCI in the future.
Collapse
Affiliation(s)
- Yunlong Zou
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China
| | - Yanyun Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100101, China.
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100101, China.
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100101, China.
| | - Jin Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100101, China.
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100101, China.
| | - Bai Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100101, China.
| | - Yi Cui
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China.
| | - Xu Ma
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China.
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100101, China.
| |
Collapse
|
4
|
Fang C, Sun J, Wei L, Gao F, Qian J. Oscillating field stimulation promotes recovery from spinal cord injury in rats by regulating the differentiation of endogenous neural stem cells. Exp Ther Med 2021; 22:979. [PMID: 34345261 PMCID: PMC8311232 DOI: 10.3892/etm.2021.10411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022] Open
Abstract
The mammalian spinal cord (SC) has a limited self-repair capacity and exogenous treatments are yet to produce substantial functional recovery following SC injury (SCI). The SC contains endogenous neural stem cells (NSCs) with multi-lineage differentiation potential and it may be possible to restore function via interventions that promote NSC differentiation following SCI. Oscillating field stimulation (OFS) has been reported to regulate the Wnt signaling pathway, a known modulator of NSC differentiation. However, the effects of OFS on NSC differentiation following SCI and associated functional recovery have not been previously examined. In the current study, the Basso-Beattie-Bresnahan (BBB) score was used to assess locomotion recovery following SCI in rats and immunofluorescence double-staining was used to examine the regeneration of neurons and oligodendrocytes derived from NSCs. Furthermore, Nissl staining was performed to assess the viability and survival of neurons following SCI, while recovery of the myelin sheath was examined by uranium-lead staining under transmission electron microscopy. OFS delivered via an implanted stimulator enhanced the differentiation of NSCs into neurons and oligodendrocytes and accelerated the regeneration of myelinated axons. Additionally, BBB scores revealed superior locomotion recovery in OFS-treated rats compared with SCI controls. Collectively, these results indicated that OFS may be a feasible strategy to promote SCI recovery by regulating the differentiation of endogenous NSCs.
Collapse
Affiliation(s)
- Chao Fang
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Jian Sun
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Laifu Wei
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, P.R. China
| | - Fei Gao
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, P.R. China
| | - Jun Qian
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
5
|
China's Stem Cell Research and Knowledge Levels of Medical Practitioners and Students. Stem Cells Int 2021; 2021:6667743. [PMID: 34113385 PMCID: PMC8154300 DOI: 10.1155/2021/6667743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/05/2021] [Accepted: 04/29/2021] [Indexed: 11/18/2022] Open
Abstract
Over the last few decades, China has greatly expanded its scope of stem cell research, generating various scientific advances and medical applications. However, knowledge of the extent and characteristics of domestic stem cell development, particularly medical workers' opinions, is lacking. This study's purposes were to analyze the growth trends of China's stem cell community and identify the knowledge and attitudes held by Chinese medical workers regarding stem cell research. We found that there are currently 13 high-quality stem cell research centers with more than 400 PhD-level researchers across Mainland China. These centers feature many high-caliber scientists from the stem cell research community. From 1997 through 2019, the National Natural Science Foundation of China allocated roughly $576 million to 8,050 stem cell programs at Chinese universities and research institutions. China's annual publications on stem cells increased from less than 0.6% of the world's total stem cell publications in 1999 to more than 14.1% in 2014. Our survey also revealed that most participants held positive attitudes toward stem cell research, supported further funding, and had high general awareness about stem cells.
Collapse
|
6
|
Zeng CW, Sheu JC, Tsai HJ. The Neuronal Regeneration of Adult Zebrafish After Spinal Cord Injury Is Enhanced by Transplanting Optimized Number of Neural Progenitor Cells. Cell Transplant 2021; 29:963689720903679. [PMID: 32233781 PMCID: PMC7444222 DOI: 10.1177/0963689720903679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cell transplantation is commonly used to study the regeneration and
repair of the nervous system in animals. However, a technical platform
used to evaluate the optimum number of transplanted cells in the
recipient’s spinal cord is little reported. Therefore, to develop such
platform, we used a zebrafish model, which has transparent embryos,
and transgenic line huORFZ, which generates green
fluorescent protein (GFP)-expressing cells in the central nervous
system under hypoxic stress. After GFP-expressing cells, also termed
as hypoxia-responsive recovering cells, were obtained from
hypoxia-exposed huORFZ embryos, we transplanted these
GFP-(+) cells into the site of spinal cord injury (SCI) in adult
wild-type zebrafish, followed by assessing the relationship between
number of transplanted cells and the survival rate of recipients. When
100, 300, 500, and 1,000 GFP-(+) donor cells were transplanted into
the lesion site of SCI-treated recipients, we found that recipient
adult zebrafish transplanted with 300 donor cells had the highest
survival rate. Those GFP-(+) donor cells could undergo proliferation
and differentiation into neuron in recipients. Furthermore,
transplantation of GFP-(+) cells into adult zebrafish treated with SCI
was able to enhance the neuronal regeneration of recipients. In
contrast, those fish transplanted with over 500 cells showed signs of
inflammation around the SCI site, resulting in higher mortality. In
this study, we developed a technological platform for transplanting
cells into the lesion site of SCI-treated adult zebrafish and defined
the optimum number of successfully transplanted cells into recipients,
as 300, and those GFP-(+) donor cells could enhance recipient’s spinal
cord regeneration. Thus, we provided a practical methodology for
studying cell transplantation therapy in neuronal regeneration of
zebrafish after SCI.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei.,Liver Disease Prevention and Treatment Research Foundation, Taipei
| | - Jin-Chuan Sheu
- Liver Disease Prevention and Treatment Research Foundation, Taipei
| | - Huai-Jen Tsai
- Institute of Biomedical Science, Mackay Medical College, New Taipei City
| |
Collapse
|
7
|
Miao S, Cui H, Esworthy T, Mahadik B, Lee S, Zhou X, Hann SY, Fisher JP, Zhang LG. 4D Self-Morphing Culture Substrate for Modulating Cell Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902403. [PMID: 32195081 PMCID: PMC7080541 DOI: 10.1002/advs.201902403] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/30/2020] [Indexed: 05/08/2023]
Abstract
As the most versatile and promising cell source, stem cells have been studied in regenerative medicine for two decades. Currently available culturing techniques utilize a 2D or 3D microenvironment for supporting the growth and proliferation of stem cells. However, these culture systems fail to fully reflect the supportive biological environment in which stem cells reside in vivo, which contain dynamic biophysical growth cues. Herein, a 4D programmable culture substrate with a self-morphing capability is presented as a means to enhance dynamic cell growth and induce differentiation of stem cells. To function as a model system, a 4D neural culture substrate is fabricated using a combination of printing and imprinting techniques keyed to the different biological features of neural stem cells (NSCs) at different differentiation stages. Results show the 4D culture substrate demonstrates a time-dependent self-morphing process that plays an essential role in regulating NSC behaviors in a spatiotemporal manner and enhances neural differentiation of NSCs along with significant axonal alignment. This study of a customized, dynamic substrate revolutionizes current stem cell therapies, and can further have a far-reaching impact on improving tissue regeneration and mimicking specific disease progression, as well as other impacts on materials and life science research.
Collapse
Affiliation(s)
- Shida Miao
- Department of Mechanical and Aerospace EngineeringThe George Washington University3590 Science and Engineering Hall, 800 22nd Street NWWashingtonDC20052USA
| | - Haitao Cui
- Department of Mechanical and Aerospace EngineeringThe George Washington University3590 Science and Engineering Hall, 800 22nd Street NWWashingtonDC20052USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace EngineeringThe George Washington University3590 Science and Engineering Hall, 800 22nd Street NWWashingtonDC20052USA
| | - Bhushan Mahadik
- Fischell Department of BioengineeringUniversity of Maryland3238 Jeong H. Kim Engineering BuildingCollege ParkMD20742USA
| | - Se‐jun Lee
- Department of Mechanical and Aerospace EngineeringThe George Washington University3590 Science and Engineering Hall, 800 22nd Street NWWashingtonDC20052USA
| | - Xuan Zhou
- Department of Mechanical and Aerospace EngineeringThe George Washington University3590 Science and Engineering Hall, 800 22nd Street NWWashingtonDC20052USA
| | - Sung Yun Hann
- Department of Mechanical and Aerospace EngineeringThe George Washington University3590 Science and Engineering Hall, 800 22nd Street NWWashingtonDC20052USA
| | - John P. Fisher
- Fischell Department of BioengineeringUniversity of Maryland3238 Jeong H. Kim Engineering BuildingCollege ParkMD20742USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace EngineeringThe George Washington University3590 Science and Engineering Hall, 800 22nd Street NWWashingtonDC20052USA
- Department of Electrical and Computer EngineeringDepartment of MedicineDepartment of Biomedical EngineeringThe George Washington UniversityWashingtonDC20052USA
| |
Collapse
|
8
|
Zhao XM, He XY, Liu J, Xu Y, Xu FF, Tan YX, Zhang ZB, Wang TH. Neural Stem Cell Transplantation Improves Locomotor Function in Spinal Cord Transection Rats Associated with Nerve Regeneration and IGF-1 R Expression. Cell Transplant 2019; 28:1197-1211. [PMID: 31271053 PMCID: PMC6767897 DOI: 10.1177/0963689719860128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transplantation of neural stem cells (NSCs) is a potential strategy for the treatment of
spinal cord transection (SCT). Here we investigated whether transplanted NSCs would
improve motor function of rats with SCT and explored the underlying mechanism. First, the
rats were divided into sham, SCT, and NSC groups. Rats in the SCT and NSC groups were all
subjected to SCT in T10, and were administered with media and NSC transplantation into the
lesion site, respectively. Immunohistochemistry was used to label Nestin-, TUNEL-, and
NeuN-positive cells and reveal the expression and location of type I insulin-like growth
factor receptor (IGF-1 R). Locomotor function of hind limbs was assessed by Basso,
Beattie, Bresnahan (BBB) score and inclined plane test. The conduction velocity and
amplitude of spinal nerve fibers were measured by electrophysiology and the anatomical
changes were measured using magnetic resonance imaging. Moreover, expression of IGF-1 R
was determined by real-time polymerase chain reaction and Western blotting. The results
showed that NSCs could survive and differentiate into neurons in vitro and in vivo.
SCT-induced deficits were reduced by NSC transplantation, including increase in
NeuN-positive cells and decrease in apoptotic cells. Moreover, neurophysiological profiles
indicated that the latent period was decreased and the peak-to-peak amplitude of spinal
nerve fibers conduction was increased in transplanted rats, while morphological measures
indicated that fractional anisotropy and the number of nerve fibers in the site of spinal
cord injury were increased after NSC transplantation. In addition, mRNA and protein level
of IGF-1 R were increased in the rostral segment in the NSC group, especially in neurons.
Therefore, we concluded that NSC transplantation promotes motor function improvement of
SCT, which might be associated with activated IGF-1 R, especially in the rostral site. All
of the above suggests that this approach has potential for clinical treatment of spinal
cord injury.
Collapse
Affiliation(s)
- Xiao-Ming Zhao
- Department of Histology, Embryology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China.,Both the author contributed equally to this article
| | - Xiu-Ying He
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Both the author contributed equally to this article
| | - Jia Liu
- Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Yang Xu
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fei-Fei Xu
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ya-Xin Tan
- Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Zi-Bin Zhang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ting-Hua Wang
- Department of Histology, Embryology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China.,Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| |
Collapse
|
9
|
Krueger E, Magri LMS, Botelho AS, Bach FS, Rebellato CLK, Fracaro L, Fragoso FYI, Villanova JA, Brofman PRS, Popović-Maneski L. Effects of low-intensity electrical stimulation and adipose derived stem cells transplantation on the time-domain analysis-based electromyographic signals in dogs with SCI. Neurosci Lett 2018; 696:38-45. [PMID: 30528708 DOI: 10.1016/j.neulet.2018.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/12/2018] [Accepted: 12/03/2018] [Indexed: 01/13/2023]
Abstract
INTRODUCTION The application of low-intensity electrical stimulation (LIES) to neural tissue increases neurochemical factors responsible for regeneration as nerve growth factor. Stem cell (SC) therapy for patients with Spinal cord injury (SCI) promote some increase functional improvement. OBJECTIVE Investigate the electromyographic response in paraplegic dogs undergoing LIES and SC transplantation. METHODS 27 dogs paraplegics with SCI were divided into three groups with different types of therapy. GADSC: two SC transplants (n = 9); GLIES: LIES (n = 8); GCOMB: two SC transplants and LIES (n = 10). Adipose derived mesenchymal stem cells (ADSCs) were transplanted by lumbar puncture in the amount of 1.2 × 106 cells/50 μL. Acupuncture needles positioned in the interspinous space were used for stimulation. The electrical stimulation was applied with a mean voltage ∼30 mV and four consecutive modulated frequencies (5 Hz, 10 Hz, 15 Hz and 20 Hz) within 5 min each. The patients motor performance was evaluated before (Pre) the procedure and after 30 (Post30) and 60 (Post60) days, from electromyography root mean square (EMGRMS) registered with subcutaneous electrodes in the vastus lateralis muscle, while the animals were in quadrupedal position. RESULTS All three groups showed a significant intra-group increase of EMGRMS (Pre vs. Post30 or Pre vs. Post60). However, there were no statistically significant differences between Post30 and Post60. The inter-group test (GADSC X GLIES X GCOMB) did not present significance when compared the instants Pre (p = 0.34), Post30 (p = 0.78) and Post60 (p = 0.64). CONCLUSION Some dogs recovered motor activity, expressed by the EMGRMS, in all groups, in pre vs. post (30 or 60 days) comparisons.
Collapse
Affiliation(s)
- E Krueger
- Neural Engineering and Rehabilitation Laboratory, Master and Doctoral Program in Rehabilitation Sciences UEL-UNOPAR, Anatomy Department, State University of Londrina, Londrina, Brazil; Graduate Program in Biomedical Engineering, Technological Federal University - Paraná, Curitiba, Brazil.
| | - L M S Magri
- Graduate Program in Biomedical Engineering, Technological Federal University - Paraná, Curitiba, Brazil
| | | | - F S Bach
- Pontificial Catholical University of Paraná, Curitiba, Brazil
| | - C L K Rebellato
- Pontificial Catholical University of Paraná, Curitiba, Brazil
| | - L Fracaro
- Pontificial Catholical University of Paraná, Curitiba, Brazil
| | - F Y I Fragoso
- Pontificial Catholical University of Paraná, Curitiba, Brazil
| | - J A Villanova
- Pontificial Catholical University of Paraná, Curitiba, Brazil
| | - P R S Brofman
- Pontificial Catholical University of Paraná, Curitiba, Brazil
| | - L Popović-Maneski
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
10
|
Song P, Xia X, Han T, Fang H, Wang Y, Dong F, Zhang R, Ge P, Shen C. BMSCs promote the differentiation of NSCs into oligodendrocytes via mediating Id2 and Olig expression through BMP/Smad signaling pathway. Biosci Rep 2018; 38:BSR20180303. [PMID: 30143582 PMCID: PMC6147919 DOI: 10.1042/bsr20180303] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 01/01/2023] Open
Abstract
Neural stem cells (NSCs) have emerged as a promising treatment for spinal cord injuries. However, the increasing expression of bone morphogenetic proteins (BMPs) in spinal cord injury lesion sites seems to have contributed to the limited oligodendroglial differentiation and the majority of the astroglial differentiation of NSCs. In the present study, we demonstrate that BMPs promote NSCs differentiation toward astrocytes and prevent them from differentiating into oligodendrocytes. This effect is accompanied by the increasing expression of Id2 and the reduction in Oilg1/2 expression. Treatment with bone marrow stromal cells (BMSCs) can enhance the development of oligodendrocytes in the presence of BMPs. The analysis of Id2, as well as Olig1 and Olig2 gene expression, reveals that the effect of BMPs on these gene expressions is reversed with the addition of BMSCs. In sum, these data strongly suggest that BMSCs can promote the differentiation of NSCs into oligodendrocytes through mediating Id2 and Olig1/2 expression by blocking the BMP/Smad signaling pathway.
Collapse
Affiliation(s)
- Peiwen Song
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Xiang Xia
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Tianyu Han
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Huang Fang
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Ying Wang
- Department of Medical Imaging, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Fulong Dong
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Renjie Zhang
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Peng Ge
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Cailiang Shen
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| |
Collapse
|
11
|
Ning GZ, Song WY, Xu H, Zhu RS, Wu QL, Wu Y, Zhu SB, Li JQ, Wang M, Qu ZG, Feng SQ. Bone marrow mesenchymal stem cells stimulated with low-intensity pulsed ultrasound: Better choice of transplantation treatment for spinal cord injury: Treatment for SCI by LIPUS-BMSCs transplantation. CNS Neurosci Ther 2018; 25:496-508. [PMID: 30294904 DOI: 10.1111/cns.13071] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 12/19/2022] Open
Abstract
Stem cell transplantation, especially treatment with bone marrow mesenchymal stem cells (BMSCs), has been considered a promising therapy for the locomotor and neurological recovery of spinal cord injury (SCI) patients. However, the clinical benefits of BMSCs transplantation remain limited because of the considerably low viability and inhibitory microenvironment. In our research, low-intensity pulsed ultrasound (LIPUS), which has been widely applied to clinical applications and fundamental research, was employed to improve the properties of BMSCs. The most suitable intensity of LIPUS stimulation was determined. Furthermore, the optimized BMSCs were transplanted into the epicenter of injured spinal cord in rats, which were randomized into four groups: (a) Sham group (n = 10), rats received laminectomy only and the spinal cord remained intact. (b) Injury group (n = 10), rats with contused spinal cord subjected to the microinjection of PBS solution. (c) BMSCs transplantation group (n = 10), rats with contused spinal cord were injected with BMSCs without any priming. (d) LIPUS-BMSCs transplantation group (n = 10), BMSCs stimulated with LIPUS were injected at the injured epicenter after contusion. Rats were then subjected to behavioral tests, immunohistochemistry, and histological observation. It was found that BMSCs stimulated with LIPUS obtained higher cell viability, migration, and neurotrophic factors expression in vitro. The rate of apoptosis remained constant. After transplantation of BMSCs and LIPUS-BMSCs postinjury, locomotor function was significantly improved in LIPUS-BMSCs transplantation group with higher level of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the epicenter, and the expression of neurotrophic receptor was also enhanced. Histological observation demonstrated reduced cavity formation in LIPUS-BMSCs transplantation group when comparing with other groups. The results suggested LIPUS can improve BMSCs viability and neurotrophic factors expression in vitro, and transplantation of LIPUS-BMSCs could promote better functional recovery, indicating possible clinical application for the treatment of SCI.
Collapse
Affiliation(s)
- Guang-Zhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen-Ye Song
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong Xu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Ru-Sen Zhu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Qiu-Li Wu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu Wu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shi-Bo Zhu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ji-Qing Li
- Department of Electronic Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Man Wang
- Department of Electronic Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Zhi-Gang Qu
- Department of Electronic Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Shi-Qing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
12
|
Shi Z, Zhou H, Lu L, Pan B, Wei Z, Liu J, Li J, Yuan S, Kang Y, Liu L, Yao X, Kong X, Feng S. MicroRNA‐29a regulates neural stem cell neuronal differentiation by targeting PTEN. J Cell Biochem 2018; 119:5813-5820. [DOI: 10.1002/jcb.26768] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 02/02/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Zhongju Shi
- Department of OrthopaedicsTianjin Medical University General HospitalTianjinP. R. China
| | - Hengxing Zhou
- Department of OrthopaedicsTianjin Medical University General HospitalTianjinP. R. China
| | - Lu Lu
- Department of OrthopaedicsTianjin Medical University General HospitalTianjinP. R. China
| | - Bin Pan
- Department of OrthopaedicsThe Affiliated Hospital of XuzhouMedical UniversityXuzhouJiangsuP. R. China
| | - Zhijian Wei
- Department of OrthopaedicsTianjin Medical University General HospitalTianjinP. R. China
| | - Jun Liu
- Department of OrthopaedicsTianjin Medical University General HospitalTianjinP. R. China
| | - Jiahe Li
- Department of OrthopaedicsTianjin Medical University General HospitalTianjinP. R. China
| | - Shiyang Yuan
- Department of OrthopaedicsTianjin Medical University General HospitalTianjinP. R. China
| | - Yi Kang
- Department of OrthopaedicsTianjin Medical University General HospitalTianjinP. R. China
| | - Lu Liu
- Department of OrthopaedicsTianjin Medical University General HospitalTianjinP. R. China
| | - Xue Yao
- Department of OrthopaedicsTianjin Medical University General HospitalTianjinP. R. China
| | - Xiaohong Kong
- 221 LaboratorySchool of MedicineNankai UniversityTianjinP. R. China
| | - Shiqing Feng
- Department of OrthopaedicsTianjin Medical University General HospitalTianjinP. R. China
| |
Collapse
|
13
|
Marotta M, Fernández-Martín A, Oria M, Fontecha CG, Giné C, Martínez-Ibáñez V, Carreras E, Belfort MA, Pelizzo G, Peiró JL. Isolation, characterization, and differentiation of multipotent neural progenitor cells from human cerebrospinal fluid in fetal cystic myelomeningocele. Stem Cell Res 2017; 22:33-42. [PMID: 28578005 DOI: 10.1016/j.scr.2017.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/05/2017] [Accepted: 05/11/2017] [Indexed: 12/24/2022] Open
Abstract
Despite benefits of prenatal in utero repair of myelomeningocele, a severe type of spina bifida aperta, many of these patients will still suffer mild to severe impairment. One potential source of stem cells for new regenerative medicine-based therapeutic approaches for spinal cord injury repair is neural progenitor cells (NPCs) in cerebrospinal fluid (CSF). To this aim, we extracted CSF from the cyst surrounding the exposed neural placode during the surgical repair of myelomeningocele in 6 fetuses (20 to 26weeks of gestation). In primary cultured CSF-derived cells, neurogenic properties were confirmed by in vitro differentiation into various neural lineage cell types, and NPC markers expression (TBR2, CD15, SOX2) were detected by immunofluorescence and RT-PCR analysis. Differentiation into three neural lineages was corroborated by arbitrary differentiation (depletion of growths factors) or explicit differentiation as neuronal, astrocyte, or oligodendrocyte cell types using specific induction mediums. Differentiated cells showed the specific expression of neural differentiation markers (βIII-tubulin, GFAP, CNPase, oligo-O1). In myelomeningocele patients, CSF-derived cells could become a potential source of NPCs with neurogenic capacity. Our findings support the development of innovative stem-cell-based therapeutics by autologous transplantation of CSF-derived NPCs in damaged spinal cords, such as myelomeningocele, thus promoting neural tissue regeneration in fetuses.
Collapse
Affiliation(s)
- Mario Marotta
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Translational Research in Fetal Surgery for Congenital Malformations Laboratory, The Center for Fetal, Cellular, and Molecular Therapy, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Alejandra Fernández-Martín
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Oria
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Translational Research in Fetal Surgery for Congenital Malformations Laboratory, The Center for Fetal, Cellular, and Molecular Therapy, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Cesar G Fontecha
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carles Giné
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicente Martínez-Ibáñez
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Carreras
- Maternal-Fetal Medicine Unit, Department of Obstetrics, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Michael A Belfort
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Gloria Pelizzo
- Department of the Mother and Child Health, Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo, Pavia and University of Pavia, Italy
| | - Jose L Peiró
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Translational Research in Fetal Surgery for Congenital Malformations Laboratory, The Center for Fetal, Cellular, and Molecular Therapy, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
14
|
Hou XQ, Wang L, Wang FG, Zhao XM, Zhang HT. Combination of RNA Interference and Stem Cells for Treatment of Central Nervous System Diseases. Genes (Basel) 2017; 8:genes8050135. [PMID: 28481269 PMCID: PMC5448009 DOI: 10.3390/genes8050135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/31/2022] Open
Abstract
RNA interference (RNAi), including microRNAs, is an important player in the mediation of differentiation and migration of stem cells via target genes. It is used as a potential strategy for gene therapy for central nervous system (CNS) diseases. Stem cells are considered vectors of RNAi due to their capacity to deliver RNAi to other cells. In this review, we discuss the recent advances in studies of RNAi pathways in controlling neuronal differentiation and migration of stem cells. We also highlight the utilization of a combination of RNAi and stem cells in treatment of CNS diseases.
Collapse
Affiliation(s)
- Xue-Qin Hou
- Institute of Pharmacology, Taishan Medical University, Taian 271016, Shandong, China.
| | - Lei Wang
- Institute of Pharmacology, Taishan Medical University, Taian 271016, Shandong, China.
| | - Fu-Gang Wang
- Institute of Pharmacology, Taishan Medical University, Taian 271016, Shandong, China.
| | - Xiao-Min Zhao
- Institute of Pharmacology, Taishan Medical University, Taian 271016, Shandong, China.
| | - Han-Ting Zhang
- Institute of Pharmacology, Taishan Medical University, Taian 271016, Shandong, China.
- Departments of Behavioral Medicine & Psychiatry and Physiology & Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA.
| |
Collapse
|
15
|
Fan X, Wang JZ, Lin XM, Zhang L. Stem cell transplantation for spinal cord injury: a meta-analysis of treatment effectiveness and safety. Neural Regen Res 2017; 12:815-825. [PMID: 28616040 PMCID: PMC5461621 DOI: 10.4103/1673-5374.206653] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the effectiveness and safety of stem cell transplantation for spinal cord injury (SCI). DATA SOURCES PubMed, EMBASE, Cochrane, China National Knowledge Infrastructure, China Science and Technology Journal, Wanfang, and SinoMed databases were systematically searched by computer to select clinical randomized controlled trials using stem cell transplantation to treat SCI, published between each database initiation and July 2016. DATA SELECTION Randomized controlled trials comparing stem cell transplantation with rehabilitation treatment for patients with SCI. Inclusion criteria: (1) Patients with SCI diagnosed according to the American Spinal Injury Association (ASIA) International standards for neurological classification of SCI; (2) patients with SCI who received only stem cell transplantation therapy or stem cell transplantation combined with rehabilitation therapy; (3) one or more of the following outcomes reported: outcomes concerning neurological function including sensory function and locomotor function, activities of daily living, urination functions, and severity of SCI or adverse effects. Studies comprising patients with complications, without full-text, and preclinical animal models were excluded. Quality of the included studies was evaluated using the Cochrane risk of bias assessment tool and RevMan V5.3 software, provided by the Cochrane Collaboration, was used to perform statistical analysis. OUTCOME MEASURES ASIA motor score, ASIA light touch score, ASIA pinprick score, ASIA impairment scale grading improvement rate, activities of daily living score, residual urine volume, and adverse events. RESULTS Ten studies comprising 377 patients were included in the analysis and the overall risk of bias was relatively low level. Four studies did not detail how random sequences were generated, two studies did not clearly state the blinding outcome assessment, two studies lacked blinding outcome assessment, one study lacked follow-up information, and four studies carried out selective reporting. Compared with rehabilitation therapy, stem cell transplantation significantly increased the lower limb light touch score (odds ratio (OR) = 3.43, 95% confidence interval (CI): 0.01 - 6.86, P = 0.05), lower limb pinprick score (OR = 3.93, 95%CI: 0.74 - 7.12, P = 0.02), ASI grading rate (relative risk (RR) = 2.95, 95%CI: 1.64 - 5.29, P = 0.0003), and notably reduced residual urine volume (OR = -8.10, 95%CI: -15.09 to -1.10, P = 0.02). However, stem cell transplantation did not significantly improve motor score (OR = 1.89, 95%CI: -0.25 to 4.03, P = 0.08) or activities of daily living score (OR = 1.12, 95%CI: -1.17 to 4.04, P = 0.45). Furthermore, stem cell transplantation caused a high rate of mild adverse effects (RR = 14.49, 95%CI: 5.34 - 34.08, P < 0.00001); however, these were alleviated in a short time. CONCLUSION Stem cell transplantation was determined to be an efficient and safe treatment for SCI and simultaneously improved sensory and bladder functions. Although associated minor and temporary adverse effects were observed with transplanted stem cells, spinal cord repair and axon remyelination were apparent. More randomized controlled trials with larger sample sizes and longer follow-up times are needed to further validate the effectiveness of stem cell transplantation in the treatment of SCI.
Collapse
Affiliation(s)
- Xiao Fan
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Jin-zhao Wang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Xiao-min Lin
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Li Zhang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
- Xiamen Medical College, Xiamen, Fujian Province, China
| |
Collapse
|
16
|
Valentin-Kahan A, García-Tejedor GB, Robello C, Trujillo-Cenóz O, Russo RE, Alvarez-Valin F. Gene Expression Profiling in the Injured Spinal Cord of Trachemys scripta elegans: An Amniote with Self-Repair Capabilities. Front Mol Neurosci 2017; 10:17. [PMID: 28223917 PMCID: PMC5293771 DOI: 10.3389/fnmol.2017.00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/12/2017] [Indexed: 12/19/2022] Open
Abstract
Slider turtles are the only known amniotes with self-repair mechanisms of the spinal cord that lead to substantial functional recovery. Their strategic phylogenetic position makes them a relevant model to investigate the peculiar genetic programs that allow anatomical reconnection in some vertebrate groups but are absent in others. Here, we analyze the gene expression profile of the response to spinal cord injury (SCI) in the turtle Trachemys scripta elegans. We found that this response comprises more than 1000 genes affecting diverse functions: reaction to ischemic insult, extracellular matrix re-organization, cell proliferation and death, immune response, and inflammation. Genes related to synapses and cholesterol biosynthesis are down-regulated. The analysis of the evolutionary distribution of these genes shows that almost all are present in most vertebrates. Additionally, we failed to find genes that were exclusive of regenerating taxa. The comparison of expression patterns among species shows that the response to SCI in the turtle is more similar to that of mice and non-regenerative Xenopus than to Xenopus during its regenerative stage. This observation, along with the lack of conserved “regeneration genes” and the current accepted phylogenetic placement of turtles (sister group of crocodilians and birds), indicates that the ability of spinal cord self-repair of turtles does not represent the retention of an ancestral vertebrate character. Instead, our results suggest that turtles developed this capability from a non-regenerative ancestor (i.e., a lineage specific innovation) that was achieved by re-organizing gene expression patterns on an essentially non-regenerative genetic background. Among the genes activated by SCI exclusively in turtles, those related to anoxia tolerance, extracellular matrix remodeling, and axonal regrowth are good candidates to underlie functional recovery.
Collapse
Affiliation(s)
- Adrián Valentin-Kahan
- Department of Cellular and Molecular Neurophysiology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Gabriela B García-Tejedor
- Department of Cellular and Molecular Neurophysiology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Carlos Robello
- Molecular Biology Unit, Institut Pasteur de MontevideoMontevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la RepublicaMontevideo, Uruguay
| | - Omar Trujillo-Cenóz
- Department of Cellular and Molecular Neurophysiology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Raúl E Russo
- Department of Cellular and Molecular Neurophysiology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Fernando Alvarez-Valin
- Sección Biomatemática, Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República Montevideo, Uruguay
| |
Collapse
|
17
|
Bianco J, De Berdt P, Deumens R, des Rieux A. Taking a bite out of spinal cord injury: do dental stem cells have the teeth for it? Cell Mol Life Sci 2016; 73:1413-37. [PMID: 26768693 PMCID: PMC11108394 DOI: 10.1007/s00018-015-2126-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 12/15/2022]
Abstract
Dental stem cells are an emerging star on a stage that is already quite populated. Recently, there has been a lot of hype concerning these cells in dental therapies, especially in regenerative endodontics. It is fitting that most research is concentrated on dental regeneration, although other uses for these cells need to be explored in more detail. Being a true mesenchymal stem cell, their capacities could also prove beneficial in areas outside their natural environment. One such field is the central nervous system, and in particular, repairing the injured spinal cord. One of the most formidable challenges in regenerative medicine is to restore function to the injured spinal cord, and as yet, a cure for paralysis remains to be discovered. A variety of approaches have already been tested, with graft-based strategies utilising cells harbouring appropriate properties for neural regeneration showing encouraging results. Here we present a review focusing on properties of dental stem cells that endorse their use in regenerative medicine, with particular emphasis on repairing the damaged spinal cord.
Collapse
Affiliation(s)
- John Bianco
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium.
- Integrated Center for Cell Therapy and Regenerative Medicine, International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic.
| | - Pauline De Berdt
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium
| | - Ronald Deumens
- Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Anne des Rieux
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| |
Collapse
|
18
|
Abstract
Acute spinal cord injuries are life-changing events that lead to substantial morbidity and mortality, but the role of cell-based treatment for these injuries is unclear. Cell therapy is a rapidly evolving treatment methodology, with basic science and early phase I/II human trials showing promise. Multiple cell lines can be used in cell therapy, including adult or embryonic stem cells, Schwann cells, olfactory ensheathing cells, and induced pluripotent stem cells. Adult stem cells, Schwann cells, and olfactory ensheathing cells are readily available but lack the ability to differentiate into cells of the central nervous system. Mesenchymal stem cells can decrease cell death by modifying the local environment into which they are introduced. Peripheral nerve cells, such as Schwann cells and olfactory ensheathing cells, can myelinate existing axons and foster axonal growth in the central nervous system, and embryonic stem cells can differentiate into neural progenitor stem cells of the central nervous system. Induced pluripotent stem cells are the basis of an emerging technology that has yet to be implemented in human trials but may offer a means of cell therapy without the ethical dilemmas associated with embryonic cells.
Collapse
|
19
|
Wang J, Ye Z, Zheng S, Chen L, Wan Y, Deng Y, Yang R. Lingo-1 shRNA and Notch signaling inhibitor DAPT promote differentiation of neural stem/progenitor cells into neurons. Brain Res 2016; 1634:34-44. [DOI: 10.1016/j.brainres.2015.11.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/02/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022]
|
20
|
Cell-seeded alginate hydrogel scaffolds promote directed linear axonal regeneration in the injured rat spinal cord. Acta Biomater 2015; 27:140-150. [PMID: 26348141 DOI: 10.1016/j.actbio.2015.09.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/18/2015] [Accepted: 09/01/2015] [Indexed: 01/09/2023]
Abstract
Despite recent progress in enhancing axonal growth in the injured spinal cord, the guidance of regenerating axons across an extended lesion site remains a major challenge. To determine whether regenerating axons can be guided in rostrocaudal direction, we implanted 2mm long alginate-based anisotropic capillary hydrogels seeded with bone marrow stromal cells (BMSCs) expressing brain-derived neurotrophic factor (BDNF) or green fluorescent protein (GFP) as control into a C5 hemisection lesion of the rat spinal cord. Four weeks post-lesion, numerous BMSCs survived inside the scaffold channels, accompanied by macrophages, Schwann cells and blood vessels. Quantification of axons growing into channels demonstrated 3-4 times more axons in hydrogels seeded with BMSCs expressing BDNF (BMSC-BDNF) compared to control cells. The number of anterogradely traced axons extending through the entire length of the scaffold was also significantly higher in scaffolds with BMSC-BDNF. Increasing the channel diameters from 41μm to 64μm did not lead to significant differences in the number of regenerating axons. Lesions filled with BMSC-BDNF without hydrogels exhibited a random axon orientation, whereas axons were oriented parallel to the hydrogel channel walls. Thus, alginate-based scaffolds with an anisotropic capillary structure are able to physically guide regenerating axons. STATEMENT OF SIGNIFICANCE After injury, regenerating axons have to extend across the lesion site in the injured spinal cord to reestablish lost neuronal connections. While cell grafting and growth factor delivery can promote growth of injured axons, without proper guidance, axons rarely extend across the lesion site. Here, we show that alginate biomaterials with linear channels that are filled with cells expressing the growth-promoting neurotrophin BDNF promote linear axon extension throughout the channels after transplantation to the injured rat spinal cord. Animals that received the same cells but no alginate guidance structure did not show linear axonal growth and axons did not cross the lesion site. Thus, alginate-based scaffolds with a capillary structure are able to physically guide regenerating axons.
Collapse
|
21
|
Günther MI, Günther M, Schneiders M, Rupp R, Blesch A. AngleJ: A new tool for the automated measurement of neurite growth orientation in tissue sections. J Neurosci Methods 2015; 251:143-50. [DOI: 10.1016/j.jneumeth.2015.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 12/30/2022]
|
22
|
Chu T, Zhou H, Lu L, Kong X, Wang T, Pan B, Feng S. Valproic acid-mediated neuroprotection and neurogenesis after spinal cord injury: from mechanism to clinical potential. Regen Med 2014; 10:193-209. [PMID: 25485637 DOI: 10.2217/rme.14.86] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spinal cord injury (SCI) is difficult to treat because of secondary injury. Valproic acid (VPA) is clinically approved for mood stabilization, but also counteracts secondary damage to functionally rescue SCI in animal models by improving neuroprotection and neurogenesis via inhibition of HDAC and GSK-3. However, a comprehensive review summarizing the therapeutic benefits and mechanisms of VPA for SCI and the issues affecting clinical trials is lacking, limiting future research on VPA and impeding its translation into clinical therapy for SCI. This article presents the current status of VPA treatment for SCI, emphasizing interactions between enhanced neuroprotection and neurogenesis. Crucial issues are discussed to optimize its clinical potential as a safe and effective treatment for SCI.
Collapse
Affiliation(s)
- Tianci Chu
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | | | | | | | | | | | | |
Collapse
|
23
|
Huang F, Shen Q, Zhao J. Growth and differentiation of neural stem cells in a three-dimensional collagen gel scaffold. Neural Regen Res 2014; 8:313-9. [PMID: 25206671 PMCID: PMC4107534 DOI: 10.3969/j.issn.1673-5374.2013.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/27/2012] [Indexed: 12/22/2022] Open
Abstract
Collagen protein is an ideal scaffold material for the transplantation of neural stem cells. In this study, rat neural stem cells were seeded into a three-dimensional collagen gel scaffold, with suspension cultured neural stem cells being used as a control group. Neural stem cells, which were cultured in medium containing epidermal growth factor and basic fibroblast growth factor, actively expanded and formed neurospheres in both culture groups. In serum-free medium conditions, the processes extended from neurospheres in the collagen gel group were much longer than those in the suspension culture group. Immunofluorescence staining showed that neurospheres cultured in collagen gels were stained positive for nestin and differentiated cells were stained positive for the neuronal marker βIII-tubulin, the astrocytic marker glial fibrillary acidic protein and the oligodendrocytic marker 2’,3’-cyclic nucleotide 3’-phosphodiesterase. Compared with neurospheres cultured in suspension, the differentiation potential of neural stem cells cultured in collagen gels increased, with the formation of neurons at an early stage. Our results show that the three-dimensional collagen gel culture system is superior to suspension culture in the proliferation, differentiation and process outgrowth of neural stem cells.
Collapse
Affiliation(s)
- Fei Huang
- Department of Orthopedics, Fourth Affiliated Hospital of Anhui Medical University, Hefei 230000, Anhui Province, China
| | - Qiang Shen
- Department of Orthopedics, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Jitong Zhao
- Department of Orthopedics, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| |
Collapse
|
24
|
Liu Y, Zhou Y, Zhang C, Zhang F, Hou S, Zhong H, Huang H. Optimal time for subarachnoid transplantation of neural progenitor cells in the treatment of contusive spinal cord injury. Neural Regen Res 2014; 8:389-96. [PMID: 25206679 PMCID: PMC4146137 DOI: 10.3969/j.issn.1673-5374.2013.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/20/2012] [Indexed: 11/18/2022] Open
Abstract
This study aimed to identify the optimal neural progenitor cell transplantation time for spinal cord injury in rats via the subarachnoid space. Cultured neural progenitor cells from 14-day embryonic rats, constitutively expressing enhanced green fluorescence protein, or media alone, were injected into the subarachnoid space of adult rats at 1 hour (acute stage), 7 days (subacute stage) and 28 days (chronic stage) after contusive spinal cord injury. Results showed that grafted neural progenitor cells migrated and aggregated around the blood vessels of the injured region, and infiltrated the spinal cord parenchyma along the tissue spaces in the acute stage transplantation group. However, this was not observed in subacute and chronic stage transplantation groups. O4- and glial fibrillary acidic protein-positive cells, representing oligodendrocytes and astrocytes respectively, were detected in the core of the grafted cluster attached to the cauda equina pia surface in the chronic stage transplantation group 8 weeks after transplantation. Both acute and subacute stage transplantation groups were negative for O4 and glial fibrillary acidic protein cells. Basso, Beattie and Bresnahan scale score comparisons indicated that rat hind limb locomotor activity showed better recovery after acute stage transplantation than after subacute and chronic transplantation. Our experimental findings suggest that the subarachnoid route could be useful for transplantation of neural progenitor cells at the acute stage of spinal cord injury. Although grafted cells survived only for a short time and did not differentiate into astrocytes or neurons, they were able to reach the parenchyma of the injured spinal cord and improve neurological function in rats. Transplantation efficacy was enhanced at the acute stage in comparison with subacute and chronic stages.
Collapse
Affiliation(s)
- Yan Liu
- Orthopedic Institute, the First Affiliated Hospital of the General Hospital of PLA, Beijing 100048, China
| | - Ying Zhou
- Orthopedic Institute, the First Affiliated Hospital of the General Hospital of PLA, Beijing 100048, China
| | - Chunli Zhang
- Orthopedic Institute, the First Affiliated Hospital of the General Hospital of PLA, Beijing 100048, China
| | - Feng Zhang
- Beijing Hongtianji Neuroscience Academy, Beijing 100144, China
| | - Shuxun Hou
- Orthopedic Institute, the First Affiliated Hospital of the General Hospital of PLA, Beijing 100048, China
| | - Hongbin Zhong
- Orthopedic Institute, the First Affiliated Hospital of the General Hospital of PLA, Beijing 100048, China
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing 100144, China
| |
Collapse
|
25
|
Mortazavi MM, Harmon OA, Adeeb N, Deep A, Tubbs RS. Treatment of spinal cord injury: a review of engineering using neural and mesenchymal stem cells. Clin Anat 2014; 28:37-44. [PMID: 25156268 DOI: 10.1002/ca.22443] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 12/16/2022]
Abstract
Over time, various treatment modalities for spinal cord injury have been trialed, including pharmacological and nonpharmacological methods. Among these, replacement of the injured neural and paraneural tissues via cellular transplantation of neural and mesenchymal stem cells has been the most attractive. Extensive experimental studies have been done to identify the safety and effectiveness of this transplantation in animal and human models. Herein, we review the literature for studies conducted, with a focus on the human-related studies, recruitment, isolation, and transplantation, of these multipotent stem cells, and associated outcomes.
Collapse
Affiliation(s)
- Martin M Mortazavi
- Department of Neurosurgery, University of Washington, Seattle, Washington
| | | | | | | | | |
Collapse
|
26
|
Presence of trans-synaptic neurons derived from olfactory mucosa transplanted after spinal cord injury. Spine (Phila Pa 1976) 2014; 39:1267-73. [PMID: 24827516 DOI: 10.1097/brs.0000000000000386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Using biotinylated dextran amine (BDA) and wheat germ agglutinin (WGA) tracers, we measured the effectiveness of olfactory mucosa (OM) transplantation as a scaffold in a rat model of chronic spinal cord injury (SCI). OBJECTIVE We examined whether OM transplantation for chronic SCI in rats results in reconstruction of neuronal pathways by both regeneration of the remaining axons and supply of OM-derived trans-synaptic neurons. SUMMARY OF BACKGROUND DATA OM is one of the ideal scaffolds for axonal regeneration after chronic SCI. METHODS Rats received a mild contusion at vertebral level T6-T7. Two weeks after SCI, enhanced green fluorescent protein rat-derived OM, respiratory mucosa, and phosphate-buffered saline were transplanted into each group of SCI rats. Ten weeks after SCI, BDA was injected into the right sensorimotor cortex. Eleven weeks after SCI, WGA was injected into the L1-L2 posterior column to label the corticospinal tract retrogradely and trans-synaptically. Twelve weeks after SCI, rats were killed and their spinal cords were divided into cervical (area a), thoracic-injured (area b), and lower thoracic portions (area c). Immunohistochemically, sections of area (b) were evaluated by counting cells positive for enhanced green fluorescent protein, 4',6-diamidino-2-phenylindole, WGA, and BDA (OM and respiratory mucosa groups). Axonal regenerations were estimated by counting WGA- and BDA-positive dots in transverse sections of area (a) and area (c). RESULTS Compared with respiratory mucosa and phosphate-buffered saline transplantation, OM transplantation increased the number of WGA-positive dots in area (a), and the number of BDA-positive dots in area (c) was more after OM transplantation than after phosphate-buffered saline transplantation. Furthermore, the number of quadruple-positive cells in area (b) was much higher after OM transplantation. CONCLUSION Our results provide both indirect and direct evidence for the presence of trans-synaptic neurons. OM transplantation in rats with chronic SCI resulted in reconstruction of neural pathways by both providing trans-synaptic neurons and supporting regeneration of remaining axons. The olfactory mucosa is thought to be an efficacious scaffold to produce the relay neuron in chronic spinal cord injury.
Collapse
|
27
|
Rupp R, Blesch A, Schad L, Draganski B, Weidner N. [Novel aspects of diagnostics and therapy of spinal cord diseases]. DER NERVENARZT 2014; 85:946-54. [PMID: 25001239 DOI: 10.1007/s00115-014-4037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Both non-traumatic and traumatic spinal cord injuries have in common that a relatively minor structural lesion can cause profound sensorimotor and autonomous dysfunction. Besides treating the cause of the spinal cord injury the main goal is to restore lost function as far as possible. AIM This article provides an overview of current innovative diagnostic (imaging) and therapeutic approaches (neurorehabilitation and neuroregeneration) aiming for recovery of function after non-traumatic and traumatic spinal cord injuries. MATERIAL AND METHODS An analysis of the current scientific literature regarding imaging, rehabilitation and rehabilitation strategies in spinal cord disease was carried out. RESULTS Novel magnetic resonance imaging (MRI) based techniques (e.g. diffusion-weighted MRI and functional MRI) allow visualization of structural reorganization and specific neural activity in the spinal cord. Robotics-driven rehabilitative measures provide training of sensorimotor function in a targeted fashion, which can even be continued in the homecare setting. From a preclinical point of view, defined stem cell transplantation approaches allow for the first time robust structural repair of the injured spinal cord. CONCLUSION Besides well-established neurological and functional scores, MRI techniques offer the unique opportunity to provide robust and reliable "biomarkers" for restorative therapeutic interventions. Function-oriented robotics-based rehabilitative interventions alone or in combination with stem cell based therapies represent promising approaches to achieve substantial functional recovery, which go beyond current rehabilitative treatment efforts.
Collapse
Affiliation(s)
- R Rupp
- Klinik für Paraplegiologie - Querschnittzentrum, Universitätsklinikum Heidelberg, Schlierbacher Landstr. 200a, 69118, Heidelberg, Deutschland
| | | | | | | | | |
Collapse
|
28
|
Wang X, Xu XM. Long-term survival, axonal growth-promotion, and myelination of Schwann cells grafted into contused spinal cord in adult rats. Exp Neurol 2014; 261:308-19. [PMID: 24873728 DOI: 10.1016/j.expneurol.2014.05.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/18/2014] [Accepted: 05/20/2014] [Indexed: 01/25/2023]
Abstract
Schwann cells (SCs) have been considered to be one of the most promising cell types for transplantation to treat spinal cord injury (SCI) due to their unique growth-promoting properties. Despite the extensive use as donor cells for transplantation in SCI models, the fate of SCs is controversial due in part to the lack of a reliable marker for tracing the grafted SCs. To precisely assess the fate and temporal profile of transplanted SCs, we isolated purified SCs from sciatic nerves of adult transgenic rats overexpressing GFP (SCs-GFP). SCs-GFP were directly injected into the epicenter of a moderate contusive SCI at the mid-thoracic level at 1week post-injury. The number of SCs-GFP or SCs-GFP labeled with Bromodeoxyuridine (BrdU) was quantified at 5min, 1day, and 1, 2, 4, 12 and 24weeks after cell injection. Basso, Beattie, and Bresnahan (BBB) locomotor rating scale, footfall error, thermal withdrawal latency, and footprint analysis were performed before and after the SCs-GFP transplantation. After transplantation, SCs-GFP quickly filled the lesion cavity. A remarkable survival of grafted SCs-GFP up to 24weeks post-grafting was observed with clearly identified SC individuals. SCs-GFP proliferated after injection, peaked at 2weeks (26% of total SCs-GFP), decreased thereafter, and ceased at 12weeks post-grafting. Although grafted SCs-GFP were mainly confined within the border of surrounding host tissue, they migrated along the central canal for up to 5.0mm at 4weeks post-grafting. Within the lesion site, grafted SCs-GFP myelinated regenerated axons and expressed protein zero (P0) and myelin basic protein (MBP). Within the SCs-GFP grafts, new blood vessels were formed. Except for a significant decrease of angle of rotation in the footprint analysis, we did not observe significant behavioral improvements in BBB locomotor rating scale, thermal withdrawal latency, or footfall errors, compared to the control animals that received no SCs-GFP. We conclude that SCs-GFP can survive remarkably well, proliferate, migrate along the central canal, and myelinate regenerated axons when being grafted into a clinically-relevant contusive SCI in adult rats. Combinatorial strategies, however, are essential to achieve a more meaningful functional regeneration of which SCs may play a significant role.
Collapse
Affiliation(s)
- Xiaofei Wang
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
29
|
Zhu T, Tang Q, Gao H, Shen Y, Chen L, Zhu J. Current status of cell-mediated regenerative therapies for human spinal cord injury. Neurosci Bull 2014; 30:671-82. [PMID: 24817389 DOI: 10.1007/s12264-013-1438-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/28/2013] [Indexed: 01/01/2023] Open
Abstract
During the past decade, significant advances have been made in refinements for regenerative therapies following human spinal cord injury (SCI). Positive results have been achieved with different types of cells in various clinical studies of SCI. In this review, we summarize recently-completed clinical trials using cell-mediated regenerative therapies for human SCI, together with ongoing trials using neural stem cells. Specifically, clinical studies published in Chinese journals are included. These studies show that current transplantation therapies are relatively safe, and have provided varying degrees of neurological recovery. However, many obstacles exist, hindering the introduction of a specific clinical therapy, including complications and their causes, selection of the target population, and optimization of transplantation material. Despite these and other challenges, with the collaboration of research groups and strong support from various organizations, cell-mediated regenerative therapies will open new perspectives for SCI treatment.
Collapse
Affiliation(s)
- Tongming Zhu
- Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | | | | | | | | | | |
Collapse
|
30
|
Ning G, Tang L, Wu Q, Li Y, Li Y, Zhang C, Feng S. Human umbilical cord blood stem cells for spinal cord injury: early transplantation results in better local angiogenesis. Regen Med 2014; 8:271-81. [PMID: 23627822 DOI: 10.2217/rme.13.26] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM We aim to explore the repair mechanism after the transplantation of CD34(+) human umbilical cord blood cells (HUCBCs) in traumatic spinal cord injury (SCI) in rats. MATERIALS & METHODS Wistar rats with SCI were randomly divided into three groups: DMEM injection (group A); CD34(+) HUCBC transplantation on the first day after injury (group B); and CD34(+) HUCBC transplantation on the sixth day after injury (group C). The Basso, Beattie and Bresnahan scores were used to evaluate motor behavior. At the injured site, the infarct size, blood vessel density, and survival and neural differentiation of transplanted cells were analyzed. RESULTS It was found that the Basso, Beattie and Bresnahan score in group B was significantly higher than other groups (p < 0.05), and the infarct size and blood vessel density at the injured site were significantly different (p < 0.01). However, the transplanted cells survived at least 3 weeks at the injured site, but did not differentiate into neural cells. CONCLUSION These results suggested transplantation of CD34(+) HUCBCs during the acute phase could promote the functional recovery better than during the subacute phase after SCI by raising blood vessel density, suggesting the possible clinical application for the treatment of spinal injury.
Collapse
Affiliation(s)
- Guangzhi Ning
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin Heping District Anshan Road 154, Tianjin 300052, PR China
| | | | | | | | | | | | | |
Collapse
|
31
|
Solanki A, Chueng STD, Yin PT, Kappera R, Chhowalla M, Lee KB. Axonal alignment and enhanced neuronal differentiation of neural stem cells on graphene-nanoparticle hybrid structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:5477-82. [PMID: 23824715 PMCID: PMC4189106 DOI: 10.1002/adma.201302219] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Indexed: 05/19/2023]
Abstract
Human neural stem cells (hNSCs) cultured on graphene-nanoparticle hybrid structures show a unique behavior wherein the axons from the differentiating hNSCs show enhanced growth and alignment. We show that the axonal alignment is primarily due to the presence of graphene and the underlying nanoparticle monolayer causes enhanced neuronal differentiation of the hNSCs, thus having great implications of these hybrid-nanostructures for neuro-regenerative medicine.
Collapse
Affiliation(s)
- Aniruddh Solanki
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA, Fax: (+1) 732-445-5312
| | - Sy-Tsong Dean Chueng
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA, Fax: (+1) 732-445-5312
| | - Perry T. Yin
- Department of Biomedical Engineering Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rajesh Kappera
- Department of Materials Science and Engineering Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Manish Chhowalla
- Department of Materials Science and Engineering Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA, Fax: (+1) 732-445-5312, http://chem.rutgers.edu/–kbleeweb; Department of Biomedical Engineering Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
32
|
Electrical stimulation of embryonic neurons for 1 hour improves axon regeneration and the number of reinnervated muscles that function. J Neuropathol Exp Neurol 2013; 72:697-707. [PMID: 23771218 DOI: 10.1097/nen.0b013e318299d376] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Motoneuron death after spinal cord injury or disease results in muscle denervation, atrophy, and paralysis. We have previously transplanted embryonic ventral spinal cord cells into the peripheral nerve to reinnervate denervated muscles and to reduce muscle atrophy, but reinnervation was incomplete. Here, our aim was to determine whether brief electrical stimulation of embryonic neurons in the peripheralnerve changes motoneuron survival, axon regeneration, and muscle reinnervation and function because neural depolarization is crucial for embryonic neuron survival and may promote activity-dependent axon growth. At 1 week after denervation by sciatic nerve section, embryonic day 14 to 15 cells were purified for motoneurons, injected into the tibial nerve of adult Fischer rats, and stimulated immediatelyfor up to 1 hour. More myelinated axons were present in tibial nerves 10 weeks after transplantation when transplants had been stimulated acutely at 1 Hz for 1 hour. More muscles were reinnervated if the stimulation treatment lasted for 1 hour. Reinnervation reduced muscle atrophy, with or without the stimulation treatment. These data suggest that brief stimulation of embryonic neurons promotes axon growth, which has a long-term impact on muscle reinnervation and function. Muscle reinnervation is important because it may enable the use of functional electrical stimulation to restore limb movements.
Collapse
|
33
|
Woller SA, Hook MA. Opioid administration following spinal cord injury: implications for pain and locomotor recovery. Exp Neurol 2013; 247:328-41. [PMID: 23501709 PMCID: PMC3742731 DOI: 10.1016/j.expneurol.2013.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 12/18/2022]
Abstract
Approximately one-third of people with a spinal cord injury (SCI) will experience persistent neuropathic pain following injury. This pain negatively affects quality of life and is difficult to treat. Opioids are among the most effective drug treatments, and are commonly prescribed, but experimental evidence suggests that opioid treatment in the acute phase of injury can attenuate recovery of locomotor function. In fact, spinal cord injury and opioid administration share several common features (e.g. central sensitization, excitotoxicity, aberrant glial activation) that have been linked to impaired recovery of function, as well as the development of pain. Despite these effects, the interactions between opioid use and spinal cord injury have not been fully explored. A review of the literature, described here, suggests that caution is warranted when administering opioids after SCI. Opioid administration may synergistically contribute to the pathology of SCI to increase the development of pain, decrease locomotor recovery, and leave individuals at risk for infection. Considering these negative implications, it is important that guidelines are established for the use of opioids following spinal cord and other central nervous system injuries.
Collapse
Affiliation(s)
- Sarah A Woller
- Texas A&M Institute for Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA.
| | | |
Collapse
|
34
|
A neonatal mouse spinal cord injury model for assessing post-injury adaptive plasticity and human stem cell integration. PLoS One 2013; 8:e71701. [PMID: 23990976 PMCID: PMC3747194 DOI: 10.1371/journal.pone.0071701] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 07/02/2013] [Indexed: 12/17/2022] Open
Abstract
Despite limited regeneration capacity, partial injuries to the adult mammalian spinal cord can elicit variable degrees of functional recovery, mediated at least in part by reorganization of neuronal circuitry. Underlying mechanisms are believed to include synaptic plasticity and collateral sprouting of spared axons. Because plasticity is higher in young animals, we developed a spinal cord compression (SCC) injury model in the neonatal mouse to gain insight into the potential for reorganization during early life. The model provides a platform for high-throughput assessment of functional synaptic connectivity that is also suitable for testing the functional integration of human stem and progenitor cell-derived neurons being considered for clinical cell replacement strategies. SCC was generated at T9–T11 and functional recovery was assessed using an integrated approach including video kinematics, histology, tract tracing, electrophysiology, and high-throughput optical recording of descending inputs to identified spinal neurons. Dramatic degeneration of axons and synaptic contacts was evident within 24 hours of SCC, and loss of neurons in the injured segment was evident for at least a month thereafter. Initial hindlimb paralysis was paralleled by a loss of descending inputs to lumbar motoneurons. Within 4 days of SCC and progressively thereafter, hindlimb motility began to be restored and descending inputs reappeared, but with examples of atypical synaptic connections indicating a reorganization of circuitry. One to two weeks after SCC, hindlimb motility approached sham control levels, and weight-bearing locomotion was virtually indistinguishable in SCC and sham control mice. Genetically labeled human fetal neural progenitor cells injected into the injured spinal cord survived for at least a month, integrated into the host tissue and began to differentiate morphologically. This integrative neonatal mouse model provides opportunities to explore early adaptive plasticity mechanisms underlying functional recovery as well as the capacity for human stem cell-derived neurons to integrate functionally into spinal circuits.
Collapse
|
35
|
Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury. Exp Neurol 2013; 248:369-80. [PMID: 23856436 DOI: 10.1016/j.expneurol.2013.06.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/10/2013] [Accepted: 06/28/2013] [Indexed: 12/14/2022]
Abstract
Neurotrophins and the transplantation of bone marrow-derived stromal cells (MSCs) are both candidate therapies targeting spinal cord injury (SCI). While some studies have suggested the ability of MSCs to transdifferentiate into neural cells, other SCI studies have proposed anti-inflammatory and other mechanisms underlying established beneficial effects. We grafted rat MSCs genetically modified to express MNTS1, a multineurotrophin that binds TrkA, TrkB and TrkC, and p75(NTR) receptors or MSC-MNTS1/p75(-) that binds mainly to the Trk receptors. Seven days after contusive SCI, PBS-only, GFP-MSC, MSC-MNTS1/GFP or MSC-MNTS1/p75(-)/GFP were delivered into the injury epicenter. All transplanted groups showed reduced inflammation and cystic cavity size compared to control SCI rats. Interestingly, transplantation of the MSC-MNTS1 and MSC-MNTS1/p75(-), but not the naïve MSCs, enhanced axonal growth and significantly prevented cutaneous hypersensitivity after SCI. Moreover, transplantation of MSC-MNTS1/p75(-) promoted angiogenesis and modified glial scar formation. These findings suggest that MSCs transduced with a multineurotrophin are effective in promoting cell growth and improving sensory function after SCI. These novel data also provide insight into the neurotrophin-receptor dependent mechanisms through which cellular transplantation leads to functional improvement after experimental SCI.
Collapse
|
36
|
Abstract
Regenerative medicine is a rapidly evolving multidisciplinary, translational research enterprise whose explicit purpose is to advance technologies for the repair and replacement of damaged cells, tissues, and organs. Scientific progress in the field has been steady and expectations for its robust clinical application continue to rise. The major thesis of this review is that the pharmacological sciences will contribute critically to the accelerated translational progress and clinical utility of regenerative medicine technologies. In 2007, we coined the phrase "regenerative pharmacology" to describe the enormous possibilities that could occur at the interface between pharmacology, regenerative medicine, and tissue engineering. The operational definition of regenerative pharmacology is "the application of pharmacological sciences to accelerate, optimize, and characterize (either in vitro or in vivo) the development, maturation, and function of bioengineered and regenerating tissues." As such, regenerative pharmacology seeks to cure disease through restoration of tissue/organ function. This strategy is distinct from standard pharmacotherapy, which is often limited to the amelioration of symptoms. Our goal here is to get pharmacologists more involved in this field of research by exposing them to the tools, opportunities, challenges, and interdisciplinary expertise that will be required to ensure awareness and galvanize involvement. To this end, we illustrate ways in which the pharmacological sciences can drive future innovations in regenerative medicine and tissue engineering and thus help to revolutionize the discovery of curative therapeutics. Hopefully, the broad foundational knowledge provided herein will spark sustained conversations among experts in diverse fields of scientific research to the benefit of all.
Collapse
Affiliation(s)
- George J Christ
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA.
| | | | | | | |
Collapse
|
37
|
Ramm Sander P, Hau P, Koch S, Schütze K, Bogdahn U, Kalbitzer HR, Aigner L. Stem cell metabolic and spectroscopic profiling. Trends Biotechnol 2013; 31:204-13. [PMID: 23384506 DOI: 10.1016/j.tibtech.2013.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/21/2012] [Accepted: 01/09/2013] [Indexed: 12/14/2022]
Abstract
Stem cells offer great potential for regenerative medicine because they regenerate damaged tissue by cell replacement and/or by stimulating endogenous repair mechanisms. Although stem cells are defined by their functional properties, such as the potential to proliferate, to self-renew, and to differentiate into specific cell types, their identification based on the expression of specific markers remains vague. Here, profiles of stem cell metabolism might highlight stem cell function more than the expression of single genes/markers. Thus, systematic approaches including spectroscopy might yield insight into stem cell function, identity, and stemness. We review the findings gained by means of metabolic and spectroscopic profiling methodologies, for example, nuclear magnetic resonance spectroscopy (NMRS), mass spectrometry (MS), and Raman spectroscopy (RS), with a focus on neural stem cells and neurogenesis.
Collapse
Affiliation(s)
- Paul Ramm Sander
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Human neural stem/progenitor cells derived from embryonic stem cells and fetal nervous system present differences in immunogenicity and immunomodulatory potentials in vitro. Stem Cell Res 2013; 10:325-37. [PMID: 23416350 DOI: 10.1016/j.scr.2013.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 12/18/2012] [Accepted: 01/02/2013] [Indexed: 12/29/2022] Open
Abstract
To develop cell therapies for damaged nervous tissue with human neural stem/progenitor cells (hNPCs), the risk of an immune response and graft rejection must be considered. There are conflicting results and lack of knowledge concerning the immunocompetence of hNPCs of different origin. Here, we studied the immunogenicity and immunomodulatory potentials of hNPCs cultured under equivalent conditions after derivation from human embryonic stem cells (hESC-NPCs) or human fetal spinal cord tissue (hfNPCs). The expression patterns of human leukocyte antigen, co-stimulatory and adhesion molecules in hESC-NPCs and hfNPCs were relatively similar and mostly not affected by inflammatory cytokines. Unstimulated hfNPCs secreted more transforming growth factor-β1 (TGF-β1) and β2 but similar level of interleukin (IL)-10 compared to hESC-NPCs. In contrast to hfNPCs, hESC-NPCs displayed 4-6 fold increases in TGF-β1, TGF-β2 and IL-10 under inflammatory conditions. Both hNPCs reduced the alloreaction between allogeneic peripheral blood mononuclear cells (PBMCs) and up-regulated CD4(+)CD25(+)forkhead box P3 (FOXP3)(+) T cells. However, hESC-NPCs but not hfNPCs dose-dependently triggered PBMC proliferation, which at least partly may be due to TGF-β signaling. To conclude, hESC-NPCs and hfNPCs displayed similarities but also significant differences in their immunocompetence and interaction with allogeneic PBMCs, differences may be crucial for the outcome of cell therapy.
Collapse
|
39
|
Zhuang KX, Huang W, Yan B. Establishment and expression of recombinant human glial cell linederived neurotrophic factor and TNF α receptor in human neural stem cells. ASIAN PAC J TROP MED 2012; 5:651-5. [DOI: 10.1016/s1995-7645(12)60133-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 05/05/2012] [Accepted: 06/27/2012] [Indexed: 11/26/2022] Open
|