1
|
Xiao L, Zhu J, Liu Z, Wu B, Zhou X, Wei Y, Sun F, Wang Z, Quan S, Li Q, Wang J, Huang L, Ma Y. Different transcriptional profiles of human embryonic stem cells grown in a feeder-free culture system and on human foreskin fibroblast feeder layers. Aging (Albany NY) 2022; 14:7443-7454. [PMID: 36103219 PMCID: PMC9550256 DOI: 10.18632/aging.204282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
Feeder cells provide an optimal microenvironment for the propagation of human embryonic stem cells (hESCs) by supplying currently known or unknown factors. However, the hESCs grown on feeder cells are not suitable for the purpose of clinical application because of the risk of contamination. In recent years, the feeder-free culture method has been developed to eliminate contamination, but some studies show that hESCs exhibit poor growth patterns in a feeder-free culture system. Regarding this phenomenon, we speculate that some genes related to hESC propagation were differently expressed in hESCs grown on feeder cells. To test this hypothesis, 3 hESC lines (NF4, NF5 and P096) were efficiently expanded in a feeder-free culture system or on human foreskin fibroblast (HFF) cells. The different gene expression patterns of hESCs in these 2 conditions were analyzed through microarrays. The results revealed that the hESCs cultured in both conditions maintained the expression of stemness markers and the ability to spontaneously differentiate into the 3 germ layers. The analysis of gene expression profiles revealed that 23 lncRNA and 15 genes were significantly differentially expressed in these two culture conditions. Furthermore, GO analyses showed that these genes were involved in such biological processes as growth factor stimuli, cell growth, and stem cell maintenance. To summarize, our study demonstrated that the hESCs grown on the HFF showed different gene expression patterns compared to those grown in a feeder-free culture system, suggesting that these differently expressed lncRNAs and genes played important roles in maintaining hESC propagation.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Juan Zhu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 570102, Hainan, China
| | - Zheng Liu
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Bangyong Wu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 570102, Hainan, China
| | - Xiaohua Zhou
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yanxing Wei
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Fei Sun
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhijian Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Song Quan
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 570102, Hainan, China
| | - Jun Wang
- Center for Molecular Development and Disease, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yanlin Ma
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 570102, Hainan, China
| |
Collapse
|
2
|
Infection and Functional Modulation of Human Monocytes and Macrophages by Varicella-Zoster Virus. J Virol 2019; 93:JVI.01887-18. [PMID: 30404793 DOI: 10.1128/jvi.01887-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 02/08/2023] Open
Abstract
Varicella-zoster virus (VZV) is associated with viremia during primary infection that is presumed to stem from infection of circulating immune cells. While VZV has been shown to be capable of infecting a number of different subsets of circulating immune cells, such as T cells, dendritic cells, and NK cells, less is known about the interaction between VZV and monocytes. Here, we demonstrate that blood-derived human monocytes are permissive to VZV replication in vitro VZV-infected monocytes exhibited each temporal class of VZV gene expression, as evidenced by immunofluorescent staining. VZV virions were observed on the cell surface and viral nucleocapsids were observed in the nucleus of VZV-infected monocytes by scanning electron microscopy. In addition, VZV-infected monocytes were able to transfer infectious virus to human fibroblasts. Infected monocytes displayed impaired dextran-mediated endocytosis, and cell surface immunophenotyping revealed the downregulation of CD14, HLA-DR, CD11b, and the macrophage colony-stimulating factor (M-CSF) receptor. Analysis of the impact of VZV infection on M-CSF-stimulated monocyte-to-macrophage differentiation demonstrated the loss of cell viability, indicating that VZV-infected monocytes were unable to differentiate into viable macrophages. In contrast, macrophages differentiated from monocytes prior to exposure to VZV were highly permissive to infection. This study defines the permissiveness of these myeloid cell types to productive VZV infection and identifies the functional impairment of VZV-infected monocytes.IMPORTANCE Primary VZV infection results in the widespread dissemination of the virus throughout the host. Viral transportation is known to be directly influenced by susceptible immune cells in the circulation. Moreover, infection of immune cells by VZV results in attenuation of the antiviral mechanisms used to control infection and limit spread. Here, we provide evidence that human monocytes, which are highly abundant in the circulation, are permissive to productive VZV infection. Furthermore, monocyte-derived macrophages were also highly permissive to VZV infection, although VZV-infected monocytes were unable to differentiate into macrophages. Exploring the relationships between VZV and permissive immune cells, such as human monocytes and macrophages, elucidates novel immune evasion strategies and provides further insight into the control that VZV has over the immune system.
Collapse
|
4
|
Kwok CTD, Leung MH, Qin J, Qin Y, Wang J, Lee YL, Yao KM. The Forkhead box transcription factor FOXM1 is required for the maintenance of cell proliferation and protection against oxidative stress in human embryonic stem cells. Stem Cell Res 2016; 16:651-661. [PMID: 27062359 DOI: 10.1016/j.scr.2016.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/05/2016] [Accepted: 03/17/2016] [Indexed: 12/30/2022] Open
Abstract
Human embryonic stem cells (hESCs) exhibit unique cell cycle structure, self-renewal and pluripotency. The Forkhead box transcription factor M1 (FOXM1) is critically required for the maintenance of pluripotency in mouse embryonic stem cells and mouse embryonal carcinoma cells, but its role in hESCs remains unclear. Here, we show that FOXM1 expression was enriched in undifferentiated hESCs and was regulated in a cell cycle-dependent manner with peak levels detected at the G2/M phase. Expression of FOXM1 did not correlate with OCT4 and NANOG during in vitro differentiation of hESCs. Importantly, knockdown of FOXM1 expression led to aberrant cell cycle distribution with impairment in mitotic progression but showed no profound effect on the undifferentiated state. Interestingly, FOXM1 depletion sensitized hESCs to oxidative stress. Moreover, genome-wide analysis of FOXM1 targets by ChIP-seq identified genes important for M phase including CCNB1 and CDK1, which were subsequently confirmed by ChIP and RNA interference analyses. Further peak set comparison against a differentiating hESC line and a cancer cell line revealed a substantial difference in the genomic binding profile of FOXM1 in hESCs. Taken together, our findings provide the first evidence to support FOXM1 as an important regulator of cell cycle progression and defense against oxidative stress in hESCs.
Collapse
Affiliation(s)
- C T D Kwok
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - M H Leung
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - J Qin
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Y Qin
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - J Wang
- Centre for Genomic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Y L Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - K-M Yao
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Liu CX, Zhang RL, Gao J, Li T, Ren Z, Zhou CQ, Wen AM. Derivation of human embryonic stem cell lines without any exogenous growth factors. Mol Reprod Dev 2014; 81:470-9. [PMID: 24554631 DOI: 10.1002/mrd.22312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/11/2014] [Indexed: 01/16/2023]
Abstract
Human embryonic stem cell (hESC) lines are traditionally derived through immunosurgery. Their maintenance in culture requires the presence of mouse embryonic fibroblasts (MEFs) as feeder cells and media supplemented with basic fibroblast growth factor (bFGF) or other growth factors-both of which might introduce animal-derived culture components. The drawbacks associated with immunosurgery, MEF co-culture, and the cost of growth factors necessitate the exploration of a xeno-free method to maintain the self-renewal capacity of hESCs. Here, we describe an isolation method for the human inner cell mass (ICM), which was then cultured in the absence of exogenous growth factors and in the presence of human foreskin fibroblasts (HFFs) as feeder cells. Three hESC lines were obtained from poor-quality embryos by this near-xeno-free protocol. After culturing for more than 10 months, the hESCs retained normal morphology, expressed all expected cell surface markers, could differentiate to embryoid bodies upon culture in vitro, and formed teratomas in vivo. Furthermore, secretion of bFGF by HFFs was observed. In conclusion, this is the first study to describe an inexpensive, xeno-free culture system for the isolation and maintenance of hESCs that does not require bFGF supplementation.
Collapse
Affiliation(s)
- Cai Xia Liu
- Reproductive Medicine Center, Guangdong Academy of Medical Sciences/Guangdong General Hospital, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Singh B, Coffey RJ. From wavy hair to naked proteins: the role of transforming growth factor alpha in health and disease. Semin Cell Dev Biol 2014; 28:12-21. [PMID: 24631356 DOI: 10.1016/j.semcdb.2014.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 02/07/2023]
Abstract
Since its discovery in 1978 and cloning in 1984, transforming growth factor-alpha (TGF-α, TGFA) has been one of the most extensively studied EGF receptor (EGFR) ligands. In this review, we provide a historical perspective on TGFA-related studies, highlighting what we consider important advances related to its function in normal and disease states.
Collapse
Affiliation(s)
- Bhuminder Singh
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Robert J Coffey
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veteran Affairs Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
9
|
Chen K, Hsu LT, Wu CY, Chang SY, Huang HT, Chen W. CBARA1 plays a role in stemness and proliferation of human embryonic stem cells. PLoS One 2013; 8:e63653. [PMID: 23667653 PMCID: PMC3648555 DOI: 10.1371/journal.pone.0063653] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/04/2013] [Indexed: 12/04/2022] Open
Abstract
Human embryonic stem cells (hESCs) are capable of unlimited self-renewal and can generate almost all of the cells in the body. Although some pluripotency factors have been identified, much remains unclear regarding the molecules and mechanisms that regulate hESC self-renewal and pluripotency. In this study, we identified a mitochondrial gene, CBARA1, that is expressed in undifferentiated hESCs and that is down-regulated rapidly after cellular differentiation. To study its role in hESCs, endogenous CBARA1 expression was knocked down using shRNA. CBARA1 knockdown in hESCs resulted in down-regulation of Oct4 and Nanog expression, attenuated cell growth, and G0/G1 phase cell cycle arrest; however, knockdown did not noticeably affect apoptosis. Taken together, these results suggest that CBARA1 is a marker for undifferentiated hESCs that plays a role in maintaining stemness, cell cycle progression, and proliferation.
Collapse
Affiliation(s)
- Kevin Chen
- Department of Tissue Regeneration Product Technology, Faculty of Biomedical Technology and Device Research, Industrial Technology Research Institute, Hsinchu, Taiwan.
| | | | | | | | | | | |
Collapse
|