1
|
Keubler LM, Talbot SR, Bleich A, Boyle EC. Systematic review and meta-analysis of the effect of fecal microbiota transplantation on behavior in animals. Neurosci Biobehav Rev 2023; 153:105316. [PMID: 37442498 DOI: 10.1016/j.neubiorev.2023.105316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
The bi-directional interaction between gut microbiota and the central nervous system has been coined the gut microbiota-brain axis. Fecal microbiota transplantation (FMT) is the administration of a solution of fecal matter from a donor into the intestinal tract of a recipient. Preclinical FMT experiments are essential to prove causality in the context of the gut microbiota-brain axis. In this systematic review, we assess the body of evidence related to the ability of FMT to modulate an animal's behavior. Accordingly, we provide a detailed summary of the use of FMT in behavior-related animal studies, an extensive risk of bias analysis, and a meta-analysis of the overall effect of FMT on behavioral outcome measures in 64 studies, representing 4889 animals. The resulting meta-analysis revealed FMT was effective at changing animal behavior, thereby substantiating evidence for the gut microbiota-brain axis. However, our study also highlights an urgent need for methodological safeguards within this research field to reduce the risk of bias and improve the internal validity of future studies.
Collapse
Affiliation(s)
- Lydia M Keubler
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany.
| | - Erin C Boyle
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Lorena FB, Sato JM, Coviello BM, Arnold AJT, Batistuzzo A, Yamanouchi LM, Dias Junior E, do Nascimento BPP, Fonseca TDL, Bianco AC, Ribeiro MO. Age Worsens the Cognitive Phenotype in Mice Carrying the Thr92Ala-DIO2 Polymorphism. Metabolites 2022; 12:629. [PMID: 35888752 PMCID: PMC9319877 DOI: 10.3390/metabo12070629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
The Thr92Ala-Dio2 polymorphism has been associated with reduced cognition in 2-month-old male mice and increased risk for cognitive impairment and Alzheimer's disease in African Americans. This has been attributed to reduced thyroid hormone (TH) signaling and endoplasmic reticulum (ER) stress in the brain. Here we studied the Thr92Ala-Dio2 mouse model and saw that older male mice (7-8-month-old) exhibited a more severe cognition impairment, which extended to different aspects of declarative and working memories. A similar phenotype was observed in 4-5-month-old female mice. There were no structural alterations in the prefrontal cortex (PFC) and hippocampus of the Thr92Ala-Dio2 mouse. Nonetheless, in both male and female PFC, there was an enrichment in genes associated with TH-dependent processes, ER stress, and Golgi apparatus, while in the hippocampus there was additional enrichment in genes associated with inflammation and apoptosis. Reduced TH signaling remains a key mechanism of disease given that short-term treatment with L-T3 rescued the cognitive phenotype observed in males and females. We conclude that in mice, age is an additional risk factor for cognitive impairment associated with the Thr92Ala-Dio2 polymorphism. In addition to reduced TH signaling, ER-stress, and involvement of the Golgi apparatus, hippocampal inflammation and apoptosis were identified as potentially important mechanisms of a disease.
Collapse
Affiliation(s)
- Fernanda B. Lorena
- Developmental Disorders Program, Center for Biological Sciences and Health, Mackenzie Presbyterian University, Sao Paulo 01302-907, SP, Brazil; (F.B.L.); (J.M.S.); (B.M.C.); (A.J.T.A.); (A.B.); (L.M.Y.); (E.D.J.); (B.P.P.d.N.)
- Postgraduate Program in Translational Medicine, Department of Medicine, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo 04021-001, SP, Brazil
| | - Juliana M. Sato
- Developmental Disorders Program, Center for Biological Sciences and Health, Mackenzie Presbyterian University, Sao Paulo 01302-907, SP, Brazil; (F.B.L.); (J.M.S.); (B.M.C.); (A.J.T.A.); (A.B.); (L.M.Y.); (E.D.J.); (B.P.P.d.N.)
- Postgraduate Program in Translational Medicine, Department of Medicine, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo 04021-001, SP, Brazil
| | - Beatriz Martin Coviello
- Developmental Disorders Program, Center for Biological Sciences and Health, Mackenzie Presbyterian University, Sao Paulo 01302-907, SP, Brazil; (F.B.L.); (J.M.S.); (B.M.C.); (A.J.T.A.); (A.B.); (L.M.Y.); (E.D.J.); (B.P.P.d.N.)
| | - Alexandre J. T. Arnold
- Developmental Disorders Program, Center for Biological Sciences and Health, Mackenzie Presbyterian University, Sao Paulo 01302-907, SP, Brazil; (F.B.L.); (J.M.S.); (B.M.C.); (A.J.T.A.); (A.B.); (L.M.Y.); (E.D.J.); (B.P.P.d.N.)
| | - Alice Batistuzzo
- Developmental Disorders Program, Center for Biological Sciences and Health, Mackenzie Presbyterian University, Sao Paulo 01302-907, SP, Brazil; (F.B.L.); (J.M.S.); (B.M.C.); (A.J.T.A.); (A.B.); (L.M.Y.); (E.D.J.); (B.P.P.d.N.)
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL 60637, USA; (T.d.L.F.); (A.C.B.)
| | - Laís M. Yamanouchi
- Developmental Disorders Program, Center for Biological Sciences and Health, Mackenzie Presbyterian University, Sao Paulo 01302-907, SP, Brazil; (F.B.L.); (J.M.S.); (B.M.C.); (A.J.T.A.); (A.B.); (L.M.Y.); (E.D.J.); (B.P.P.d.N.)
| | - Eduardo Dias Junior
- Developmental Disorders Program, Center for Biological Sciences and Health, Mackenzie Presbyterian University, Sao Paulo 01302-907, SP, Brazil; (F.B.L.); (J.M.S.); (B.M.C.); (A.J.T.A.); (A.B.); (L.M.Y.); (E.D.J.); (B.P.P.d.N.)
| | - Bruna P. P. do Nascimento
- Developmental Disorders Program, Center for Biological Sciences and Health, Mackenzie Presbyterian University, Sao Paulo 01302-907, SP, Brazil; (F.B.L.); (J.M.S.); (B.M.C.); (A.J.T.A.); (A.B.); (L.M.Y.); (E.D.J.); (B.P.P.d.N.)
- Postgraduate Program in Translational Medicine, Department of Medicine, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo 04021-001, SP, Brazil
| | - Tatiana de L. Fonseca
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL 60637, USA; (T.d.L.F.); (A.C.B.)
| | - Antonio C. Bianco
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL 60637, USA; (T.d.L.F.); (A.C.B.)
| | - Miriam O. Ribeiro
- Developmental Disorders Program, Center for Biological Sciences and Health, Mackenzie Presbyterian University, Sao Paulo 01302-907, SP, Brazil; (F.B.L.); (J.M.S.); (B.M.C.); (A.J.T.A.); (A.B.); (L.M.Y.); (E.D.J.); (B.P.P.d.N.)
| |
Collapse
|
3
|
Kozlova EV, Valdez MC, Denys ME, Bishay AE, Krum JM, Rabbani KM, Carrillo V, Gonzalez GM, Lampel G, Tran JD, Vazquez BM, Anchondo LM, Uddin SA, Huffman NM, Monarrez E, Olomi DS, Chinthirla BD, Hartman RE, Kodavanti PRS, Chompre G, Phillips AL, Stapleton HM, Henkelmann B, Schramm KW, Curras-Collazo MC. Persistent autism-relevant behavioral phenotype and social neuropeptide alterations in female mice offspring induced by maternal transfer of PBDE congeners in the commercial mixture DE-71. Arch Toxicol 2022; 96:335-365. [PMID: 34687351 PMCID: PMC8536480 DOI: 10.1007/s00204-021-03163-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are ubiquitous persistent organic pollutants (POPs) that are known neuroendocrine disrupting chemicals with adverse neurodevelopmental effects. PBDEs may act as risk factors for autism spectrum disorders (ASD), characterized by abnormal psychosocial functioning, although direct evidence is currently lacking. Using a translational exposure model, we tested the hypothesis that maternal transfer of a commercial mixture of PBDEs, DE-71, produces ASD-relevant behavioral and neurochemical deficits in female offspring. C57Bl6/N mouse dams (F0) were exposed to DE-71 via oral administration of 0 (VEH/CON), 0.1 (L-DE-71) or 0.4 (H-DE-71) mg/kg bw/d from 3 wk prior to gestation through end of lactation. Mass spectrometry analysis indicated in utero and lactational transfer of PBDEs (in ppb) to F1 female offspring brain tissue at postnatal day (PND) 15 which was reduced by PND 110. Neurobehavioral testing of social novelty preference (SNP) and social recognition memory (SRM) revealed that adult L-DE-71 F1 offspring display deficient short- and long-term SRM, in the absence of reduced sociability, and increased repetitive behavior. These effects were concomitant with reduced olfactory discrimination of social odors. Additionally, L-DE-71 exposure also altered short-term novel object recognition memory but not anxiety or depressive-like behavior. Moreover, F1 L-DE-71 displayed downregulated mRNA transcripts for oxytocin (Oxt) in the bed nucleus of the stria terminalis (BNST) and supraoptic nucleus, and vasopressin (Avp) in the BNST and upregulated Avp1ar in BNST, and Oxtr in the paraventricular nucleus. Our work demonstrates that developmental PBDE exposure produces ASD-relevant neurochemical, olfactory processing and behavioral phenotypes that may result from early neurodevelopmental reprogramming within central social and memory networks.
Collapse
Affiliation(s)
- Elena V Kozlova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA
| | - Matthew C Valdez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, 27711, USA
| | - Maximillian E Denys
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Anthony E Bishay
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Julia M Krum
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Kayhon M Rabbani
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Valeria Carrillo
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Gwendolyn M Gonzalez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Gregory Lampel
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Jasmin D Tran
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Brigitte M Vazquez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Laura M Anchondo
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Syed A Uddin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Nicole M Huffman
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Eduardo Monarrez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Duraan S Olomi
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Bhuvaneswari D Chinthirla
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Richard E Hartman
- Department of Psychology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Prasada Rao S Kodavanti
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, 27711, USA
| | - Gladys Chompre
- Biotechnology Department, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico, 00717-9997, USA
| | - Allison L Phillips
- Duke University, Nicholas School of the Environment, Durham, NC, 27710, USA
| | | | - Bernhard Henkelmann
- Helmholtz Zentrum Munchen, Molecular EXposomics (MEX), German National Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, Neuherberg, Munich, Germany
| | - Karl-Werner Schramm
- Helmholtz Zentrum Munchen, Molecular EXposomics (MEX), German National Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, Neuherberg, Munich, Germany
- Department Für Biowissenschaftliche Grundlagen, TUM, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung Und Umwelt, Weihenstephaner Steig 23, 85350, Freising, Germany
| | | |
Collapse
|
4
|
Zhou Y, He R, Zhao Y, He Y, Hu Y, Sun Q, Xu Q, Tan J, Yan X, Tang B, Guo J. Olfactory Dysfunction and Its Relationship With Clinical Features of Parkinson's Disease. Front Neurol 2020; 11:526615. [PMID: 33178098 PMCID: PMC7596377 DOI: 10.3389/fneur.2020.526615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 09/02/2020] [Indexed: 01/13/2023] Open
Abstract
Objective: To conduct an investigation into the reliability of assessing the olfactory function of patients with Parkinson's disease (PD) in a clinical setting of crowding patients in populated countries, such as China, by the hyposmia rating scale (HRS) and compare other non-motor features between patients with PD with olfactory dysfunction (PD-OD) and patients with PD without olfactory dysfunction (PD-NOD), according to the result of olfactory function assessed by the Sniffin' Sticks test. Methods: A total of 320 patients with clinically confirmed or clinically possible PD were recruited. Olfactory function of all participants was assessed with the HRS and the Sniffin' Sticks test. Demographic data and clinical information were collected, and patients were evaluated using standardized assessment protocols. With reference to the Sniffin' Sticks test, the specificity, sensitivity, coincidence rate, and kappa value of the HRS was computed, and then its reliability was evaluated. We divided patients into PD-OD and PD-NOD groups based on the results of olfactory function assessed by the Sniffin' Sticks test. Clinical manifestations were compared between PD-OD and PD-NOD. Results: The percentage of patients with OD determined by the Sniffin' Sticks test was 65.6%, and the percentage of those with OD was 55.6% when using the HRS measured olfactory function. With reference to the Sniffin' Sticks test, the specificity, sensitivity, coincidence rate, and kappa value of the HRS were 82.73, 75.71, 78.13%, and 0.55, respectively. The area under the receiver operating characteristic curve for the HRS was 0.793. There were no differences in demographic characteristics between the PD-OD and PD-NOD groups. The patients with hyposmia had more severe non-motor symptoms. Conclusion: The HRS is of great value as a self-assessment scale for evaluating olfactory function, especially in PD patients over 55 years old. Moreover, PD patients with hyposmia have more severe non-motor features than PD patients without hyposmia, mainly in terms of mood and constipation.
Collapse
Affiliation(s)
- Yangjie Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Runcheng He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yacen Hu
- Department of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Sun
- Department of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jieqiong Tan
- Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| |
Collapse
|
5
|
Hornoiu I, Gigg J, Talmi D. Quantifying how much attention rodents allocate to motivationally-salient objects with a novel object preference test. Behav Brain Res 2019; 380:112389. [PMID: 31783088 DOI: 10.1016/j.bbr.2019.112389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 11/26/2022]
Abstract
The allocation of attention can be modulated by the emotional value of a stimulus. In order to understand the biasing influence of emotion on attention allocation further, we require an animal test of how motivational salience modulates attention. In mice, female odour triggers arousal and elicits emotional responses in males. Here, we determined the extent to which objects labelled with female odour modulated the attention of C57BL/6J male mice. Seven experiments were conducted, using a modified version of the spontaneous Novel Object Recognition task. Attention was operationalised as differential exploration time of identical objects that were labelled with either female mouse odour (O+), a non-social odour, almond odour (Oa) or not labelled with any odour (O-). In some experiments we tested trial unique (novel) objects than never carried an odour (X-). Using this novel object preference test we found that when single objects were presented, as well as when two objects were presented simultaneously (so competed with each other for attention), O+ received preferential attention compared to O-. This result was independent of whether O+ was at a novel or familiar location. When compared with Oa at a novel location, O+ at a familiar location attracted more attention. Compared to X-, O+ received more exploration only when placed at a novel location, but attention to O+ and X- was equivalent when they were placed in a familiar location. These results suggest that C57BL/6J male mice weigh up aspects of odour, object novelty and special novelty for motivational salience, and that, in some instances, female odour elicits more attention (object exploration) compared to other object properties. The findings of this study pave the way to using motivationally-significant odours to modulate the cognitive processes that give rise to differential attention to objects.
Collapse
Affiliation(s)
- Iasmina Hornoiu
- Division of Neuroscience and Experimental Psychology, University of Manchester, UK
| | - John Gigg
- Division of Neuroscience and Experimental Psychology, University of Manchester, UK
| | - Deborah Talmi
- Department of Psychology, University of Cambridge, UK.
| |
Collapse
|
6
|
Bienenstock J, Kunze WA, Forsythe P. Disruptive physiology: olfaction and the microbiome-gut-brain axis. Biol Rev Camb Philos Soc 2017; 93:390-403. [DOI: 10.1111/brv.12348] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 12/21/2022]
Affiliation(s)
- John Bienenstock
- McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton; 50 Charlton Ave. E. Room T3304 Hamilton L8N 4A6 Canada
- Department of Pathology and Molecular Medicine; McMaster University, 1280 Main St. W.; Hamilton L8S 4L8 Canada
| | - Wolfgang A. Kunze
- McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton; 50 Charlton Ave. E. Room T3304 Hamilton L8N 4A6 Canada
- Department of Psychiatry & Behavioural Sciences; McMaster University, 1280 Main St. W.; Hamilton L8S 4L8 Canada
| | - Paul Forsythe
- McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton; 50 Charlton Ave. E. Room T3304 Hamilton L8N 4A6 Canada
- Firestone Institute for Respiratory Health; Hamilton 50 Charlton Ave. E., Room T3302 L8N 4A6 Canada
- Department of Medicine; McMaster University, 1280 Main St. W.; Hamilton L8S 4L8 Canada
| |
Collapse
|
7
|
Freudenberg F, Carreño Gutierrez H, Post AM, Reif A, Norton WHJ. Aggression in non-human vertebrates: Genetic mechanisms and molecular pathways. Am J Med Genet B Neuropsychiatr Genet 2016; 171:603-40. [PMID: 26284957 DOI: 10.1002/ajmg.b.32358] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/28/2015] [Indexed: 11/07/2022]
Abstract
Aggression is an adaptive behavioral trait that is important for the establishment of social hierarchies and competition for mating partners, food, and territories. While a certain level of aggression can be beneficial for the survival of an individual or species, abnormal aggression levels can be detrimental. Abnormal aggression is commonly found in human patients with psychiatric disorders. The predisposition to aggression is influenced by a combination of environmental and genetic factors and a large number of genes have been associated with aggression in both human and animal studies. In this review, we compare and contrast aggression studies in zebrafish and mouse. We present gene ontology and pathway analyses of genes linked to aggression and discuss the molecular pathways that underpin agonistic behavior in these species. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Florian Freudenberg
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | | | - Antonia M Post
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| |
Collapse
|
8
|
Rattazzi L, Cariboni A, Poojara R, Shoenfeld Y, D'Acquisto F. Impaired sense of smell and altered olfactory system in RAG-1(-∕-) immunodeficient mice. Front Neurosci 2015; 9:318. [PMID: 26441494 PMCID: PMC4563081 DOI: 10.3389/fnins.2015.00318] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/27/2015] [Indexed: 01/05/2023] Open
Abstract
Immune deficiencies are often associated with a number of physical manifestations including loss of sense of smell and an increased level of anxiety. We have previously shown that T and B cell-deficient recombinase activating gene (RAG-1)(-∕-) knockout mice have an increased level of anxiety-like behavior and altered gene expression involved in olfaction. In this study, we expanded these findings by testing the structure and functional development of the olfactory system in RAG-1 (-∕-) mice. Our results show that these mice have a reduced engagement in different types of odors and this phenotype is associated with disorganized architecture of glomerular tissue and atrophy of the main olfactory epithelium. Most intriguingly this defect manifests specifically in adult age and is not due to impairment in the patterning of the olfactory neuron staining at the embryo stage. Together these findings provide a formerly unreported biological evidence for an altered function of the olfactory system in RAG-1 (-∕-) mice.
Collapse
Affiliation(s)
- Lorenza Rattazzi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry Queen Mary University of London, UK
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan Milan, Italy ; Department of Cell Biology, Institute of Ophthalmology, University College London London, UK
| | - Ridhika Poojara
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry Queen Mary University of London, UK
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Centre, Sackler Faculty of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Fulvio D'Acquisto
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry Queen Mary University of London, UK
| |
Collapse
|
9
|
Niu H, He X, Zhou T, Shi X, Zhang Q, Zhang Z, Qiao Y, Xu F, Hu M. Neural circuits containing olfactory neurons are involved in the prepulse inhibition of the startle reflex in rats. Front Behav Neurosci 2015; 9:74. [PMID: 25859195 PMCID: PMC4373374 DOI: 10.3389/fnbeh.2015.00074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/08/2015] [Indexed: 11/24/2022] Open
Abstract
Many neuropsychiatric disorders, such as schizophrenia, have been associated with olfactory dysfunction and abnormalities in the prepulse inhibition (PPI) response to a startle reflex. However, whether these two abnormalities could be related is unclear. The present investigations were designed to determine whether theblockage of olfactory sensory input by zinc sulfate infusion in the olfactory naris (0.5 ml, 0.17 M, ZnE) can disturb the PPI response. Furthermore, a bilateral microinjection of lidocaine/MK801 in the olfactory bulb (OB) was administered to examine whether the blockage of olfactory sensory input could impair the PPI response. To identify the neural projection between olfaction and PPI-related areas, trans-synaptic retrograde tracing with the recombinant pseudorabies virus (PRV) was used. Our results demonstrated that blockage of olfactory sensory input could disturb olfactory behavior. In the function studies, we demonstrated that blockage of olfactory sensory input could impair the pre-pulse inhibition of the startle response following decreased c-Fos expression in relevant brain regions during the PPI responses. Furthermore, similar and more robust findings indicated that blockage of olfactory sensory input by microinjection of lidocaine/MK801 in the OB could impair the PPI response. In the circuit-level studies, we demonstrated that trans-synaptic retrograde tracing with PRV exhibited a large portion of labeled neurons in several regions of the olfactory cortices from the pedunculopontine tegmental nucleus (PPTg). Thus, these data suggest that the olfactory system participates in the PPI regulating fields and plays a role in the pre-pulse inhibition of the startle response in rats.
Collapse
Affiliation(s)
- Haichen Niu
- Department of Genetics, Xuzhou Medical College Xuzhou, China ; The Institute of Audiology and Speech Science, Xuzhou Medical Collage Xuzhou, China
| | - Xiaobin He
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences Wuhan, China ; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology Wuhan, China
| | - Ting Zhou
- Department of Genetics, Xuzhou Medical College Xuzhou, China
| | - Xi Shi
- The Institute of Audiology and Speech Science, Xuzhou Medical Collage Xuzhou, China
| | - Qiang Zhang
- Department of Genetics, Xuzhou Medical College Xuzhou, China
| | - Zhijian Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences Wuhan, China
| | - Yuehua Qiao
- The Institute of Audiology and Speech Science, Xuzhou Medical Collage Xuzhou, China
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences Wuhan, China ; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology Wuhan, China
| | - Min Hu
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province Kunming, China
| |
Collapse
|
10
|
Mo C, Renoir T, Hannan AJ. Ethological endophenotypes are altered by elevated stress hormone levels in both Huntington's disease and wildtype mice. Behav Brain Res 2014; 274:118-27. [DOI: 10.1016/j.bbr.2014.07.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 07/24/2014] [Accepted: 07/26/2014] [Indexed: 01/05/2023]
|
11
|
Ibarra-Soria X, Levitin MO, Logan DW. The genomic basis of vomeronasal-mediated behaviour. Mamm Genome 2013; 25:75-86. [PMID: 23884334 PMCID: PMC3916702 DOI: 10.1007/s00335-013-9463-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/19/2013] [Indexed: 11/04/2022]
Abstract
The vomeronasal organ (VNO) is a chemosensory subsystem found in the nose of most mammals. It is principally tasked with detecting pheromones and other chemical signals that initiate innate behavioural responses. The VNO expresses subfamilies of vomeronasal receptors (VRs) in a cell-specific manner: each sensory neuron expresses just one or two receptors and silences all the other receptor genes. VR genes vary greatly in number within mammalian genomes, from no functional genes in some primates to many hundreds in rodents. They bind semiochemicals, some of which are also encoded in gene families that are coexpanded in species with correspondingly large VR repertoires. Protein and peptide cues that activate the VNO tend to be expressed in exocrine tissues in sexually dimorphic, and sometimes individually variable, patterns. Few chemical ligand–VR–behaviour relationships have been fully elucidated to date, largely due to technical difficulties in working with large, homologous gene families with high sequence identity. However, analysis of mouse lines with mutations in genes involved in ligand–VR signal transduction has revealed that the VNO mediates a range of social behaviours, including male–male and maternal aggression, sexual attraction, lordosis, and selective pregnancy termination, as well as interspecific responses such as avoidance and defensive behaviours. The unusual logic of VR expression now offers an opportunity to map the specific neural circuits that drive these behaviours.
Collapse
Affiliation(s)
- Ximena Ibarra-Soria
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | | | | |
Collapse
|