2
|
Cervi AL, Moynes DM, Chisholm SP, Nasser Y, Vanner SJ, Lomax AE. A role for interleukin 17A in IBD-related neuroplasticity. Neurogastroenterol Motil 2017; 29. [PMID: 28560787 DOI: 10.1111/nmo.13112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/19/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Changes to the structure and function of the innervation of the gut contribute to symptom generation in inflammatory bowel diseases (IBD). However, delineation of the mechanisms of these effects has proven difficult. Previous work on sympathetic neurons identified interleukin (IL)-17A as a novel neurotrophic cytokine. Since IL-17A is involved in IBD pathogenesis, we tested the hypothesis that IL-17A contributes to neuroanatomical remodeling during IBD. METHODS Immunohistochemistry for tyrosine hydroxylase was used to identify sympathetic axons in mice with dextran sulphate sodium (DSS)-induced colitis and controls. Axon outgrowth from sympathetic neurons in response to incubation in cytokines or endoscopic patient biopsy supernatants was quantified. KEY RESULTS DSS-induced colitis led to an increase in tyrosine hydroxylase immunoreactivity in the inflamed colon but not the spleen. Colonic supernatants from mice with colitis and biopsy supernatants from Crohn's disease patients increased axon outgrowth from mouse sympathetic neurons compared to supernatants from uninflamed controls. An antibody that neutralized IL-17A blocked the ability of DSS-induced colitis and Crohn's disease supernatants to induce axon extension. CONCLUSIONS AND INFERENCES These findings identify IL-17A as a potential mediator of neuroanatomical remodeling of the gut innervation during IBD.
Collapse
Affiliation(s)
- A L Cervi
- Gastrointestinal Diseases Research Unit, Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - D M Moynes
- Gastrointestinal Diseases Research Unit, Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - S P Chisholm
- Gastrointestinal Diseases Research Unit, Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Departments of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Y Nasser
- Departments of Medicine, Queen's University, Kingston, Ontario, Canada
| | - S J Vanner
- Gastrointestinal Diseases Research Unit, Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Departments of Medicine, Queen's University, Kingston, Ontario, Canada
| | - A E Lomax
- Gastrointestinal Diseases Research Unit, Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Departments of Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
3
|
Barlow N, Nasser Y, Zhao P, Sharma N, Guerrero-Alba R, Edgington-Mitchell LE, Lieu T, Veldhuis NA, Poole DP, Conner JW, Lindström E, Craig AW, Graham B, Vanner SJ, Bunnett NW. Demonstration of elevated levels of active cathepsin S in dextran sulfate sodium colitis using a new activatable probe. Neurogastroenterol Motil 2015; 27:1675-80. [PMID: 26303377 DOI: 10.1111/nmo.12656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/17/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Proteases play a major role in inflammatory diseases of the gastrointestinal tract. Activatable probes are a major technological advance, enabling sensitive detection of active proteases in tissue samples. Our aim was to synthesize an activatable probe for cathepsin S and validate its use in a mouse model of colitis. METHODS We designed and synthesized a new fluorescent activatable probe, NB200, for the detection of active cathepsin S. Colitis was induced in C57BL/6 mice by the administration of 3% dextran sulfate sodium (DSS). Homogenized mouse colons, with or without the addition of the specific cathepsin S inhibitor MV026031, were incubated with NB200 in a fluorescent plate reader. KEY RESULTS NB200 selectively detected purified cathepsin S and not other common inflammatory proteases. Homogenates of colon from mice with DSS colitis induced a significant fluorescent increase when compared to control animals (control vs DSS: p < 0.05 at 200 min and p < 0.01 at 220-240 min), indicating cathepsin S activation. The cathepsin S inhibitor abolished this increase in fluorescence (DSS vs DSS + MV026031: p < 0.05 at 140 min, p < 0.01 at 180 min, p < 0.001 at 200-240 min), which confirms cathepsin S activation. Cathepsin S activity correlated with the disease activity index (Spearman r = 0.77, p = 0.017). CONCLUSIONS & INFERENCES Our investigation has demonstrated the utility of activatable probes for detecting protease activity in intestinal inflammation. Panels of such probes may allow 'signature' protease profiles to be established for a range of inflammatory diseases and disorders.
Collapse
Affiliation(s)
- N Barlow
- Monash Institute of Pharmaceutical Sciences Parkville Australia, Parkville, Vic., Australia
| | - Y Nasser
- Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, ON, Canada
| | - P Zhao
- Monash Institute of Pharmaceutical Sciences Parkville Australia, Parkville, Vic., Australia
| | - N Sharma
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - R Guerrero-Alba
- Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, ON, Canada
| | - L E Edgington-Mitchell
- Monash Institute of Pharmaceutical Sciences Parkville Australia, Parkville, Vic., Australia
| | - T Lieu
- Monash Institute of Pharmaceutical Sciences Parkville Australia, Parkville, Vic., Australia
| | - N A Veldhuis
- Monash Institute of Pharmaceutical Sciences Parkville Australia, Parkville, Vic., Australia
| | - D P Poole
- Monash Institute of Pharmaceutical Sciences Parkville Australia, Parkville, Vic., Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Vic., Australia
| | - J W Conner
- Monash Institute of Pharmaceutical Sciences Parkville Australia, Parkville, Vic., Australia
| | | | - A W Craig
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - B Graham
- Monash Institute of Pharmaceutical Sciences Parkville Australia, Parkville, Vic., Australia
| | - S J Vanner
- Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, ON, Canada
| | - N W Bunnett
- Monash Institute of Pharmaceutical Sciences Parkville Australia, Parkville, Vic., Australia
| |
Collapse
|