1
|
Ferreira G, Cardozo R, Chavarria L, Santander A, Sobrevia L, Chang W, Gundersen G, Nicolson GL. The LINC complex in blood vessels: from physiology to pathological implications in arterioles. J Physiol 2025. [PMID: 39898417 DOI: 10.1113/jp285906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
The LINC (linker of nucleoskeleton and cytoskeleton) complex is a critical component of the cellular architecture that bridges the nucleoskeleton and cytoskeleton and mediates mechanotransduction to and from the nucleus. Though it plays important roles in all blood vessels, it is in arterioles that this complex plays a pivotal role in maintaining endothelial cell integrity, regulating vascular tone, forming new microvessels and modulating responses to mechanical and biochemical stimuli. It is also important in vascular smooth muscle cells and fibroblasts, where it possibly plays a role in the contractile to secretory phenotypic transformation during atherosclerosis and vascular ageing, and in fibroblasts' migration and inflammatory responses in the adventitia. Physiologically, the LINC complex contributes to the stability of arteriolar structure, adaptations to changes in blood flow and injury repair mechanisms. Pathologically, dysregulation or mutations in LINC complex components can lead to compromised endothelial function, vascular remodelling and exacerbation of cardiovascular diseases such as atherosclerosis (arteriolosclerosis). This review summarizes our current understanding of the roles of the LINC complex in cells from arterioles, highlighting its most important physiological functions, exploring its implications for vascular pathology and emphasizing some of its functional characteristics in endothelial cells. By elucidating the LINC complex's role in health and disease, we aim to provide insights that could improve future therapeutic strategies targeting LINC complex-related vascular disorders.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Romina Cardozo
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Luisina Chavarria
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Axel Santander
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), Sao Paulo, Brazil
- Faculty of Medicine and Biomedical Sciences, University of Queensland Centre for Clinical Research (UQCCR), University of Queensland, QLD, Herston, Queensland, Australia
- Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Wakam Chang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Gregg Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Garth L Nicolson
- Department of Molecular Pathology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
2
|
Risato G, Brañas Casas R, Cason M, Bueno Marinas M, Pinci S, De Gaspari M, Visentin S, Rizzo S, Thiene G, Basso C, Pilichou K, Tiso N, Celeghin R. In Vivo Approaches to Understand Arrhythmogenic Cardiomyopathy: Perspectives on Animal Models. Cells 2024; 13:1264. [PMID: 39120296 PMCID: PMC11311808 DOI: 10.3390/cells13151264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a hereditary cardiac disorder characterized by the gradual replacement of cardiomyocytes with fibrous and adipose tissue, leading to ventricular wall thinning, chamber dilation, arrhythmias, and sudden cardiac death. Despite advances in treatment, disease management remains challenging. Animal models, particularly mice and zebrafish, have become invaluable tools for understanding AC's pathophysiology and testing potential therapies. Mice models, although useful for scientific research, cannot fully replicate the complexity of the human AC. However, they have provided valuable insights into gene involvement, signalling pathways, and disease progression. Zebrafish offer a promising alternative to mammalian models, despite the phylogenetic distance, due to their economic and genetic advantages. By combining animal models with in vitro studies, researchers can comprehensively understand AC, paving the way for more effective treatments and interventions for patients and improving their quality of life and prognosis.
Collapse
Affiliation(s)
- Giovanni Risato
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
- Department of Biology, University of Padua, I-35131 Padua, Italy;
- Department of Women’s and Children’s Health, University of Padua, I-35128 Padua, Italy;
| | | | - Marco Cason
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Maria Bueno Marinas
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Serena Pinci
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Monica De Gaspari
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Silvia Visentin
- Department of Women’s and Children’s Health, University of Padua, I-35128 Padua, Italy;
| | - Stefania Rizzo
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Gaetano Thiene
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Cristina Basso
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Kalliopi Pilichou
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Natascia Tiso
- Department of Biology, University of Padua, I-35131 Padua, Italy;
| | - Rudy Celeghin
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| |
Collapse
|
3
|
Shangguan J, Liu G, Xiao L, Zhang W, Zhu X, Li L. Meteorin‑like/meteorin‑β protects against cardiac dysfunction after myocardial infarction in mice by inhibiting autophagy. Exp Ther Med 2024; 28:293. [PMID: 38827476 PMCID: PMC11140287 DOI: 10.3892/etm.2024.12582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/06/2023] [Indexed: 06/04/2024] Open
Abstract
Meteorin-β (Metrnβ) is a protein that is secreted by skeletal muscle and adipose tissue, and participates in cardiovascular diseases. However, its role in myocardial infarction (MI) has not been fully elucidated to date. The aim of the present study was to investigate the role and underlying mechanism of Metrnβ in MI. In the present study, mice were subjected to left coronary ligation to induce a MI model before being injected with adeno-associated virus 9 (AAV9)-Metrnβ to overexpress Metrnβ. Mice were subjected to echocardiography and pressure-volume measurements 2 weeks after ligation. Cardiac injury was measured from the levels of cardiac troponin T and pro-inflammatory factors, which were detected using ELISA kits. Cardiac remodelling was determined from the cross-sectional areas detected using H&E and wheat germ agglutinin staining as well as from the transcriptional levels of hypertrophic and fibrosis markers detected using reverse transcription-quantitative PCR. Cardiac function was detected using echocardiography and pressure-volume measurements. In addition, H9c2 cardiomyocytes were transfected with Ad-Metrnβ to overexpress Metrnβ, before being exposed to hypoxia to induce ischaemic injury. Apoptosis was determined using TUNEL staining and caspase 3 activity. Cell inflammation was detected using ELISA assays for pro-inflammatory factors. Autophagy was detected using LC3 staining and assessing the protein level of LC3II using western blotting. H9c2 cells were also treated with rapamycin to induce autophagy. It was revealed that Metrnβ expression was reduced in both mouse serum and heart tissue 2 weeks post-MI. Metrnβ overexpression using AAV9-Metrnβ delivery reduced the mortality rate, decreased the infarction size and reduced the extent of myocardial injury 2 weeks post-MI. Furthermore, Metrnβ overexpression inhibited cardiac hypertrophy, fibrosis and inflammation post-MI. In ischaemic H9c2 cells, Metrnβ overexpression using adenovirus also reduced cell injury, cell death and inflammatory response. Metrnβ overexpression suppressed MI-induced autophagy in vitro. Following autophagy activation using rapamycin in vitro, the protective effects induced by Metrnβ were reversed. Taken together, these results indicated that Metrnβ could protect against cardiac dysfunction post-MI in mice by inhibiting autophagy.
Collapse
Affiliation(s)
- Jiahong Shangguan
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Gangqiong Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lili Xiao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wenjing Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaodan Zhu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ling Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
4
|
Orgil BO, Munkhsaikhan U, Pierre JF, Li N, Xu F, Alberson NR, Johnson JN, Wetzel GT, Boukens BJD, Lu L, Towbin JA, Purevjav E. The TMEM43 S358L mutation affects cardiac, small intestine, and metabolic homeostasis in a knock-in mouse model. Am J Physiol Heart Circ Physiol 2023; 324:H866-H880. [PMID: 37083466 PMCID: PMC10190833 DOI: 10.1152/ajpheart.00712.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023]
Abstract
The transmembrane protein 43 (TMEM43/LUMA) p.S358L mutation causes arrhythmogenic cardiomyopathy named as ARVC5, a fully penetrant disease with high risk of ventricular arrhythmias, sudden death, and heart failure. Male gender and vigorous exercise independently predicted deleterious outcome. Our systems genetics analysis revealed the importance of Tmem43 for cardiac and metabolic pathways associated with elevated lipid absorption from small intestine. This study sought to delineate gender-specific cardiac, intestinal, and metabolic phenotypes in vivo and investigate underlying pathophysiological mechanisms of S358L mutation. Serial echocardiography, surface electrocardiography (ECG), treadmill running, and body EchoMRI have been used in knock-in heterozygous (Tmem43WT/S358L), homozygous (Tmem43S358L), and wildtype (Tmem43WT) littermate mice. Electron microscopy, histology, immunohistochemistry, transcriptome, and protein analysis have been performed in cardiac and intestinal tissues. Systolic dysfunction was apparent in 3-mo-old Tmem43S358L and 6-mo-old Tmem43WT/S358L mutants. Both mutant lines displayed intolerance to acute stress at 6 mo of age, arrhythmias, fibro-fatty infiltration, and subcellular abnormalities in the myocardium. Microarray analysis found significantly differentially expressed genes between left ventricular (LV) and right ventricular (RV) myocardium. Mutants displayed diminished PPARG activities and significantly reduced TMEM43 and β-catenin expression in the heart, whereas junctional plakoglobin (JUP) translocated into nuclei of mutant cardiomyocytes. Conversely, elongated villi, fatty infiltration, and overexpression of gut epithelial proliferation markers, β-catenin and Ki-67, were evident in small intestine of mutants. We defined Tmem43 S358L-induced pathological effects on cardiac and intestinal homeostasis via distinctly disturbed WNT-β-catenin and PPARG signaling thereby contributing to ARVC5 pathophysiology. Results suggest that cardiometabolic assessment in mutation carriers may be important for predictive and personalized care.NEW & NOTEWORTHY This manuscript describes the findings of our investigation of cardiac, small intestine, and metabolic features of Tmem43-S358L mouse model. By investigating interorgan pathologies, we uncovered multiple mechanisms of the S358L-induced disease, and these unique mechanisms likely appear to contribute to the disease pathogenesis. We hope our findings are important and novel and open new avenues in the hunting for additional diagnostic and therapeutic targets in subjects carrying TMEM43 mutation.
Collapse
Affiliation(s)
- Buyan-Ochir Orgil
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital Memphis, Memphis, Tennessee, United States
| | - Undral Munkhsaikhan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Joseph F Pierre
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ning Li
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital Memphis, Memphis, Tennessee, United States
- Department of Cardiology, Second Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Fuyi Xu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- School of Pharmacy, Binzhou Medical University, Yantai, People's Republic of China
| | - Neely R Alberson
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital Memphis, Memphis, Tennessee, United States
| | - Jason N Johnson
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital Memphis, Memphis, Tennessee, United States
| | - Glenn T Wetzel
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital Memphis, Memphis, Tennessee, United States
| | - Bastiaan J D Boukens
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Jeffrey A Towbin
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital Memphis, Memphis, Tennessee, United States
- Pediatric Cardiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Enkhsaikhan Purevjav
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital Memphis, Memphis, Tennessee, United States
| |
Collapse
|
5
|
Bianchi L, Damiani I, Castiglioni S, Carleo A, De Salvo R, Rossi C, Corsini A, Bellosta S. Smooth Muscle Cell Phenotypic Switch Induced by Traditional Cigarette Smoke Condensate: A Holistic Overview. Int J Mol Sci 2023; 24:ijms24076431. [PMID: 37047404 PMCID: PMC10094728 DOI: 10.3390/ijms24076431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/19/2023] [Accepted: 03/25/2023] [Indexed: 04/01/2023] Open
Abstract
Cigarette smoke (CS) is a risk factor for inflammatory diseases, such as atherosclerosis. CS condensate (CSC) contains lipophilic components that may represent a systemic cardiac risk factor. To better understand CSC effects, we incubated mouse and human aortic smooth muscle cells (SMCs) with CSC. We evaluated specific markers for contractile [i.e., actin, aortic smooth muscle (ACTA2), calponin-1 (CNN1), the Kruppel-like factor 4 (KLF4), and myocardin (MYOCD) genes] and inflammatory [i.e., IL-1β, and IL-6, IL-8, and galectin-3 (LGALS-3) genes] phenotypes. CSC increased the expression of inflammatory markers and reduced the contractile ones in both cell types, with KLF4 modulating the SMC phenotypic switch. Next, we performed a mass spectrometry-based differential proteomic approach on human SMCs and could show 11 proteins were significantly affected by exposition to CSC (FC ≥ 2.7, p ≤ 0.05). These proteins are active in signaling pathways related to expression of pro-inflammatory cytokines and IFN, inflammasome assembly and activation, cytoskeleton regulation and SMC contraction, mitochondrial integrity and cellular response to oxidative stress, proteostasis control via ubiquitination, and cell proliferation and epithelial-to-mesenchymal transition. Through specific bioinformatics resources, we showed their tight functional correlation in a close interaction niche mainly orchestrated by the interferon-induced double-stranded RNA-activated protein kinase (alternative name: protein kinase RNA-activated; PKR) (EIF2AK2/PKR). Finally, by combining gene expression and protein abundance data we obtained a hybrid network showing reciprocal integration of the CSC-deregulated factors and indicating KLF4 and PKR as the most relevant factors.
Collapse
|
6
|
Zink M, Seewald A, Rohrbach M, Brodehl A, Liedtke D, Williams T, Childs SJ, Gerull B. Altered Expression of TMEM43 Causes Abnormal Cardiac Structure and Function in Zebrafish. Int J Mol Sci 2022; 23:9530. [PMID: 36076925 PMCID: PMC9455580 DOI: 10.3390/ijms23179530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited heart muscle disease caused by heterozygous missense mutations within the gene encoding for the nuclear envelope protein transmembrane protein 43 (TMEM43). The disease is characterized by myocyte loss and fibro-fatty replacement, leading to life-threatening ventricular arrhythmias and sudden cardiac death. However, the role of TMEM43 in the pathogenesis of ACM remains poorly understood. In this study, we generated cardiomyocyte-restricted transgenic zebrafish lines that overexpress eGFP-linked full-length human wild-type (WT) TMEM43 and two genetic variants (c.1073C>T, p.S358L; c.332C>T, p.P111L) using the Tol2-system. Overexpression of WT and p.P111L-mutant TMEM43 was associated with transcriptional activation of the mTOR pathway and ribosome biogenesis, and resulted in enlarged hearts with cardiomyocyte hypertrophy. Intriguingly, mutant p.S358L TMEM43 was found to be unstable and partially redistributed into the cytoplasm in embryonic and adult hearts. Moreover, both TMEM43 variants displayed cardiac morphological defects at juvenile stages and ultrastructural changes within the myocardium, accompanied by dysregulated gene expression profiles in adulthood. Finally, CRISPR/Cas9 mutants demonstrated an age-dependent cardiac phenotype characterized by heart enlargement in adulthood. In conclusion, our findings suggest ultrastructural remodeling and transcriptomic alterations underlying the development of structural and functional cardiac defects in TMEM43-associated cardiomyopathy.
Collapse
Affiliation(s)
- Miriam Zink
- Comprehensive Heart Failure Center, Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Anne Seewald
- Comprehensive Heart Failure Center, Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Mareike Rohrbach
- Comprehensive Heart Failure Center, Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Andreas Brodehl
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Daniel Liedtke
- Institute for Human Genetics, Biocenter, Julius-Maximilians-University Würzburg, 97074 Würzburg, Germany
| | - Tatjana Williams
- Comprehensive Heart Failure Center, Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Sarah J. Childs
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Brenda Gerull
- Comprehensive Heart Failure Center, Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
7
|
Klinke N, Meyer H, Ratnavadivel S, Reinhardt M, Heinisch JJ, Malmendal A, Milting H, Paululat A. A Drosophila melanogaster model for TMEM43-related arrhythmogenic right ventricular cardiomyopathy type 5. Cell Mol Life Sci 2022; 79:444. [PMID: 35869176 PMCID: PMC9307560 DOI: 10.1007/s00018-022-04458-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/01/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022]
Abstract
AbstractArrhythmogenic right ventricular cardiomyopathy (ARVC) is a severe cardiac disease that leads to heart failure or sudden cardiac death (SCD). For the pathogenesis of ARVC, various mutations in at least eight different genes have been identified. A rare form of ARVC is associated with the mutation TMEM43 p.S358L, which is a fully penetrant variant in male carriers. TMEM43 p.S358 is homologous to CG8111 p.S333 in Drosophila melanogaster. We established CRISPR/Cas9-mediated CG8111 knock-out mutants in Drosophila, as well as transgenic fly lines carrying an overexpression construct of the CG8111 p.S333L substitution. Knock-out flies developed normally, whereas the overexpression of CG8111 p.S333L caused growth defects, loss of body weight, cardiac arrhythmias, and premature death. An evaluation of a series of model mutants that replaced S333 by selected amino acids proved that the conserved serine is critical for the physiological function of CG8111. Metabolomic and proteomic analyses revealed that the S333 in CG8111 is essential to proper energy homeostasis and lipid metabolism in the fly. Of note, metabolic impairments were also found in the murine Tmem43 disease model, and fibrofatty replacement is a hallmark of human ARVC5. These findings contribute to a more comprehensive understanding of the molecular functions of CG8111 in Drosophila, and can represent a valuable basis to assess the aetiology of the human TMEM43 p.S358L variant in more detail.
Collapse
|
8
|
Gu Q, Xu F, Orgil BO, Khuchua Z, Munkhsaikhan U, Johnson JN, Alberson NR, Pierre JF, Black DD, Dong D, Brennan JA, Cathey BM, Efimov IR, Towbin JA, Purevjav E, Lu L. Systems genetics analysis defines importance of TMEM43/ LUMA for cardiac- and metabolic-related pathways. Physiol Genomics 2022; 54:22-35. [PMID: 34766515 PMCID: PMC8721901 DOI: 10.1152/physiolgenomics.00066.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022] Open
Abstract
Broad cellular functions and diseases including muscular dystrophy, arrhythmogenic right ventricular cardiomyopathy (ARVC5) and cancer are associated with transmembrane protein43 (TMEM43/LUMA). The study aimed to investigate biological roles of TMEM43 through genetic regulation, gene pathways and gene networks, candidate interacting genes, and up- or downstream regulators. Cardiac transcriptomes from 40 strains of recombinant inbred BXD mice and two parental strains representing murine genetic reference population (GRP) were applied for genetic correlation, functional enrichment, and coexpression network analysis using systems genetics approach. The results were validated in a newly created knock-in Tmem43-S358L mutation mouse model (Tmem43S358L) that displayed signs of cardiac dysfunction, resembling ARVC5 phenotype seen in humans. We found high Tmem43 levels among BXDs with broad variability in expression. Expression of Tmem43 highly negatively correlated with heart mass and heart rate among BXDs, whereas levels of Tmem43 highly positively correlated with plasma high-density lipoproteins (HDL). Through finding differentially expressed genes (DEGs) between Tmem43S358L mutant and wild-type (Tmem43WT) lines, 18 pathways (out of 42 found in BXDs GRP) that are involved in ARVC, hypertrophic cardiomyopathy, dilated cardiomyopathy, nonalcoholic fatty liver disease, Alzheimer's disease, Parkinson's disease, and Huntington's disease were verified. We further constructed Tmem43-mediated gene network, in which Ctnna1, Adcy6, Gnas, Ndufs6, and Uqcrc2 were significantly altered in Tmem43S358L mice versus Tmem43WT controls. Our study defined the importance of Tmem43 for cardiac- and metabolism-related pathways, suggesting that cardiovascular disease-relevant risk factors may also increase risk of metabolic and neurodegenerative diseases via TMEM43-mediated pathways.
Collapse
Affiliation(s)
- Qingqing Gu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Cardiology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Fuyi Xu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Buyan-Ochir Orgil
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Zaza Khuchua
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Biochemistry, Sechenov University, Moscow, Russia
| | - Undral Munkhsaikhan
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Jason N Johnson
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Neely R Alberson
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Joseph F Pierre
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Dennis D Black
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Deli Dong
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jaclyn A Brennan
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Brianna M Cathey
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Igor R Efimov
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Jeffrey A Towbin
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
- Department of Pediatric Cardiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Enkhsaikhan Purevjav
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
9
|
Arrhythmogenic Cardiomyopathy: Molecular Insights for Improved Therapeutic Design. J Cardiovasc Dev Dis 2020; 7:jcdd7020021. [PMID: 32466575 PMCID: PMC7345706 DOI: 10.3390/jcdd7020021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder characterized by structural and electrical cardiac abnormalities, including myocardial fibro-fatty replacement. Its pathological ventricular substrate predisposes subjects to an increased risk of sudden cardiac death (SCD). ACM is a notorious cause of SCD in young athletes, and exercise has been documented to accelerate its progression. Although the genetic culprits are not exclusively limited to the intercalated disc, the majority of ACM-linked variants reside within desmosomal genes and are transmitted via Mendelian inheritance patterns; however, penetrance is highly variable. Its natural history features an initial “concealed phase” that results in patients being vulnerable to malignant arrhythmias prior to the onset of structural changes. Lack of effective therapies that target its pathophysiology renders management of patients challenging due to its progressive nature, and has highlighted a critical need to improve our understanding of its underlying mechanistic basis. In vitro and in vivo studies have begun to unravel the molecular consequences associated with disease causing variants, including altered Wnt/β-catenin signaling. Characterization of ACM mouse models has facilitated the evaluation of new therapeutic approaches. Improved molecular insight into the condition promises to usher in novel forms of therapy that will lead to improved care at the clinical bedside.
Collapse
|
10
|
James C, Müller M, Goldberg MW, Lenz C, Urlaub H, Kehlenbach RH. Proteomic mapping by rapamycin-dependent targeting of APEX2 identifies binding partners of VAPB at the inner nuclear membrane. J Biol Chem 2019; 294:16241-16254. [PMID: 31519755 DOI: 10.1074/jbc.ra118.007283] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 08/05/2019] [Indexed: 11/06/2022] Open
Abstract
Vesicle-associated membrane protein-associated protein B (VAPB) is a tail-anchored protein that is present at several contact sites of the endoplasmic reticulum (ER). We now show by immunoelectron microscopy that VAPB also localizes to the inner nuclear membrane (INM). Using a modified enhanced ascorbate peroxidase 2 (APEX2) approach with rapamycin-dependent targeting of the peroxidase to a protein of interest, we searched for proteins that are in close proximity to VAPB, particularly at the INM. In combination with stable isotope labeling with amino acids in cell culture (SILAC), we confirmed many well-known interaction partners at the level of the ER with a clear distinction between specific and nonspecific hits. Furthermore, we identified emerin, TMEM43, and ELYS as potential interaction partners of VAPB at the INM and the nuclear pore complex, respectively.
Collapse
Affiliation(s)
- Christina James
- Department of Molecular Biology, Faculty of Medicine, Göttingen Center for Molecular Biosciences (GZMB), Georg August University Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Marret Müller
- Department of Molecular Biology, Faculty of Medicine, Göttingen Center for Molecular Biosciences (GZMB), Georg August University Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Martin W Goldberg
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Christof Lenz
- Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.,Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.,Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, Göttingen Center for Molecular Biosciences (GZMB), Georg August University Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| |
Collapse
|
11
|
Padrón-Barthe L, Villalba-Orero M, Gómez-Salinero JM, Domínguez F, Román M, Larrasa-Alonso J, Ortiz-Sánchez P, Martínez F, López-Olañeta M, Bonzón-Kulichenko E, Vázquez J, Martí-Gómez C, Santiago DJ, Prados B, Giovinazzo G, Gómez-Gaviro MV, Priori S, Garcia-Pavia P, Lara-Pezzi E. Severe Cardiac Dysfunction and Death Caused by Arrhythmogenic Right Ventricular Cardiomyopathy Type 5 Are Improved by Inhibition of Glycogen Synthase Kinase-3β. Circulation 2019; 140:1188-1204. [PMID: 31567019 PMCID: PMC6784777 DOI: 10.1161/circulationaha.119.040366] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy/arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiac disease characterized by fibrofatty replacement of the myocardium, resulting in heart failure and sudden cardiac death. The most aggressive arrhythmogenic cardiomyopathy/ARVC subtype is ARVC type 5 (ARVC5), caused by a p.S358L mutation in TMEM43 (transmembrane protein 43). The function and localization of TMEM43 are unknown, as is the mechanism by which the p.S358L mutation causes the disease. Here, we report the characterization of the first transgenic mouse model of ARVC5. METHODS We generated transgenic mice overexpressing TMEM43 in either its wild-type or p.S358L mutant (TMEM43-S358L) form in postnatal cardiomyocytes under the control of the α-myosin heavy chain promoter. RESULTS We found that mice expressing TMEM43-S358L recapitulate the human disease and die at a young age. Mutant TMEM43 causes cardiomyocyte death and severe fibrofatty replacement. We also demonstrate that TMEM43 localizes at the nuclear membrane and interacts with emerin and β-actin. TMEM43-S358L shows partial delocalization to the cytoplasm, reduced interaction with emerin and β-actin, and activation of glycogen synthase kinase-3β (GSK3β). Furthermore, we show that targeting cardiac fibrosis has no beneficial effect, whereas overexpression of the calcineurin splice variant calcineurin Aβ1 results in GSK3β inhibition and improved cardiac function and survival. Similarly, treatment of TMEM43 mutant mice with a GSK3β inhibitor improves cardiac function. Finally, human induced pluripotent stem cells bearing the p.S358L mutation also showed contractile dysfunction that was partially restored after GSK3β inhibition. CONCLUSIONS Our data provide evidence that TMEM43-S358L leads to sustained cardiomyocyte death and fibrofatty replacement. Overexpression of calcineurin Aβ1 in TMEM43 mutant mice or chemical GSK3β inhibition improves cardiac function and increases mice life span. Our results pave the way toward new therapeutic approaches for ARVC5.
Collapse
Affiliation(s)
- Laura Padrón-Barthe
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.).,Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain (L.P.-B., F.D., M.R., P.G.-P.).,CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain (L.P.-B., F.D., E.B.-K., J.V., C.M.-G., P.G.-P., E.L.-P.)
| | - María Villalba-Orero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - Jesús M Gómez-Salinero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - Fernando Domínguez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.).,Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain (L.P.-B., F.D., M.R., P.G.-P.).,CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain (L.P.-B., F.D., E.B.-K., J.V., C.M.-G., P.G.-P., E.L.-P.).,ERN GUARD-HEART (European Reference Network for Rare and Complex Diseases of the Heart) (F.D., S.P., P.G.-P.)
| | - Marta Román
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain (L.P.-B., F.D., M.R., P.G.-P.)
| | - Javier Larrasa-Alonso
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - Paula Ortiz-Sánchez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - Fernando Martínez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - Marina López-Olañeta
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - Elena Bonzón-Kulichenko
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.).,CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain (L.P.-B., F.D., E.B.-K., J.V., C.M.-G., P.G.-P., E.L.-P.)
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.).,CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain (L.P.-B., F.D., E.B.-K., J.V., C.M.-G., P.G.-P., E.L.-P.)
| | - Carlos Martí-Gómez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.).,CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain (L.P.-B., F.D., E.B.-K., J.V., C.M.-G., P.G.-P., E.L.-P.)
| | - Demetrio J Santiago
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - Belén Prados
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - Giovanna Giovinazzo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - María Victoria Gómez-Gaviro
- Departamento de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (M.V.G.-G.).,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain (M.V.G.-G.)
| | - Silvia Priori
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.).,ERN GUARD-HEART (European Reference Network for Rare and Complex Diseases of the Heart) (F.D., S.P., P.G.-P.).,Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy (S.P.)
| | - Pablo Garcia-Pavia
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain (L.P.-B., F.D., M.R., P.G.-P.).,CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain (L.P.-B., F.D., E.B.-K., J.V., C.M.-G., P.G.-P., E.L.-P.).,ERN GUARD-HEART (European Reference Network for Rare and Complex Diseases of the Heart) (F.D., S.P., P.G.-P.).,Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain (P.G.-P.).,Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain (P.G.-P.)
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.).,CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain (L.P.-B., F.D., E.B.-K., J.V., C.M.-G., P.G.-P., E.L.-P.).,Faculty of Medicine, National Heart & Lung Institute, Imperial College London, UK (E.L.-P.)
| |
Collapse
|
12
|
The cell-cell junctions of mammalian testes: II. The lamellar smooth muscle monolayer cells of the peritubular wall are laterally connected by vertical adherens junctions-a novel architectonic cell-cell junction system. Cell Tissue Res 2018; 375:451-482. [PMID: 30591979 DOI: 10.1007/s00441-018-2968-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022]
Abstract
The testes of sexually mature males of six mammalian species (men, bulls, boars, rats, mice, guinea pigs) have been studied using biochemical as well as light and electron microscopical techniques, in particular immunolocalizations. In these tissues, the peritubular walls represent lamellar encasement structures wrapped around the seminiferous tubules as a bandage system of extracellular matrix layers, alternating with monolayers of very flat polyhedral "lamellar smooth muscle cells" (LSMCs), the number of which varies in different species from 1 to 5 or 6. These LSMCs are complete SMCs containing smooth muscle α-actin (SMA), myosin light and heavy chains, α-actinin, tropomyosin, smoothelin, intermediate-sized filament proteins desmin and/or vimentin, filamin, talin, dystrophin, caldesmon, calponin, and protein SM22α, often also cytokeratins 8 and 18. In the monolayers, the LSMCs are connected by adherens junctions (AJs) based on cadherin-11, in some species also with P-cadherin and/or E-cadherin, which are anchored in cytoplasmic plaques containing β-catenin and other armadillo proteins, in some species also striatin family proteins, protein myozap and/or LUMA. The LSMC cytoplasm is rich in myofilament bundles, which in many regions are packed in paracrystalline arrays, as well as in "dense bodies," "focal adhesions," and caveolae. In addition to some AJ-like end-on-end contacts, the LSMCs are laterally connected by numerous vertical AJ-like junctions located in variously sized and variously shaped, overlapping (alter super alterum) lamelliform cell protrusions. Consequently, the LSMCs of the peritubular wall monolayers are SMCs sensu stricto which are laterally connected by a novel architectonic system of arrays of vertical AJs located in overlapping cell protrusions.
Collapse
|
13
|
Brull A, Morales Rodriguez B, Bonne G, Muchir A, Bertrand AT. The Pathogenesis and Therapies of Striated Muscle Laminopathies. Front Physiol 2018; 9:1533. [PMID: 30425656 PMCID: PMC6218675 DOI: 10.3389/fphys.2018.01533] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/11/2018] [Indexed: 01/04/2023] Open
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a genetic condition characterized by early contractures, skeletal muscle weakness, and cardiomyopathy. During the last 20 years, various genetic approaches led to the identification of causal genes of EDMD and related disorders, all encoding nuclear envelope proteins. By their respective localization either at the inner nuclear membrane or the outer nuclear membrane, these proteins interact with each other and establish a connection between the nucleus and the cytoskeleton. Beside this physical link, these proteins are also involved in mechanotransduction, responding to environmental cues, such as increased tension of the cytoskeleton, by the activation or repression of specific sets of genes. This ability of cells to adapt to environmental conditions is altered in EDMD. Increased knowledge on the pathophysiology of EDMD has led to the development of drug or gene therapies that have been tested on mouse models. This review proposed an overview of the functions played by the different proteins involved in EDMD and related disorders and the current therapeutic approaches tested so far.
Collapse
Affiliation(s)
- Astrid Brull
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| | - Blanca Morales Rodriguez
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France.,Sanofi R&D, Chilly Mazarin, France
| | - Gisèle Bonne
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| | - Antoine Muchir
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| | - Anne T Bertrand
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| |
Collapse
|
14
|
Linker of nucleoskeleton and cytoskeleton complex proteins in cardiomyopathy. Biophys Rev 2018; 10:1033-1051. [PMID: 29869195 PMCID: PMC6082319 DOI: 10.1007/s12551-018-0431-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/24/2018] [Indexed: 12/21/2022] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex couples the nuclear lamina to the cytoskeleton. The LINC complex and its associated proteins play diverse roles in cells, ranging from genome organization, nuclear morphology, gene expression, to mechanical stability. The importance of a functional LINC complex is highlighted by the large number of mutations in genes encoding LINC complex proteins that lead to skeletal and cardiac myopathies. In this review, the structure, function, and interactions between components of the LINC complex will be described. Mutations that are known to cause cardiomyopathy in patients will be discussed alongside their respective mouse models. Furthermore, future challenges for the field and emerging technologies to investigate LINC complex function will be discussed.
Collapse
|
15
|
Stroud MJ, Fang X, Zhang J, Guimarães-Camboa N, Veevers J, Dalton ND, Gu Y, Bradford WH, Peterson KL, Evans SM, Gerace L, Chen J. Luma is not essential for murine cardiac development and function. Cardiovasc Res 2018; 114:378-388. [PMID: 29040414 PMCID: PMC6019056 DOI: 10.1093/cvr/cvx205] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/11/2017] [Indexed: 12/13/2022] Open
Abstract
AIMS Luma is a recently discovered, evolutionarily conserved protein expressed in mammalian heart, which is associated with the LInker of Nucleoskeleton and Cytoskeleton (LINC) complex. The LINC complex structurally integrates the nucleus and the cytoplasm and plays a critical role in mechanotransduction across the nuclear envelope. Mutations in several LINC components in both humans and mice result in various cardiomyopathies, implying they play essential, non-redundant roles. A single amino acid substitution of serine 358 to leucine (S358L) in Luma is the unequivocal cause of a distinct form of arrhythmogenic cardiomyopathy. However, the role of Luma in heart has remained obscure. In addition, it also remains to be determined how the S358L mutation in Luma leads to cardiomyopathy. METHODS AND RESULTS To determine the role of Luma in the heart, we first determined the expression pattern of Luma in mouse heart. Luma was sporadically expressed in cardiomyocytes throughout the heart, but was highly and uniformly expressed in cardiac fibroblasts and vascular smooth muscle cells. We also generated germline null Luma mice and discovered that germline null mutants were viable and exhibited normal cardiac function. Luma null mice also responded normally to pressure overload induced by transverse aortic constriction. In addition, localization and expression of other LINC complex components in both cardiac myocytes and fibroblasts was unaffected by global loss of Luma. Furthermore, we also generated and characterized Luma S358L knock-in mice, which displayed normal cardiac function and morphology. CONCLUSION Our data suggest that Luma is dispensable for murine cardiac development and function and that the Luma S358L mutation alone may not cause cardiomyopathy in mice.
Collapse
MESH Headings
- Animals
- Arrhythmogenic Right Ventricular Dysplasia/genetics
- Arrhythmogenic Right Ventricular Dysplasia/metabolism
- Cells, Cultured
- Cytoskeleton/metabolism
- Female
- Fibroblasts/metabolism
- Gene Expression Regulation, Developmental
- Genetic Predisposition to Disease
- Heart/embryology
- Heart/physiopathology
- Humans
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Male
- Mechanotransduction, Cellular
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Morphogenesis
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Smooth Muscle/metabolism
- Nuclear Matrix/metabolism
Collapse
Affiliation(s)
- Matthew J Stroud
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Xi Fang
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jianlin Zhang
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Nuno Guimarães-Camboa
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jennifer Veevers
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Nancy D Dalton
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yusu Gu
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - William H Bradford
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kirk L Peterson
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sylvia M Evans
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Larry Gerace
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ju Chen
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Corresponding author. Tel: 858 822 4276; fax: 858 822 3027, E-mail:
| |
Collapse
|
16
|
Poloni G, De Bortoli M, Calore M, Rampazzo A, Lorenzon A. Arrhythmogenic right-ventricular cardiomyopathy: molecular genetics into clinical practice in the era of next generation sequencing. J Cardiovasc Med (Hagerstown) 2017; 17:399-407. [PMID: 26990921 DOI: 10.2459/jcm.0000000000000385] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Sudden death, ventricular arrhythmia and heart failure are common features in arrhythmogenic right-ventricular cardiomyopathy (ARVC), an inheritable heart muscle disease, characterized by clinical and genetic heterogeneity. So far, 13 disease genes have been identified, responsible for around 60% of all ARVC cases. In this review, we summarize the main clinical and pathological aspects of ARVC, focusing on the importance of the genetic testing and the application of the new sequencing techniques referred to next generation sequencing technology.
Collapse
Affiliation(s)
- Giulia Poloni
- aDepartment of Biology, University of Padua, Padua, Italy bDepartment of Cardiology, School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | | | | | | | | |
Collapse
|
17
|
Worman HJ, Schirmer EC. Nuclear membrane diversity: underlying tissue-specific pathologies in disease? Curr Opin Cell Biol 2015; 34:101-12. [PMID: 26115475 PMCID: PMC4522394 DOI: 10.1016/j.ceb.2015.06.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 06/05/2015] [Accepted: 06/10/2015] [Indexed: 11/16/2022]
Abstract
Human 'laminopathy' diseases result from mutations in genes encoding nuclear lamins or nuclear envelope (NE) transmembrane proteins (NETs). These diseases present a seeming paradox: the mutated proteins are widely expressed yet pathology is limited to specific tissues. New findings suggest tissue-specific pathologies arise because these widely expressed proteins act in various complexes that include tissue-specific components. Diverse mechanisms to achieve NE tissue-specificity include tissue-specific regulation of the expression, mRNA splicing, signaling, NE-localization and interactions of potentially hundreds of tissue-specific NETs. New findings suggest these NETs underlie tissue-specific NE roles in cytoskeletal mechanics, cell-cycle regulation, signaling, gene expression and genome organization. This view of the NE as 'specialized' in each cell type is important to understand the tissue-specific pathology of NE-linked diseases.
Collapse
Affiliation(s)
- Howard J Worman
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, USA; Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, USA
| | - Eric C Schirmer
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
18
|
Franke WW, Rickelt S, Zimbelmann R, Dörflinger Y, Kuhn C, Frey N, Heid H, Rosin-Arbesfeld R. Striatins as plaque molecules of zonulae adhaerentes in simple epithelia, of tessellate junctions in stratified epithelia, of cardiac composite junctions and of various size classes of lateral adherens junctions in cultures of epithelia- and carcinoma-derived cells. Cell Tissue Res 2014; 359:779-97. [PMID: 25501894 PMCID: PMC4341017 DOI: 10.1007/s00441-014-2053-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/05/2014] [Indexed: 11/29/2022]
Abstract
Proteins of the striatin family (striatins 1–4; sizes ranging from 90 to 110 kDa on SDS-polyacrylamide gel electrophoresis) are highly homologous in their amino acid sequences but can differ in their cell-type-specific gene expression patterns and biological functions. In various cell types, we have found one, two or three polypeptides of this evolutionarily old and nearly ubiquitous family of proteins known to serve as scaffold proteins for diverse protein complexes. Light and electron microscopic immunolocalization methods have revealed striatins in mammalian cell-cell adherens junctions (AJs). In simple epithelia, we have localized striatins as constitutive components of the plaques of the subapical zonulae adhaerentes of cells, including intestinal, glandular, ductal and urothelial cells and hepatocytes. Striatins colocalize with E-cadherin or E–N-cadherin heterodimers and with the plaque proteins α- and β-catenin, p120 and p0071. In some epithelia and carcinomas and in cultured cells derived therefrom, striatins are also seen in lateral AJs. In stratified epithelia and in corresponding squamous cell carcinomas, striatins can be found in plaques of some forms of tessellate junctions. Moreover, striatins are major plaque proteins of composite junctions (CJs; areae compositae) in the intercalated disks connecting cardiomyocytes, colocalizing with other CJ molecules, including plectin and ankyrin-G. We discuss the “multimodulator” scaffold roles of striatins in the initiation and regulation of the formation of various complex particles and structures. We propose that striatins are included in the diagnostic candidate list of proteins that, in the CJs of human hearts, can occur in mutated forms in the pathogeneses of hereditary cardiomyopathies, as seen in some types of genetically determined heart damage in boxer dogs.
Collapse
Affiliation(s)
- Werner W Franke
- Helmholtz Group for Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Calore M, Lorenzon A, De Bortoli M, Poloni G, Rampazzo A. Arrhythmogenic cardiomyopathy: a disease of intercalated discs. Cell Tissue Res 2014; 360:491-500. [PMID: 25344329 DOI: 10.1007/s00441-014-2015-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/18/2014] [Indexed: 01/13/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an acquired progressive disease having an age-related penetrance and showing clinical manifestations usually during adolescence and young adulthood. It is characterized clinically by a high incidence of severe ventricular tachyarrhythmias and sudden cardiac death and pathologically by degeneration of ventricular cardiomyocytes with replacement by fibro-fatty tissue. Whereas, in the past, the disease was considered to involve only the right ventricle, more recent clinical studies have established that the left ventricle is frequently involved. ACM is an inherited disease in up to 50% of cases, with predominantly an autosomal dominant pattern of transmission, although recessive inheritance has also been described. Since most of the pathogenic mutations have been identified in genes encoding desmosomal proteins, ACM is currently defined as a disease of desmosomes. However, on the basis of the most recent description of the intercalated disc organization and of the identification of a novel ACM gene encoding for an area composita protein, ACM can be considered as a disease of the intercalated disc, rather than only as a desmosomal disease. Despite increasing knowledge of the genetic basis of ACM, we are just beginning to understand early molecular events leading to cardiomyocyte degeneration, fibrosis and fibro-fatty substitution. This review summarizes recent advances in our comprehension of the link between the molecular genetics and pathogenesis of ACM and of the novel role of cardiac intercalated discs.
Collapse
Affiliation(s)
- Martina Calore
- Department of Biology, University of Padua, Via G. Colombo 3, 35131, Padua, Italy
| | | | | | | | | |
Collapse
|
20
|
Siragam V, Cui X, Masse S, Ackerley C, Aafaqi S, Strandberg L, Tropak M, Fridman MD, Nanthakumar K, Liu J, Sun Y, Su B, Wang C, Liu X, Yan Y, Mendlowitz A, Hamilton RM. TMEM43 mutation p.S358L alters intercalated disc protein expression and reduces conduction velocity in arrhythmogenic right ventricular cardiomyopathy. PLoS One 2014; 9:e109128. [PMID: 25343256 PMCID: PMC4208740 DOI: 10.1371/journal.pone.0109128] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 09/08/2014] [Indexed: 01/04/2023] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a myocardial disease characterized by fibro-fatty replacement of myocardium in the right ventricular free wall and frequently results in life-threatening ventricular arrhythmias and sudden cardiac death. A heterozygous missense mutation in the transmembrane protein 43 (TMEM43) gene, p.S358L, has been genetically identified to cause autosomal dominant ARVC type 5 in a founder population from the island of Newfoundland, Canada. Little is known about the function of the TMEM43 protein or how it leads to the pathogenesis of ARVC. We sought to determine the distribution of TMEM43 and the effect of the p.S358L mutation on the expression and distribution of various intercalated (IC) disc proteins as well as functional effects on IC disc gap junction dye transfer and conduction velocity in cell culture. Through Western blot analysis, transmission electron microscopy (TEM), immunofluorescence (IF), and electrophysiological analysis, our results showed that the stable expression of p.S358L mutation in the HL-1 cardiac cell line resulted in decreased Zonula Occludens (ZO-1) expression and the loss of ZO-1 localization to cell-cell junctions. Junctional Plakoglobin (JUP) and α-catenin proteins were redistributed to the cytoplasm with decreased localization to cell-cell junctions. Connexin-43 (Cx43) phosphorylation was altered, and there was reduced gap junction dye transfer and conduction velocity in mutant TMEM43-transfected cells. These observations suggest that expression of the p.S358L mutant of TMEM43 found in ARVC type 5 may affect localization of proteins involved in conduction, alter gap junction function and reduce conduction velocity in cardiac tissue.
Collapse
Affiliation(s)
- Vinayakumar Siragam
- Physiology and Experimental Medicine, The Hospital for Sick Children and Research Institute, Toronto, Ontario, Canada
| | - Xuezhi Cui
- Physiology and Experimental Medicine, The Hospital for Sick Children and Research Institute, Toronto, Ontario, Canada
| | - Stephane Masse
- Division of Cardiology, University Health Network, Toronto, Ontario, Canada
| | - Cameron Ackerley
- Division of Pathology, The Hospital for Sick Children and Research Institute, Toronto, Ontario, Canada
| | - Shabana Aafaqi
- Physiology and Experimental Medicine, The Hospital for Sick Children and Research Institute, Toronto, Ontario, Canada
| | - Linn Strandberg
- Physiology and Experimental Medicine, The Hospital for Sick Children and Research Institute, Toronto, Ontario, Canada
| | - Michael Tropak
- Genetics and Genome Biology, The Hospital for Sick Children and Research Institute, Toronto, Ontario, Canada
| | - Michael D. Fridman
- Physiology and Experimental Medicine, The Hospital for Sick Children and Research Institute, Toronto, Ontario, Canada
| | | | - Jun Liu
- Advanced Micro and Nanosystems Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yu Sun
- Advanced Micro and Nanosystems Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Bin Su
- Physiology and Experimental Medicine, The Hospital for Sick Children and Research Institute, Toronto, Ontario, Canada
| | - Caroline Wang
- Physiology and Experimental Medicine, The Hospital for Sick Children and Research Institute, Toronto, Ontario, Canada
| | - Xiaoru Liu
- Physiology and Experimental Medicine, The Hospital for Sick Children and Research Institute, Toronto, Ontario, Canada
| | - Yuqing Yan
- Physiology and Experimental Medicine, The Hospital for Sick Children and Research Institute, Toronto, Ontario, Canada
| | - Ariel Mendlowitz
- Physiology and Experimental Medicine, The Hospital for Sick Children and Research Institute, Toronto, Ontario, Canada
| | - Robert M. Hamilton
- Physiology and Experimental Medicine, The Hospital for Sick Children and Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Domke LM, Rickelt S, Dörflinger Y, Kuhn C, Winter-Simanowski S, Zimbelmann R, Rosin-Arbesfeld R, Heid H, Franke WW. The cell-cell junctions of mammalian testes: I. The adhering junctions of the seminiferous epithelium represent special differentiation structures. Cell Tissue Res 2014; 357:645-65. [PMID: 24907851 PMCID: PMC4148596 DOI: 10.1007/s00441-014-1906-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/28/2014] [Indexed: 01/08/2023]
Abstract
The seminiferous tubules and the excurrent ducts of the mammalian testis are physiologically separated from the mesenchymal tissues and the blood and lymph system by a special structural barrier to paracellular translocations of molecules and particles: the "blood-testis barrier", formed by junctions connecting Sertoli cells with each other and with spermatogonial cells. In combined biochemical as well as light and electron microscopical studies we systematically determine the molecules located in the adhering junctions of adult mammalian (human, bovine, porcine, murine, i.e., rat and mouse) testis. We show that the seminiferous epithelium does not contain desmosomes, or "desmosome-like" junctions, nor any of the desmosome-specific marker molecules and that the adhering junctions of tubules and ductules are fundamentally different. While the ductules contain classical epithelial cell layers with E-cadherin-based adherens junctions (AJs) and typical desmosomes, the Sertoli cells of the tubules lack desmosomes and "desmosome-like" junctions but are connected by morphologically different forms of AJs. These junctions are based on N-cadherin anchored in cytoplasmic plaques, which in some subforms appear thick and dense but in other subforms contain only scarce and loosely arranged plaque structures formed by α- and β-catenin, proteins p120, p0071 and plakoglobin, together with a member of the striatin family and also, in rodents, the proteins ZO-1 and myozap. These N-cadherin-based AJs also include two novel types of junctions: the "areae adhaerentes", i.e., variously-sized, often very large cell-cell contacts and small sieve-plate-like AJs perforated by cytoplasm-to-cytoplasm channels of 5-7 nm internal diameter ("cribelliform junctions"). We emphasize the unique character of this epithelium that totally lacks major epithelial marker molecules and structures such as keratin filaments and desmosomal elements as well as EpCAM- and PERP-containing junctions. We also discuss the nature, development and possible functions of these junctions.
Collapse
Affiliation(s)
- Lisa M. Domke
- Helmholtz Group for Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Brandenburg University of Technology, Senftenberg, Germany
- Present Address: Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology (MIT), Cambridge, MA USA
| | - Steffen Rickelt
- Helmholtz Group for Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Yvette Dörflinger
- Helmholtz Group for Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Caecilia Kuhn
- Helmholtz Group for Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Progen Biotechnik GmbH, Heidelberg, Germany
| | - Stefanie Winter-Simanowski
- Helmholtz Group for Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ralf Zimbelmann
- Helmholtz Group for Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Rina Rosin-Arbesfeld
- Department of Anatomy, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Hans Heid
- Helmholtz Group for Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Werner W. Franke
- Helmholtz Group for Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Progen Biotechnik GmbH, Heidelberg, Germany
| |
Collapse
|