1
|
Oliveira VEDM, Evrard F, Faure MC, Bakker J. Social isolation and aggression training lead to escalated aggression and hypothalamus-pituitary-gonad axis hyperfunction in mice. Neuropsychopharmacology 2024; 49:1266-1275. [PMID: 38337026 PMCID: PMC11224373 DOI: 10.1038/s41386-024-01808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/30/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
Although the participation of sex hormones and sex hormone-responsive neurons in aggressive behavior has been extensively studied, the role of other systems within the hypothalamus-pituitary-gonadal (HPG) axis remains elusive. Here we assessed how the gonadotropin-releasing hormone (GnRH) and kisspeptin systems are impacted by escalated aggression in male mice. We used a combination of social isolation and aggression training (IST) to exacerbate mice's aggressive behavior. Next, low-aggressive (group-housed, GH) and highly aggressive (IST) mice were compared regarding neuronal activity in the target populations and hormonal levels, using immunohistochemistry and ELISA, respectively. Finally, we used pharmacological and viral approaches to manipulate neuropeptide signaling and expression, subsequently evaluating its effects on behavior. IST mice exhibited enhanced aggressive behavior compared to GH controls, which was accompanied by elevated neuronal activity in GnRH neurons and arcuate nucleus kisspeptin neurons. Remarkably, IST mice presented an increased number of kisspeptin neurons in the anteroventral periventricular nucleus (AVPV). In addition, IST mice exhibited elevated levels of luteinizing hormone (LH) in serum. Accordingly, activation and blockade of GnRH receptors (GnRHR) exacerbated and reduced aggression, respectively. Surprisingly, kisspeptin had intricate effects on aggression, i.e., viral ablation of AVPV-kisspeptin neurons impaired the training-induced rise in aggressive behavior whereas kisspeptin itself strongly reduced aggression in IST mice. Our results indicate that IST enhances aggressive behavior in male mice by exacerbating HPG-axis activity. Particularly, increased GnRH neuron activity and GnRHR signaling were found to underlie aggression whereas the relationship with kisspeptin remains puzzling.
Collapse
Affiliation(s)
- Vinícius Elias de Moura Oliveira
- Laboratory of Neuroendocrinology, GIGA-Neurosciences, University of Liege, 4000, Liege, Belgium.
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany.
| | - Florence Evrard
- Laboratory of Neuroendocrinology, GIGA-Neurosciences, University of Liege, 4000, Liege, Belgium
| | - Melanie C Faure
- Laboratory of Neuroendocrinology, GIGA-Neurosciences, University of Liege, 4000, Liege, Belgium
| | - Julie Bakker
- Laboratory of Neuroendocrinology, GIGA-Neurosciences, University of Liege, 4000, Liege, Belgium.
| |
Collapse
|
2
|
Buo C, Bearss RJ, Novak AG, Anello AE, Dakin JJ, Piet R. Serotonin stimulates female preoptic area kisspeptin neurons via activation of type 2 serotonin receptors in mice. Front Endocrinol (Lausanne) 2023; 14:1212854. [PMID: 37900129 PMCID: PMC10602649 DOI: 10.3389/fendo.2023.1212854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
Background The neuroendocrine control of ovulation is orchestrated by neuronal circuits that ultimately drive the release of gonadotropin-releasing hormone (GnRH) from the hypothalamus to trigger the preovulatory surge in luteinizing hormone (LH) secretion. While estrogen feedback signals are determinant in triggering activation of GnRH neurons, through stimulation of afferent kisspeptin neurons in the rostral periventricular area of the third ventricle (RP3VKISS1 neurons), many neuropeptidergic and classical neurotransmitter systems have been shown to regulate the LH surge. Among these, several lines of evidence indicate that the monoamine neurotransmitter serotonin (5-HT) has an excitatory, permissive, influence over the generation of the surge, via activation of type 2 5-HT (5-HT2) receptors. The mechanisms through which this occurs, however, are not well understood. We hypothesized that 5-HT exerts its influence on the surge by stimulating RP3VKISS1 neurons in a 5-HT2 receptor-dependent manner. Methods We tested this using kisspeptin neuron-specific calcium imaging and electrophysiology in brain slices obtained from male and female mice. Results We show that exogenous 5-HT reversibly increases the activity of the majority of RP3VKISS1 neurons. This effect is more prominent in females than in males, is likely mediated directly at RP3VKISS1 neurons and requires activation of 5-HT2 receptors. The functional impact of 5-HT on RP3VKISS1 neurons, however, does not significantly vary during the estrous cycle. Conclusion Taken together, these data suggest that 5-HT2 receptor-mediated stimulation of RP3VKISS1 neuron activity might be involved in mediating the influence of 5-HT on the preovulatory LH surge.
Collapse
Affiliation(s)
- Carrie Buo
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Robin J. Bearss
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Alyssa G. Novak
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Anna E. Anello
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Jordan J. Dakin
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Richard Piet
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
3
|
Constantin S, Moenter SM, Piet R. The electrophysiologic properties of gonadotropin-releasing hormone neurons. J Neuroendocrinol 2022; 34:e13073. [PMID: 34939256 PMCID: PMC9163209 DOI: 10.1111/jne.13073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022]
Abstract
For about two decades, recordings of identified gonadotropin-releasing hormone (GnRH) neurons have provided a wealth of information on their properties. We describe areas of consensus and debate the intrinsic electrophysiologic properties of these cells, their response to fast synaptic and neuromodulatory input, Ca2+ imaging correlates of action potential firing, and signaling pathways regulating these aspects. How steroid feedback and development change these properties, functions of GnRH neuron subcompartments and local networks, as revealed by chemo- and optogenetic approaches, are also considered.
Collapse
Affiliation(s)
- Stephanie Constantin
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892-3703, USA
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Suzanne M Moenter
- Departments of Molecular & Integrative Physiology, Internal Medicine, Obstetrics & Gynecology, and the Reproductive Sciences Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Richard Piet
- Brain Health Research Institute & Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
4
|
Camera M, Russo I, Zamboni V, Ammoni A, Rando S, Morellato A, Cimino I, Angelini C, Giacobini P, Oleari R, Amoruso F, Cariboni A, Franceschini I, Turco E, Defilippi P, Merlo GR. p140Cap Controls Female Fertility in Mice Acting via Glutamatergic Afference on Hypothalamic Gonadotropin-Releasing Hormone Neurons. Front Neurosci 2022; 16:744693. [PMID: 35237119 PMCID: PMC8884249 DOI: 10.3389/fnins.2022.744693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
p140Cap, encoded by the gene SRCIN1 (SRC kinase signaling inhibitor 1), is an adaptor/scaffold protein highly expressed in the mouse brain, participating in several pre- and post-synaptic mechanisms. p140Cap knock-out (KO) female mice show severe hypofertility, delayed puberty onset, altered estrus cycle, reduced ovulation, and defective production of luteinizing hormone and estradiol during proestrus. We investigated the role of p140Cap in the development and maturation of the hypothalamic gonadotropic system. During embryonic development, migration of Gonadotropin-Releasing Hormone (GnRH) neurons from the nasal placode to the forebrain in p140Cap KO mice appeared normal, and young p140Cap KO animals showed a normal number of GnRH-immunoreactive (-ir) neurons. In contrast, adult p140Cap KO mice showed a significant loss of GnRH-ir neurons and a decreased density of GnRH-ir projections in the median eminence, accompanied by reduced levels of GnRH and LH mRNAs in the hypothalamus and pituitary gland, respectively. We examined the number of kisspeptin (KP) neurons in the rostral periventricular region of the third ventricle, the number of KP-ir fibers in the arcuate nucleus, and the number of KP-ir punctae on GnRH neurons but we found no significant changes. Consistently, the responsiveness to exogenous KP in vivo was unchanged, excluding a cell-autonomous defect on the GnRH neurons at the level of KP receptor or its signal transduction. Since glutamatergic signaling in the hypothalamus is critical for both puberty onset and modulation of GnRH secretion, we examined the density of glutamatergic synapses in p140Cap KO mice and observed a significant reduction in the density of VGLUT-ir punctae both in the preoptic area and on GnRH neurons. Our data suggest that the glutamatergic circuitry in the hypothalamus is altered in the absence of p140Cap and is required for female fertility.
Collapse
Affiliation(s)
- Mattia Camera
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Isabella Russo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Valentina Zamboni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Alessandra Ammoni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Simona Rando
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Irene Cimino
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, Inserm U1172, Lille, France
- Metabolic Research Laboratories, Wellcome Trust–Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Costanza Angelini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Paolo Giacobini
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, Inserm U1172, Lille, France
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Federica Amoruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Isabelle Franceschini
- Physiologie de la Reproduction et des Comportements, French National Centre for Scientific Research, French Institute of the Horse and Riding, French National Research Institute for Agriculture, Food and Environment, Université de Tours, Nouzilly, France
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- *Correspondence: Paola Defilippi,
| | - Giorgio R. Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Giorgio R. Merlo,
| |
Collapse
|
5
|
PASSARELLI A, LETTIERI A, DEMIRCI TN, MAGNI P. Gonadotropin-releasing hormone-secreting neuron development and function: an update. Minerva Endocrinol (Torino) 2022; 47:58-69. [DOI: 10.23736/s2724-6507.22.03683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Gołyszny M, Obuchowicz E, Zieliński M. Neuropeptides as regulators of the hypothalamus-pituitary-gonadal (HPG) axis activity and their putative roles in stress-induced fertility disorders. Neuropeptides 2022; 91:102216. [PMID: 34974357 DOI: 10.1016/j.npep.2021.102216] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022]
Abstract
Neuropeptides being regulators of the hypothalamus-pituitary-adrenal (HPA) axis activity, also affect the function of the hypothalamus-pituitary-gonadal (HPG) axis by regulating gonadotrophin-releasing hormone (GnRH) secretion from hypothalamic neurons. Here, we review the available data on how neuropeptides affect HPG axis activity directly or indirectly via their influence on the HPA axis. The putative role of neuropeptides in stress-induced infertility, such as polycystic ovary syndrome, is also described. This review discusses both well-known neuropeptides (i.e., kisspeptin, Kp; oxytocin, OT; arginine-vasopressin, AVP) and more recently discovered peptides (i.e., relaxin-3, RLN-3; nesfatin-1, NEFA; phoenixin, PNX; spexin, SPX). For the first time, we present an up-to-date review of all published data regarding interactions between the aforementioned neuropeptide systems. The reviewed literature suggest new pathophysiological mechanisms leading to fertility disturbances that are induced by stress.
Collapse
Affiliation(s)
- Miłosz Gołyszny
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 Street, 40-752 Katowice, Poland.
| | - Ewa Obuchowicz
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 Street, 40-752 Katowice, Poland.
| | - Michał Zieliński
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 Street, 40-752 Katowice, Poland.
| |
Collapse
|
7
|
Calik-Ksepka A, Stradczuk M, Czarnecka K, Grymowicz M, Smolarczyk R. Lactational Amenorrhea: Neuroendocrine Pathways Controlling Fertility and Bone Turnover. Int J Mol Sci 2022; 23:ijms23031633. [PMID: 35163554 PMCID: PMC8835773 DOI: 10.3390/ijms23031633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Lactation is a physiological state of hyperprolactinemia and associated amenorrhea. Despite the fact that exact mechanisms standing behind the hypothalamus-pituitary-ovarian axis during lactation are still not clear, a general overview of events leading to amenorrhea may be suggested. Suckling remains the most important stimulus maintaining suppressive effect on ovaries after pregnancy. Breastfeeding is accompanied by high levels of prolactin, which remain higher than normal until the frequency and duration of daily suckling decreases and allows normal menstrual function resumption. Hyperprolactinemia induces the suppression of hypothalamic Kiss1 neurons that directly control the pulsatile release of GnRH. Disruption in the pulsatile manner of GnRH secretion results in a strongly decreased frequency of corresponding LH pulses. Inadequate LH secretion and lack of pre-ovulatory surge inhibit the progression of the follicular phase of a menstrual cycle and result in anovulation and amenorrhea. The main consequences of lactational amenorrhea are connected with fertility issues and increased bone turnover. Provided the fulfillment of all the established conditions of its use, the lactational amenorrhea method (LAM) efficiently protects against pregnancy. Because of its accessibility and lack of additional associated costs, LAM might be especially beneficial in low-income, developing countries, where modern contraception is hard to obtain. Breastfeeding alone is not equal to the LAM method, and therefore, it is not enough to successfully protect against conception. That is why LAM promotion should primarily focus on conditions under which its use is safe and effective. More studies on larger study groups should be conducted to determine and confirm the impact of behavioral factors, like suckling parameters, on the LAM efficacy. Lactational bone loss is a physiologic mechanism that enables providing a sufficient amount of calcium to the newborn. Despite the decline in bone mass during breastfeeding, it rebuilds after weaning and is not associated with a postmenopausal decrease in BMD and osteoporosis risk. Therefore, it should be a matter of concern only for lactating women with additional risk factors or with low BMD before pregnancy. The review summarizes the effect that breastfeeding exerts on the hypothalamus-pituitary axis as well as fertility and bone turnover aspects of lactational amenorrhea. We discuss the possibility of the use of lactation as contraception, along with this method's prevalence, efficacy, and influencing factors. We also review the literature on the topic of lactational bone loss: its mechanism, severity, and persistence throughout life.
Collapse
Affiliation(s)
- Anna Calik-Ksepka
- Department of Gynaecological Endocrinology, Medical University of Warsaw, Karowa 2, 00-315 Warsaw, Poland; (M.G.); (R.S.)
- Correspondence:
| | - Monika Stradczuk
- Student’s Academic Association, Department of Gynecological Endocrinology, Faculty of Medicine, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland; (M.S.); (K.C.)
| | - Karolina Czarnecka
- Student’s Academic Association, Department of Gynecological Endocrinology, Faculty of Medicine, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland; (M.S.); (K.C.)
| | - Monika Grymowicz
- Department of Gynaecological Endocrinology, Medical University of Warsaw, Karowa 2, 00-315 Warsaw, Poland; (M.G.); (R.S.)
| | - Roman Smolarczyk
- Department of Gynaecological Endocrinology, Medical University of Warsaw, Karowa 2, 00-315 Warsaw, Poland; (M.G.); (R.S.)
| |
Collapse
|
8
|
Bhattarai P, Rijal S, Bhattarai JP, Cho DH, Han SK. Suppression of neurotransmission on gonadotropin-releasing hormone neurons in letrozole-induced polycystic ovary syndrome: A mouse model. Front Endocrinol (Lausanne) 2022; 13:1059255. [PMID: 36699037 PMCID: PMC9868609 DOI: 10.3389/fendo.2022.1059255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Polycystic ovarian syndrome (PCOS) is a heterogeneous endocrine disorder in reproductive-age women, characterized by the accretion of small cystic follicles in the ovary associated with chronic anovulation and overproduction of androgens. Ovarian function in all mammals is controlled by gonadotropin-releasing hormone (GnRH) neurons, which are the central regulator of the hypothalamic-pituitary-gonadal (HPG) axis. However, the impact on the neurotransmitter system regulating GnRH neuronal function in the letrozole-induced PCOS mouse model remains unclear. METHODS In this study, we compared the response of various neurotransmitters and neurosteroids regulating GnRH neuronal activities between letrozole-induced PCOS and normal mice via electrophysiological techniques. RESULTS Response to neurotransmitter systems like GABAergic, glutamatergic and kisspeptinergic were suppressed in letrozole-fed compared to normal mice. In addition, neurosteroids tetrahydrodeoxycorticosterone (THDOC) and 4,5,6,7-tetrahydroisoxazolo[5,4-c] pyridine-3-ol (THIP) mediated response on GnRH neurons were significantly smaller on letrozole-fed mice compared to normal mice. Furthermore, we also found that letrozole-fed mice showed irregularity in the estrous cycle, increased body weight, and anovulation in female mice. CONCLUSION These findings suggest that PCOS is an endocrine disorder that may directly affect the neurotransmitter system regulating GnRH neuronal activity at the hypothalamic level and impact reproductive physiology.
Collapse
Affiliation(s)
- Pravin Bhattarai
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, South Korea
| | - Santosh Rijal
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, South Korea
| | - Janardhan P. Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Dong Hyu Cho
- Department of Obstetrics and Gynecology, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
- *Correspondence: Dong Hyu Cho, ; Seong Kyu Han,
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, South Korea
- *Correspondence: Dong Hyu Cho, ; Seong Kyu Han,
| |
Collapse
|
9
|
Oliveira VEDM, Bakker J. Neuroendocrine regulation of female aggression. Front Endocrinol (Lausanne) 2022; 13:957114. [PMID: 36034455 PMCID: PMC9399833 DOI: 10.3389/fendo.2022.957114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Classically the neurobiology of aggression has been studied exclusively in males. Thus, females have been considered mildly aggressive except during lactation. Interestingly, recent studies in rodents and humans have revealed that non-lactating females can show exacerbated and pathological aggression similarly to males. This review provides an overview of recent findings on the neuroendocrine mechanisms regulating aggressive behavior in females. In particular, the focus will be on novel rodent models of exaggerated aggression established in non-lactating females. Among the neuromodulatory systems influencing female aggression, special attention has been given to sex-steroids and sex-steroid-sensitive neuronal populations (i.e., the core nuclei of the neural pathway of aggression) as well as to the neuropeptides oxytocin and vasopressin which are major players in the regulation of social behaviors.
Collapse
|
10
|
Rijal S, Jang SH, Cho DH, Han SK. Hydrogen peroxide suppresses excitability of gonadotropin-releasing hormone neurons in adult mouse. Front Endocrinol (Lausanne) 2022; 13:939699. [PMID: 36387844 PMCID: PMC9650413 DOI: 10.3389/fendo.2022.939699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
It has been reported that reactive oxygen species (ROS) derived from oxygen molecule reduction can interfere with the cross-talk between the hypothalamic-pituitary-gonadal (HPG) axis and other endocrine axes, thus affecting fertility. Furthermore, ROS have been linked to GnRH receptor signaling in gonadotropes involved in gonadotropin release. There has been evidence that ROS can interfere with the HPG axis and gonadotropin release at various levels. However, the direct effect of ROS on gonadotropin-releasing hormone (GnRH) neuron remains unclear. Thus, the objective of this study was to determine the effect of hydrogen peroxide (H2O2), an ROS source, on GnRH neuronal excitabilities in transgenic GnRH-green fluorescent protein-tagged mice using the whole-cell patch-clamp electrophysiology. In adults, H2O2 at high concentrations (mM level) hyperpolarized most GnRH neurons tested, whereas low concentrations (pM to μM) caused slight depolarization. In immature GnRH neurons, H2O2 exposure induced excitation. The sensitivity of GnRH neurons to H2O2 was increased with postnatal development. The effect of H2O2 on adult female GnRH neurons was found to be estrous cycle-dependent. Hyperpolarization mediated by H2O2 persisted in the presence of tetrodotoxin, a voltage-gated Na+ channel blocker, and amino-acids receptor blocking cocktail containing blockers for the ionotropic glutamate receptors, glycine receptors, and GABAA receptors, indicating that H2O2 could act on GnRH neurons directly. Furthermore, glibenclamide, an ATP-sensitive K+ (KATP) channel blocker, completely blocked H2O2-mediated hyperpolarization. Increasing endogenous H2O2 by inhibiting glutathione peroxidase decreased spontaneous activities of most GnRH neurons. We conclude that ROS can act as signaling molecules for regulating GnRH neuron's excitability and that adult GnRH neurons are sensitive to increased ROS concentration. Results of this study demonstrate that ROS have direct modulatory effects on the HPG axis at the hypothalamic level to regulate GnRH neuron's excitabilities.
Collapse
Affiliation(s)
- Santosh Rijal
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, South Korea
| | - Seon Hui Jang
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, South Korea
| | - Dong Hyu Cho
- Department of Obstetrics and Gynecology, Jeonbuk National University Medical School, Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute for Medical Sciences, Jeonbuk National University Hospital, Jeonju, South Korea
- *Correspondence: Dong Hyu Cho, ; Seong Kyu Han,
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, South Korea
- *Correspondence: Dong Hyu Cho, ; Seong Kyu Han,
| |
Collapse
|
11
|
Zhao S, Guo Z, Xiang W, Wang P. The neuroendocrine pathways and mechanisms for the control of the reproduction in female pigs. Anim Reprod 2021; 18:e20210063. [PMID: 34925558 PMCID: PMC8677349 DOI: 10.1590/1984-3143-ar2021-0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/10/2021] [Indexed: 01/05/2024] Open
Abstract
Within the hypothalamic-pituitary-gonad (HPG) axis, the major hierarchical component is gonadotropin-releasing hormone (GnRH) neurons, which directly or indirectly receive regulatory inputs from a wide array of regulatory signals and pathways, involving numerous circulating hormones, neuropeptides, and neurotransmitters, and which operate as a final output for the brain control of reproduction. In recent years, there has been an increasing interest in neuropeptides that have the potential to stimulate or inhibit GnRH in the hypothalamus of pigs. Among them, Kisspeptin is a key component in the precise regulation of GnRH neuron secretion activity. Besides, other neuropeptides, including neurokinin B (NKB), neuromedin B (NMB), neuromedin S (NMS), α-melanocyte-stimulating hormone (α-MSH), Phoenixin (PNX), show potential for having a stimulating effect on GnRH neurons. On the contrary, RFamide-related peptide-3 (RFRP-3), endogenous opioid peptides (EOP), neuropeptide Y (NPY), and Galanin (GAL) may play an inhibitory role in the regulation of porcine reproductive nerves and may directly or indirectly regulate GnRH neurons. By combining data from suitable model species and pigs, we aim to provide a comprehensive summary of our current understanding of the neuropeptides acting on GnRH neurons, with a particular focus on their central regulatory pathways and underlying molecular basis.
Collapse
Affiliation(s)
- Shuang Zhao
- College of Bioengineering, Chongqing University, Chongqing, P. R. China
| | - Zongyi Guo
- Chongqing Academy of Animal Sciences, Chongqing, P. R. China
| | - Wei Xiang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling of Chongqing, P. R. China
| | - Pingqing Wang
- College of Bioengineering, Chongqing University, Chongqing, P. R. China
| |
Collapse
|
12
|
Whittaker DE, Oleari R, Gregory LC, Le Quesne-Stabej P, Williams HJ, Torpiano JG, Formosa N, Cachia MJ, Field D, Lettieri A, Ocaka LA, Paganoni AJ, Rajabali SH, Riegman KL, De Martini LB, Chaya T, Robinson IC, Furukawa T, Cariboni A, Basson MA, Dattani MT. A recessive PRDM13 mutation results in congenital hypogonadotropic hypogonadism and cerebellar hypoplasia. J Clin Invest 2021; 131:e141587. [PMID: 34730112 PMCID: PMC8670848 DOI: 10.1172/jci141587] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
The positive regulatory (PR) domain containing 13 (PRDM13) putative chromatin modifier and transcriptional regulator functions downstream of the transcription factor PTF1A, which controls GABAergic fate in the spinal cord and neurogenesis in the hypothalamus. Here, we report a recessive syndrome associated with PRDM13 mutation. Patients exhibited intellectual disability, ataxia with cerebellar hypoplasia, scoliosis, and delayed puberty with congenital hypogonadotropic hypogonadism (CHH). Expression studies revealed Prdm13/PRDM13 transcripts in the developing hypothalamus and cerebellum in mouse and human. An analysis of hypothalamus and cerebellum development in mice homozygous for a Prdm13 mutant allele revealed a significant reduction in the number of Kisspeptin (Kiss1) neurons in the hypothalamus and PAX2+ progenitors emerging from the cerebellar ventricular zone. The latter was accompanied by ectopic expression of the glutamatergic lineage marker TLX3. Prdm13-deficient mice displayed cerebellar hypoplasia and normal gonadal structure, but delayed pubertal onset. Together, these findings identify PRDM13 as a critical regulator of GABAergic cell fate in the cerebellum and of hypothalamic kisspeptin neuron development, providing a mechanistic explanation for the cooccurrence of CHH and cerebellar hypoplasia in this syndrome. To our knowledge, this is the first evidence linking disrupted PRDM13-mediated regulation of Kiss1 neurons to CHH in humans.
Collapse
Affiliation(s)
- Danielle E. Whittaker
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Louise C. Gregory
- Section of Molecular Basis of Rare Disease, Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Polona Le Quesne-Stabej
- Section of Molecular Basis of Rare Disease, Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Hywel J. Williams
- Section of Molecular Basis of Rare Disease, Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - GOSgene
- Section of Molecular Basis of Rare Disease, Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- GOSgene is detailed in Supplemental Acknowledgments
| | - John G. Torpiano
- Department of Paediatrics and
- Adult Endocrinology Service, Mater Dei Hospital, Msida, Malta
| | | | - Mario J. Cachia
- Adult Endocrinology Service, Mater Dei Hospital, Msida, Malta
| | - Daniel Field
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - Antonella Lettieri
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Louise A. Ocaka
- Section of Molecular Basis of Rare Disease, Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Alyssa J.J. Paganoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Sakina H. Rajabali
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - Kimberley L.H. Riegman
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - Lisa B. De Martini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | | | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - M. Albert Basson
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Mehul T. Dattani
- Section of Molecular Basis of Rare Disease, Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
13
|
Oleari R, Massa V, Cariboni A, Lettieri A. The Differential Roles for Neurodevelopmental and Neuroendocrine Genes in Shaping GnRH Neuron Physiology and Deficiency. Int J Mol Sci 2021; 22:9425. [PMID: 34502334 PMCID: PMC8431607 DOI: 10.3390/ijms22179425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/19/2023] Open
Abstract
Gonadotropin releasing hormone (GnRH) neurons are hypothalamic neuroendocrine cells that control sexual reproduction. During embryonic development, GnRH neurons migrate from the nose to the hypothalamus, where they receive inputs from several afferent neurons, following the axonal scaffold patterned by nasal nerves. Each step of GnRH neuron development depends on the orchestrated action of several molecules exerting specific biological functions. Mutations in genes encoding for these essential molecules may cause Congenital Hypogonadotropic Hypogonadism (CHH), a rare disorder characterized by GnRH deficiency, delayed puberty and infertility. Depending on their action in the GnRH neuronal system, CHH causative genes can be divided into neurodevelopmental and neuroendocrine genes. The CHH genetic complexity, combined with multiple inheritance patterns, results in an extreme phenotypic variability of CHH patients. In this review, we aim at providing a comprehensive and updated description of the genes thus far associated with CHH, by dissecting their biological relevance in the GnRH system and their functional relevance underlying CHH pathogenesis.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Valentina Massa
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Antonella Lettieri
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| |
Collapse
|
14
|
Vastagh C, Csillag V, Solymosi N, Farkas I, Liposits Z. Gonadal Cycle-Dependent Expression of Genes Encoding Peptide-, Growth Factor-, and Orphan G-Protein-Coupled Receptors in Gonadotropin- Releasing Hormone Neurons of Mice. Front Mol Neurosci 2021; 13:594119. [PMID: 33551743 PMCID: PMC7863983 DOI: 10.3389/fnmol.2020.594119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/30/2020] [Indexed: 12/30/2022] Open
Abstract
Rising serum estradiol triggers the surge release of gonadotropin-releasing hormone (GnRH) at late proestrus leading to ovulation. We hypothesized that proestrus evokes alterations in peptidergic signaling onto GnRH neurons inducing a differential expression of neuropeptide-, growth factor-, and orphan G-protein-coupled receptor (GPCR) genes. Thus, we analyzed the transcriptome of GnRH neurons collected from intact, proestrous and metestrous GnRH-green fluorescent protein (GnRH-GFP) transgenic mice using Affymetrix microarray technique. Proestrus resulted in a differential expression of genes coding for peptide/neuropeptide receptors including Adipor1, Prokr1, Ednrb, Rtn4r, Nmbr, Acvr2b, Sctr, Npr3, Nmur1, Mc3r, Cckbr, and Amhr2. In this gene cluster, Adipor1 mRNA expression was upregulated and the others were downregulated. Expression of growth factor receptors and their related proteins was also altered showing upregulation of Fgfr1, Igf1r, Grb2, Grb10, and Ngfrap1 and downregulation of Egfr and Tgfbr2 genes. Gpr107, an orphan GPCR, was upregulated during proestrus, while others were significantly downregulated (Gpr1, Gpr87, Gpr18, Gpr62, Gpr125, Gpr183, Gpr4, and Gpr88). Further affected receptors included vomeronasal receptors (Vmn1r172, Vmn2r-ps54, and Vmn1r148) and platelet-activating factor receptor (Ptafr), all with marked downregulation. Patch-clamp recordings from mouse GnRH-GFP neurons carried out at metestrus confirmed that the differentially expressed IGF-1, secretin, and GPR107 receptors were operational, as their activation by specific ligands evoked an increase in the frequency of miniature postsynaptic currents (mPSCs). These findings show the contribution of certain novel peptides, growth factors, and ligands of orphan GPCRs to regulation of GnRH neurons and their preparation for the surge release.
Collapse
Affiliation(s)
- Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Veronika Csillag
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, Hungary.,Faculty of Information Technology and Bionics, Roska Tamás Doctoral School of Sciences and Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Norbert Solymosi
- Centre for Bioinformatics, University of Veterinary Medicine, Budapest, Hungary
| | - Imre Farkas
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, Hungary.,Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
15
|
Vastagh C, Farkas I, Scott MM, Liposits Z. Networking of glucagon-like peptide-1 axons with GnRH neurons in the basal forebrain of male mice revealed by 3DISCO-based immunocytochemistry and optogenetics. Brain Struct Funct 2020; 226:105-120. [PMID: 33169188 PMCID: PMC7817561 DOI: 10.1007/s00429-020-02167-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/17/2020] [Indexed: 12/25/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) regulates reproduction centrally, although, the neuroanatomical basis of the process is unknown. Therefore, the putative networking of the central GLP-1 and gonadotropin-releasing hormone (GnRH) systems was addressed in male mice using whole mount immunocytochemistry and optogenetics. Enhanced antibody penetration and optical clearing procedures applied to 500–1000 µm thick basal forebrain slices allowed the simultaneous visualization of the two distinct systems in the basal forebrain. Beaded GLP-1-IR axons innervated about a quarter of GnRH neurons (23.2 ± 1.4%) forming either single or multiple contacts. GnRH dendrites received a more intense GLP-1 innervation (64.6 ± 0.03%) than perikarya (35.4 ± 0.03%). The physiological significance of the innervation was examined by optogenetic activation of channelrhodopsin-2 (ChR2)-expressing axons of preproglucagon (GCG) neurons upon the firing of GnRH neurons by patch clamp electrophysiology in acute brain slices of triple transgenic mice (Gcg-cre/ChR2/GFP-GnRH). High-frequency laser beam stimulation (20 Hz, 10 ms pulse width, 3 mW laser power) of ChR2-expressing GCG axons in the mPOA increased the firing rate of GnRH neurons (by 75 ± 17.3%, p = 0.0007). Application of the GLP-1 receptor antagonist, Exendin-3-(9-39) (1 μM), prior to the photo-stimulation, abolished the facilitatory effect. In contrast, low-frequency trains of laser pulses (0.2 Hz, 60 pulses) had no effect on the spontaneous postsynaptic currents of GnRH neurons. The findings indicate a direct wiring of GLP-1 neurons with GnRH cells which route is excitatory for the GnRH system. The pathway may relay metabolic signals to GnRH neurons and synchronize metabolism with reproduction.
Collapse
Affiliation(s)
- Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Szigony u. 43, 1083, Budapest, Hungary
| | - Imre Farkas
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Michael M Scott
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Szigony u. 43, 1083, Budapest, Hungary.
- Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
| |
Collapse
|
16
|
Bayerl DS, Klampfl SM, Bosch OJ. More than reproduction: Central gonadotropin-releasing hormone antagonism decreases maternal aggression in lactating rats. J Neuroendocrinol 2019; 31:e12709. [PMID: 30882966 DOI: 10.1111/jne.12709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/29/2019] [Accepted: 03/13/2019] [Indexed: 12/20/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is a major regulator and activator of the hypothalamic-pituitary-gonadal axis. Many studies have demonstrated the importance of GnRH in reproduction and sexual behaviour. However, to date, only a single study shows an involvement of GnRH in maternal behaviour where a 30% reduction of GnRH neurones abolishes a mother's motivation to retrieve pups. On this basis, we aimed to investigate the effects of acute central GnRH receptor blockade in lactating rats on maternal care under non-stress and stress conditions, maternal motivation in the pup retrieval test, maternal anxiety on the elevated plus maze, and maternal aggression in the maternal defence test. We found that acute central infusion of a GnRH antagonist ([d-Phe2,6 ,Pro3 ]-luteinising hormone-releasing hormone; 0.5 ng 5 μL-1 ) impaired a mother's attack behaviour against a female intruder rat during the maternal defence test compared to vehicle controls. However, in contrast to the previous study on reduced GnRH neurones, acute central GnRH antagonism did not affect pup retrieval, nor any other parameter of maternal behaviour or maternal anxiety. Taken together, GnRH receptor activation is mandatory for protection of the offspring. These findings shed new light on GnRH as a neuropeptide acting not exclusively on the reproductive axis but, additionally, on maternal behaviour including pup retrieval and maternal aggression.
Collapse
Affiliation(s)
- Doris S Bayerl
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Stefanie M Klampfl
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| |
Collapse
|
17
|
Spergel DJ. Modulation of Gonadotropin-Releasing Hormone Neuron Activity and Secretion in Mice by Non-peptide Neurotransmitters, Gasotransmitters, and Gliotransmitters. Front Endocrinol (Lausanne) 2019; 10:329. [PMID: 31178828 PMCID: PMC6538683 DOI: 10.3389/fendo.2019.00329] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neuron activity and GnRH secretion are essential for fertility in mammals. Here, I review findings from mouse studies on the direct modulation of GnRH neuron activity and GnRH secretion by non-peptide neurotransmitters (GABA, glutamate, dopamine, serotonin, norepinephrine, epinephrine, histamine, ATP, adenosine, and acetylcholine), gasotransmitters (nitric oxide and carbon monoxide), and gliotransmitters (prostaglandin E2 and possibly GABA, glutamate, and ATP). These neurotransmitters, gasotransmitters, and gliotransmitters have been shown to directly modulate activity and/or GnRH secretion in GnRH neurons in vivo or ex vivo (brain slices), from postnatal through adult mice, or in embryonic or immortalized mouse GnRH neurons. However, except for GABA, nitric oxide, and prostaglandin E2, which appear to be essential for normal GnRH neuron activity, GnRH secretion, and fertility in males and/or females, the biological significance of their direct modulation of GnRH neuron activity and/or GnRH secretion in the central regulation of reproduction remains largely unknown and requires further exploration.
Collapse
|
18
|
|