1
|
Kümmerlen K, Blatt J, Hoffmann L, Harzsch S. Brain morphology in the peracarid crustacean Neomysis integer (Leach, 1814) with an emphasis on sexual dimorphism of the olfactory pathway. Cell Tissue Res 2025:10.1007/s00441-025-03978-y. [PMID: 40366435 DOI: 10.1007/s00441-025-03978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 05/02/2025] [Indexed: 05/15/2025]
Abstract
Our current understanding of brain organization in malacostracan crustaceans is strongly biased towards representatives of the Decapoda ("ten legged" crustaceans) such as crayfish, crabs, clawed lobsters and spiny lobsters. However, to understand aspects of brain evolution in crustaceans, a broader taxonomic sampling is essential. The peracarid crustaceans are a species-rich group that embraces representatives of, e.g. the Isopoda, Amphipoda and Mysida ("opossum shrimps"), taxa whose neuroanatomy has not been carefully examined. The current study sets out to analyze brain morphology of the mysid Neomysis integer (Leach, 1814; Peracarida, Mysida) using immunohistochemistry against the presynaptic protein synapsin and the neuropeptides RFamide, SIFamide and allatostatin combined with three-dimensional reconstruction of elements of the central olfactory pathway. Furthermore, we studied the inventory of sensilla on the first pair of antennae using cuticular autofluorescence. Anterograde filling with neuronal tracers allowed visualisation the central projections of the sensilla on the first pair of antennae. This species is known to display a sexual dimorphism in both the peripheral and central olfactory pathway. We focussed our analysis on this aspect because in contrast to Hexapoda, reports on a sexual dimorphism of the olfactory system are extremely rare in malacostracan crustaceans. We provide a detailed description of the sensilla associated with a male-specific structure on the pair of first antenna the "lobus masculinus". Furthermore, we analyzed the projection patterns of theses sensilla into the "male-specific neuropil" in the deutocerebrum and critically discuss our results in comparison to examples of sexual dimorphism in the chemosensory pathways in other malacostracan crustaceans and hexapods.
Collapse
Affiliation(s)
- Katja Kümmerlen
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Soldmannstrasse 23, D.-17489, Greifswald, Germany
| | - Johanna Blatt
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Soldmannstrasse 23, D.-17489, Greifswald, Germany
| | - Lena Hoffmann
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Soldmannstrasse 23, D.-17489, Greifswald, Germany
| | - Steffen Harzsch
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Soldmannstrasse 23, D.-17489, Greifswald, Germany.
| |
Collapse
|
2
|
Chapuis L, Andres CS, Gerneke DA, Radford CA. Bioimaging marine crustacean brain: quantitative comparison of micro-CT preparations in an Alpheid snapping shrimp. Front Neurosci 2024; 18:1428825. [PMID: 39659887 PMCID: PMC11628493 DOI: 10.3389/fnins.2024.1428825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Non-invasive bioimaging techniques like X-ray micro-computed tomography (μCT), combined with contrast-enhancing techniques, allow the 3D visualization of the central nervous system in situ, without the destruction of the sample. However, quantitative comparisons of the most common fixation and contrast-enhancing protocols are rare, especially in marine invertebrates. Using the snapping shrimp (Alpheus richardsoni) as a model, we test three common fixation and staining agents combinations to prepare specimens prior to μCT scanning. The contrast ratios of the resulting images are then quantitatively compared. Our results show that a buffered iodine solution on a specimen fixed with 10% formalin offers the best nervous tissue discriminability. This optimal combination allows a semi-automated segmentation of the central nervous system organs from the μCT images. We thus provide general guidance for μCT applications, particularly suitable for marine crustaceans. Species-specific morphological adaptations can then be characterized and studied in the context of evolution and behavioral ecology.
Collapse
Affiliation(s)
- Lucille Chapuis
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand
| | - Cara-Sophia Andres
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand
| | - Dane A. Gerneke
- Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Craig A. Radford
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand
| |
Collapse
|
3
|
Liang Q, Liu D, Zhu B, Wang F. NMDAR-CaMKII Pathway as a Central Regulator of Aggressiveness: Evidence from Transcriptomic and Metabolomic Analysis in Swimming Crabs Portunus trituberculatus. Int J Mol Sci 2024; 25:12560. [PMID: 39684272 DOI: 10.3390/ijms252312560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Aggressiveness is one of the personality traits of crustaceans, playing a crucial role in their growth, life history, and adaptability by influencing resource acquisition. However, the neuroregulatory mechanisms of aggressiveness in crustaceans remain poorly understood. The thoracic ganglion offers valuable insights into complementary aspects of aggression control. This study identified the aggressiveness of swimming crabs Portunus trituberculatus, conducted transcriptomic and metabolomic analyses of the thoracic ganglia, and confirmed the neural regulatory effects on aggressiveness. Behavioral analyses showed that highly aggressive individuals exhibited increased frequency and duration of chela extension, more frequent attacks, approaches and retreats, as well as extended movement distances. Omics analysis revealed 11 key candidate genes and three metabolites associated with aggressiveness, which were primarily enriched in pathways related to energy metabolism and neurodegeneration. Injection of an NMDAR activator significantly decreased aggressiveness in highly aggressive crabs, accompanied by a significant increase in NMDAR protein fluorescence intensity and downregulation of NR2B, CaMKII, and CREB genes. Conversely, when lowly aggressive crabs were injected with an NMDAR inhibitor, they showed increased aggressiveness alongside significantly decreased NMDAR protein fluorescence intensity, upregulated NR2B expression, and downregulated CaMKII and CREB genes. These results suggest that NMDAR within the thoracic ganglia serves as a key receptor in modulating aggressiveness in P. trituberculatus, potentially by influencing neural energy state via the NMDAR-CaMKII pathway, which in turn affects oxidative phosphorylation, cAMP, and FoxO pathways.
Collapse
Affiliation(s)
- Qihang Liang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Dapeng Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Boshan Zhu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Fang Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
4
|
Barnatan Y, Tomsic D, Cámera A, Sztarker J. Matched function of the neuropil processing optic flow in flies and crabs: the lobula plate mediates optomotor responses in Neohelice granulata. Proc Biol Sci 2022; 289:20220812. [PMID: 35975436 PMCID: PMC9382210 DOI: 10.1098/rspb.2022.0812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/12/2022] [Indexed: 11/12/2022] Open
Abstract
When an animal rotates (whether it is an arthropod, a fish, a bird or a human) a drift of the visual panorama occurs over its retina, termed optic flow. The image is stabilized by compensatory behaviours (driven by the movement of the eyes, head or the whole body depending on the animal) collectively termed optomotor responses. The dipteran lobula plate has been consistently linked with optic flow processing and the control of optomotor responses. Crabs have a neuropil similarly located and interconnected in the optic lobes, therefore referred to as a lobula plate too. Here we show that the crabs' lobula plate is required for normal optomotor responses since the response was lost or severely impaired in animals whose lobula plate had been lesioned. The effect was behaviour-specific, since avoidance responses to approaching visual stimuli were not affected. Crabs require simpler optic flow processing than flies (because they move slower and in two-dimensional instead of three-dimensional space), consequently their lobula plates are relatively smaller. Nonetheless, they perform the same essential role in the visual control of behaviour. Our findings add a fundamental piece to the current debate on the evolutionary relationship between the lobula plates of insects and crustaceans.
Collapse
Affiliation(s)
- Yair Barnatan
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE) CONICET-Universidad de Buenos Aires, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Daniel Tomsic
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE) CONICET-Universidad de Buenos Aires, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular Dr. Héctor Maldonado, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Alejandro Cámera
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE) CONICET-Universidad de Buenos Aires, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Julieta Sztarker
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE) CONICET-Universidad de Buenos Aires, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular Dr. Héctor Maldonado, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| |
Collapse
|
5
|
Lepore MG, Tomsic D, Sztarker J. Neural organization of the third optic neuropil, the lobula, in the highly visual semiterrestrial crab Neohelice granulata. J Comp Neurol 2022; 530:1533-1550. [PMID: 34985823 DOI: 10.1002/cne.25295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/06/2022]
Abstract
The visual neuropils (lamina, medulla and lobula complex), of malacostracan crustaceans and hexapods have many organizational principles, cell types and functional properties in common. Information about the cellular elements that compose the crustacean lobula is scarce especially when focusing on small columnar cells. Semiterrestrial crabs possess a highly developed visual system and display conspicuous visually guided behaviors. In particular, Neohelice granulata has been previously used to describe the cellular components of the first two optic neuropils using Golgi impregnation technique. Here, we present a comprehensive description of individual elements composing the third optic neuropil, the lobula, of that same species. We characterized a wide variety of elements (140 types) including input terminals and lobula columnar, centrifugal and input columnar elements. Results reveal a very dense and complex neuropil. We found a frequently impregnated input element (suggesting a supernumerary cartridge representation) that arborizes in the third layer of the lobula and that presents four variants each with ramifications organized following one of the four cardinal axes suggesting a role in directional processing. We also describe input elements with two neurites branching in the third layer, probably connecting with the medulla and lobula plate. These facts suggest that this layer is involved in the directional motion detection pathway in crabs. We analyze and discuss our findings considering the similarities and differences found between the layered organization and components of this crustacean lobula and the lobula of insects. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- María Grazia Lepore
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Daniel Tomsic
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Julieta Sztarker
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| |
Collapse
|
6
|
Harzsch S, Krieger J. Genealogical relationships of mushroom bodies, hemiellipsoid bodies, and their afferent pathways in the brains of Pancrustacea: Recent progress and open questions. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 65:101100. [PMID: 34488068 DOI: 10.1016/j.asd.2021.101100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
According to all latest phylogenetic analyses, the taxon Pancrustacea embraces the crustaceans in the traditional sense and the hexapods. Members of the Pancrustacea for a long time have been known to display distinct similarities in the architecture of their brains. Here, we review recent progress and open questions concerning structural and functional communalities of selected higher integrative neuropils in the lateral protocerebrum of pancrustaceans, the mushroom bodies and hemiellipsoid bodies. We also discuss the projection neuron pathway which provides a distinct input channel to both mushroom and hemiellipsoid bodies from the primary chemosensory centers in the deutocerebrum. Neuronal characters are mapped on a current pancrustacean phylogeny in order to extract those characters that are part of the pancrustacean ground pattern. Furthermore, we summarize recent insights into the evolutionary transformation of mushroom body morphology across the Pancrustacea.
Collapse
Affiliation(s)
- S Harzsch
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany.
| | - J Krieger
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany
| |
Collapse
|
7
|
Tinikul Y, Kruangkum T, Tinikul R, Sobhon P. Comparative neuroanatomical distribution and expression levels of neuropeptide F in the central nervous system of the female freshwater prawn, Macrobrachium rosenbergii, during the ovarian cycle. J Comp Neurol 2021; 530:729-755. [PMID: 34545567 DOI: 10.1002/cne.25241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 12/15/2022]
Abstract
Neuropeptide F (NPF) plays critical roles in controlling the feeding and reproduction of prawns. In the present study, we investigated changes in the expression levels of Macrobrachium rosenbergii neuropeptide F (MrNPF), and its neuroanatomical distribution in eyestalk (ES), brain (BR), subesophageal ganglion (SEG), thoracic ganglia (TG), and abdominal ganglia (AG), during the ovarian cycle of female prawn. By qRT-PCR, the amount of MrNPF transcripts exhibited a gradual increase in the ES, BR, and combined SEG and TG from stages I and II, to reach a maximum level at stage III, and slightly declined at stage IV, respectively. The highest to lowest expression levels were detected in combined SEG and TG, BR, ES, and AG, respectively. MrNPF immunolabeling was observed in several neuronal clusters, associated fibers, and neuropils of these central nervous system (CNS) tissues. MrNPF-ir was more intense in neurons and neuropils of SEG and TG than those found in other parts of the CNS. The number of MrNPF-ir neurons and intensity of MrNPF-ir were higher in the ES, BR, SEG, and TG at the late stages than those at the early stages of the ovarian cycle, while those in AG exhibited insignificant change. Taken together, there is a correlation between changes in the neuroanatomical distribution of MrNPF and stages of the ovarian cycle, implying that MrNPF may be an important neuropeptide that integrates sensory stimuli, including photo-, chemo-, and gustatory receptions, to control feeding and reproduction, particularly ovarian development, of this female prawn, M. rosenbergii.
Collapse
Affiliation(s)
- Yotsawan Tinikul
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thanapong Kruangkum
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Lin C, Hoving HJT, Cronin TW, Osborn KJ. Strange eyes, stranger brains: exceptional diversity of optic lobe organization in midwater crustaceans. Proc Biol Sci 2021; 288:20210216. [PMID: 33823669 DOI: 10.1098/rspb.2021.0216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nervous systems across Animalia not only share a common blueprint at the biophysical and molecular level, but even between diverse groups of animals the structure and neuronal organization of several brain regions are strikingly conserved. Despite variation in the morphology and complexity of eyes across malacostracan crustaceans, many studies have shown that the organization of malacostracan optic lobes is highly conserved. Here, we report results of divergent evolution to this 'neural ground pattern' discovered in hyperiid amphipods, a relatively small group of holopelagic malacostracan crustaceans that possess an unusually wide diversity of compound eyes. We show that the structure and organization of hyperiid optic lobes has not only diverged from the malacostracan ground pattern, but is also highly variable between closely related genera. Our findings demonstrate a variety of trade-offs between sensory systems of hyperiids and even within the visual system alone, thus providing evidence that selection has modified individual components of the central nervous system to generate distinct combinations of visual centres in the hyperiid optic lobes. Our results provide new insights into the patterns of brain evolution among animals that live under extreme conditions.
Collapse
Affiliation(s)
- Chan Lin
- Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, Washington, DC 20013, USA
| | - Henk-Jan T Hoving
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Thomas W Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Karen J Osborn
- Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, Washington, DC 20013, USA.,Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| |
Collapse
|
9
|
Krieger J, Hörnig MK, Kenning M, Hansson BS, Harzsch S. More than one way to smell ashore - Evolution of the olfactory pathway in terrestrial malacostracan crustaceans. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 60:101022. [PMID: 33385761 DOI: 10.1016/j.asd.2020.101022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Crustaceans provide a fascinating opportunity for studying adaptations to a terrestrial lifestyle because within this group, the conquest of land has occurred at least ten times convergently. The evolutionary transition from water to land demands various morphological and physiological adaptations of tissues and organs including the sensory and nervous system. In this review, we aim to compare the brain architecture between selected terrestrial and closely related marine representatives of the crustacean taxa Amphipoda, Isopoda, Brachyura, and Anomala with an emphasis on the elements of the olfactory pathway including receptor molecules. Our comparison of neuroanatomical structures between terrestrial members and their close aquatic relatives suggests that during the convergent evolution of terrestrial life-styles, the elements of the olfactory pathway were subject to different morphological transformations. In terrestrial anomalans (Coenobitidae), the elements of the primary olfactory pathway (antennules and olfactory lobes) are in general considerably enlarged whereas they are smaller in terrestrial brachyurans compared to their aquatic relatives. Studies on the repertoire of receptor molecules in Coenobitidae do not point to specific terrestrial adaptations but suggest that perireceptor events - processes in the receptor environment before the stimuli bind - may play an important role for aerial olfaction in this group. In terrestrial members of amphipods (Amphipoda: Talitridae) as well as of isopods (Isopoda: Oniscidea), however, the antennules and olfactory sensilla (aesthetascs) are largely reduced and miniaturized. Consequently, their primary olfactory processing centers are suggested to have been lost during the evolution of a life on land. Nevertheless, in terrestrial Peracarida, the (second) antennae as well as their associated tritocerebral processing structures are presumed to compensate for this loss or rather considerable reduction of the (deutocerebral) primary olfactory pathway. We conclude that after the evolutionary transition from water to land, it is not trivial for arthropods to establish aerial olfaction. If we consider insects as an ingroup of Crustacea, then the Coenobitidae and Insecta may be seen as the most successful crustacean representatives in this respect.
Collapse
Affiliation(s)
- Jakob Krieger
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, 17489, Greifswald, Germany.
| | - Marie K Hörnig
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, 17489, Greifswald, Germany.
| | - Matthes Kenning
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, 17489, Greifswald, Germany.
| | - Bill S Hansson
- Max-Planck-Institute for Chemical Ecology, Department of Evolutionary Neuroethology, 07745, Jena, Germany.
| | - Steffen Harzsch
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, 17489, Greifswald, Germany.
| |
Collapse
|
10
|
Polanska MA, Kirchhoff T, Dircksen H, Hansson BS, Harzsch S. Functional morphology of the primary olfactory centers in the brain of the hermit crab Coenobita clypeatus (Anomala, Coenobitidae). Cell Tissue Res 2020; 380:449-467. [PMID: 32242250 PMCID: PMC7242284 DOI: 10.1007/s00441-020-03199-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/03/2020] [Indexed: 11/07/2022]
Abstract
Terrestrial hermit crabs of the genus Coenobita display strong behavioral responses to volatile odors and are attracted by chemical cues of various potential food sources. Several aspects of their sense of aerial olfaction have been explored in recent years including behavioral aspects and structure of their peripheral and central olfactory pathway. Here, we use classical histological methods and immunohistochemistry against the neuropeptides orcokinin and allatostatin as well as synaptic proteins and serotonin to provide insights into the functional organization of their primary olfactory centers in the brain, the paired olfactory lobes. Our results show that orcokinin is present in the axons of olfactory sensory neurons, which target the olfactory lobe. Orcokinin is also present in a population of local olfactory interneurons, which may relay lateral inhibition across the array of olfactory glomeruli within the lobes. Extensive lateral connections of the glomeruli were also visualized using the histological silver impregnation method according to Holmes-Blest. This technique also revealed the structural organization of the output pathway of the olfactory system, the olfactory projection neurons, the axons of which target the lateral protocerebrum. Within the lobes, the course of their axons seems to be reorganized in an axon-sorting zone before they exit the system. Together with previous results, we combine our findings into a model on the functional organization of the olfactory system in these animals.
Collapse
Affiliation(s)
- Marta A Polanska
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Tina Kirchhoff
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, University of Greifswald, Soldmannstrasse 23, 17498, Greifswald, Germany
| | - Heinrich Dircksen
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, SE-10691, Stockholm, Sweden
| | - Bill S Hansson
- Max-Planck-Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Steffen Harzsch
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, University of Greifswald, Soldmannstrasse 23, 17498, Greifswald, Germany.
- Max-Planck-Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, 07745, Jena, Germany.
| |
Collapse
|
11
|
Strausfeld NJ, Wolff GH, Sayre ME. Mushroom body evolution demonstrates homology and divergence across Pancrustacea. eLife 2020; 9:e52411. [PMID: 32124731 PMCID: PMC7054004 DOI: 10.7554/elife.52411] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Descriptions of crustacean brains have focused mainly on three highly derived lineages of malacostracans: the reptantian infraorders represented by spiny lobsters, lobsters, and crayfish. Those descriptions advocate the view that dome- or cap-like neuropils, referred to as 'hemiellipsoid bodies,' are the ground pattern organization of centers that are comparable to insect mushroom bodies in processing olfactory information. Here we challenge the doctrine that hemiellipsoid bodies are a derived trait of crustaceans, whereas mushroom bodies are a derived trait of hexapods. We demonstrate that mushroom bodies typify lineages that arose before Reptantia and exist in Reptantia thereby indicating that the mushroom body, not the hemiellipsoid body, provides the ground pattern for both crustaceans and hexapods. We show that evolved variations of the mushroom body ground pattern are, in some lineages, defined by extreme diminution or loss and, in others, by the incorporation of mushroom body circuits into lobeless centers. Such transformations are ascribed to modifications of the columnar organization of mushroom body lobes that, as shown in Drosophila and other hexapods, contain networks essential for learning and memory.
Collapse
Affiliation(s)
- Nicholas James Strausfeld
- Department of Neuroscience, School of Mind, Brain and BehaviorUniversity of ArizonaTucsonUnited States
| | | | | |
Collapse
|
12
|
Krieger J, Hörnig MK, Sandeman RE, Sandeman DC, Harzsch S. Masters of communication: The brain of the banded cleaner shrimp Stenopus hispidus (Olivier, 1811) with an emphasis on sensory processing areas. J Comp Neurol 2019; 528:1561-1587. [PMID: 31792962 DOI: 10.1002/cne.24831] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
The pan-tropic cleaner shrimp Stenopus hispidus (Crustacea, Stenopodidea) is famous for its specific cleaning behavior in association with client fish and an exclusively monogamous life-style. Cleaner shrimps feature a broad communicative repertoire, which is considered to depend on superb motor skills and the underlying mechanosensory circuits in combination with sensory organs. Their most prominent head appendages are the two pairs of very long biramous antennules and antennae, which are used both for attracting client fish and for intraspecific communication. Here, we studied the brain anatomy of several specimens of S. hispidus using histological sections, immunohistochemical labeling as well as X-ray microtomography in combination with 3D reconstructions. Furthermore, we investigated the morphology of antennules and antennae using fluorescence and scanning electron microscopy. Our analyses show that in addition to the complex organization of the multimodal processing centers, especially chemomechanosensory neuropils associated with the antennule and antenna are markedly pronounced when compared to the other neuropils of the central brain. We suggest that in their brains, three topographic maps are present corresponding to the sensory appendages. The brain areas which provide the neuronal substrate for these maps share distinct structural similarities to a unique extent in decapods, such as size and characteristic striated and perpendicular layering. We discuss our findings with respect to the sensory landscape within animal's habitat. In an evolutionary perspective, the cleaner shrimp's brain is an excellent example of how sensory potential and functional demands shape the architecture of primary chemomechanosensory processing areas.
Collapse
Affiliation(s)
- Jakob Krieger
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, Greifswald, Germany
| | - Marie K Hörnig
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, Greifswald, Germany
| | - Renate E Sandeman
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, Greifswald, Germany
| | - David C Sandeman
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, Greifswald, Germany
| | - Steffen Harzsch
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, Greifswald, Germany
| |
Collapse
|
13
|
Machon J, Krieger J, Meth R, Zbinden M, Ravaux J, Montagné N, Chertemps T, Harzsch S. Neuroanatomy of a hydrothermal vent shrimp provides insights into the evolution of crustacean integrative brain centers. eLife 2019; 8:e47550. [PMID: 31383255 PMCID: PMC6684273 DOI: 10.7554/elife.47550] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/14/2019] [Indexed: 11/13/2022] Open
Abstract
Alvinocaridid shrimps are emblematic representatives of the deep hydrothermal vent fauna at the Mid-Atlantic Ridge. They are adapted to a mostly aphotic habitat with extreme physicochemical conditions in the vicinity of the hydrothermal fluid emissions. Here, we investigated the brain architecture of the vent shrimp Rimicaris exoculata to understand possible adaptations of its nervous system to the hydrothermal sensory landscape. Its brain is modified from the crustacean brain ground pattern by featuring relatively small visual and olfactory neuropils that contrast with well-developed higher integrative centers, the hemiellipsoid bodies. We propose that these structures in vent shrimps may fulfill functions in addition to higher order sensory processing and suggest a role in place memory. Our study promotes vent shrimps as fascinating models to gain insights into sensory adaptations to peculiar environmental conditions, and the evolutionary transformation of specific brain areas in Crustacea.
Collapse
Affiliation(s)
- Julia Machon
- Sorbonne Université, UMR CNRS MNHN 7208 Biologie des organismes et écosystèmes aquatiques (BOREA), Equipe Adaptation aux Milieux ExtrêmesParisFrance
| | - Jakob Krieger
- Department of Cytology and Evolutionary BiologyUniversity of Greifswald, Zoological Institute and MuseumGreifswaldGermany
| | - Rebecca Meth
- Department of Cytology and Evolutionary BiologyUniversity of Greifswald, Zoological Institute and MuseumGreifswaldGermany
| | - Magali Zbinden
- Sorbonne Université, UMR CNRS MNHN 7208 Biologie des organismes et écosystèmes aquatiques (BOREA), Equipe Adaptation aux Milieux ExtrêmesParisFrance
| | - Juliette Ravaux
- Sorbonne Université, UMR CNRS MNHN 7208 Biologie des organismes et écosystèmes aquatiques (BOREA), Equipe Adaptation aux Milieux ExtrêmesParisFrance
| | - Nicolas Montagné
- Sorbonne Université, UPEC, Univ Paris Diderot, CNRS, INRA, IRD, Institute of Ecology & Environmental Sciences of Paris (iEES-Paris)ParisFrance
| | - Thomas Chertemps
- Sorbonne Université, UPEC, Univ Paris Diderot, CNRS, INRA, IRD, Institute of Ecology & Environmental Sciences of Paris (iEES-Paris)ParisFrance
| | - Steffen Harzsch
- Department of Cytology and Evolutionary BiologyUniversity of Greifswald, Zoological Institute and MuseumGreifswaldGermany
| |
Collapse
|
14
|
Wittfoth C, Harzsch S, Wolff C, Sombke A. The "amphi"-brains of amphipods: new insights from the neuroanatomy of Parhyale hawaiensis (Dana, 1853). Front Zool 2019; 16:30. [PMID: 31372174 PMCID: PMC6660712 DOI: 10.1186/s12983-019-0330-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Over the last years, the amphipod crustacean Parhyale hawaiensis has developed into an attractive marine animal model for evolutionary developmental studies that offers several advantages over existing experimental organisms. It is easy to rear in laboratory conditions with embryos available year-round and amenable to numerous kinds of embryological and functional genetic manipulations. However, beyond these developmental and genetic analyses, research on the architecture of its nervous system is fragmentary. In order to provide a first neuroanatomical atlas of the brain, we investigated P. hawaiensis using immunohistochemical labelings combined with laser-scanning microscopy, X-ray microcomputed tomography, histological sectioning and 3D reconstructions. RESULTS As in most amphipod crustaceans, the brain is dorsally bent out of the body axis with downward oriented lateral hemispheres of the protocerebrum. It comprises almost all prominent neuropils that are part of the suggested ground pattern of malacostracan crustaceans (except the lobula plate and projection neuron tract neuropil). Beyond a general uniformity of these neuropils, the brain of P. hawaiensis is characterized by an elaborated central complex and a modified lamina (first order visual neuropil), which displays a chambered appearance. In the light of a recent analysis on photoreceptor projections in P. hawaiensis, the observed architecture of the lamina corresponds to specialized photoreceptor terminals. Furthermore, in contrast to previous descriptions of amphipod brains, we suggest the presence of a poorly differentiated hemiellipsoid body and an inner chiasm and critically discuss these aspects. CONCLUSIONS Despite a general uniformity of amphipod brains, there is also a certain degree of variability in architecture and size of different neuropils, reflecting various ecologies and life styles of different species. In contrast to other amphipods, the brain of P. hawaiensis does not display any striking modifications or bias towards processing one particular sensory modality. Thus, we conclude that this brain represents a common type of an amphipod brain. Considering various established protocols for analyzing and manipulating P. hawaiensis, this organism is a suitable model to gain deeper understanding of brain anatomy e.g. by using connectome approaches, and this study can serve as first solid basis for following studies.
Collapse
Affiliation(s)
- Christin Wittfoth
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Soldmannstr. 23, 17487 Greifswald, Germany
| | - Steffen Harzsch
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Soldmannstr. 23, 17487 Greifswald, Germany
| | - Carsten Wolff
- Department of Biology, Comparative Zoology, Humboldt University Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Andy Sombke
- Department of Integrative Zoology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| |
Collapse
|
15
|
Nischik ES, Krieger J. Evaluation of standard imaging techniques and volumetric preservation of nervous tissue in genetically identical offspring of the crayfish Procambarus fallax cf. virginalis (Marmorkrebs). PeerJ 2018; 6:e5181. [PMID: 30018856 PMCID: PMC6044273 DOI: 10.7717/peerj.5181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/18/2018] [Indexed: 01/24/2023] Open
Abstract
In the field of comparative neuroanatomy, a meaningful interspecific comparison demands quantitative data referring to method-specific artifacts. For evaluating the potential of state-of-the-art imaging techniques in arthropod neuroanatomy, micro-computed X-ray microscopy (μCT) and two different approaches using confocal laser-scanning microscopy (cLSM) were applied to obtain volumetric data of the brain and selected neuropils in Procambarus fallax forma virginalis (Crustacea, Malacostraca, Decapoda). The marbled crayfish P. fallax cf. virginalis features a parthogenetic reproduction generating genetically identical offspring from unfertilized eggs. Therefore, the studied organism provides ideal conditions for the comparative analysis of neuroanatomical imaging techniques and the effect of preceding sample preparations of nervous tissue. We found that wet scanning of whole animals conducted with μCT turned out to be the least disruptive method. However, in an additional experiment it was discovered that fixation in Bouin’s solution, required for μCT scans, resulted in an average tissue shrinkage of 24% compared to freshly dissected and unfixed brains. The complete sample preparation using fixation in half-strength Karnovsky’s solution of dissected brains led to an additional volume decrease of 12.5%, whereas the preparation using zinc-formaldehyde as fixative resulted in a shrinkage of 5% in comparison to the volumes obtained by μCT. By minimizing individual variability, at least for aquatic arthropods, this pioneer study aims for the inference of method-based conversion factors in the future, providing a valuable tool for reducing quantitative neuroanatomical data already published to a common denominator. However, volumetric deviations could be shown for all experimental protocols due to methodological noise and/or phenotypic plasticity among genetically identical individuals. MicroCT using undried tissue is an appropriate non-disruptive technique for allometry of arthropod brains since spatial organ relationships are conserved and tissue shrinkage is minimized. Collecting tissue-based shrinkage factors according to specific sample preparations might allow a better comparability of volumetric data from the literature, even if another technique was applied.
Collapse
Affiliation(s)
- Emanuel S Nischik
- Zoological Institute and Museum, Cytology and Evolutionary Biology, University of Greifswald, Greifswald, Germany
| | - Jakob Krieger
- Zoological Institute and Museum, Cytology and Evolutionary Biology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
16
|
Crustacean olfactory systems: A comparative review and a crustacean perspective on olfaction in insects. Prog Neurobiol 2017; 161:23-60. [PMID: 29197652 DOI: 10.1016/j.pneurobio.2017.11.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 11/10/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022]
Abstract
Malacostracan crustaceans display a large diversity of sizes, morphs and life styles. However, only a few representatives of decapod taxa have served as models for analyzing crustacean olfaction, such as crayfish and spiny lobsters. Crustaceans bear multiple parallel chemosensory pathways represented by different populations of unimodal chemosensory and bimodal chemo- and mechanosensory sensilla on the mouthparts, the walking limbs and primarily on their two pairs of antennae. Here, we focus on the olfactory pathway associated with the unimodal chemosensory sensilla on the first antennal pair, the aesthetascs. We explore the diverse arrangement of these sensilla across malacostracan taxa and point out evolutionary transformations which occurred in the central olfactory pathway. We discuss the evolution of chemoreceptor proteins, comparative aspects of active chemoreception and the temporal resolution of crustacean olfactory system. Viewing the evolution of crustacean brains in light of energetic constraints can help us understand their functional morphology and suggests that in various crustacean lineages, the brains were simplified convergently because of metabolic limitations. Comparing the wiring of afferents, interneurons and output neurons within the olfactory glomeruli suggests a deep homology of insect and crustacean olfactory systems. However, both taxa followed distinct lineages during the evolutionary elaboration of their olfactory systems. A comparison with insects suggests their olfactory systems ö especially that of the vinegar fly ö to be superb examples for "economy of design". Such a comparison also inspires new thoughts about olfactory coding and the functioning of malacostracan olfactory systems in general.
Collapse
|