1
|
Noli B, Borghero G, Mascia MM, Hkir M, Puligheddu M, Cocco C. NERP-1 modifications in amyotrophic lateral sclerosis. Tissue Cell 2025; 93:102780. [PMID: 39933412 DOI: 10.1016/j.tice.2025.102780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/02/2025] [Accepted: 02/02/2025] [Indexed: 02/13/2025]
Abstract
VGF peptides, such as NERPs (neuroendocrine regulatory peptides 1 and 2), are derived from amino acids 282-306 and 313-350, respectively, of the human proVGF, which is produced in spinal cord motor neurons. Although certain VGF-derived peptides are changed in ALS, less is known about NERPs. Possible modulations of NERPs and additional VGF peptides (NAPP and TPGH) were investigated using specific antibodies through competitive ELISA in the plasma of ALS patients (at both the initial and advanced phases; n = 46 each vs. 46 controls). As additional controls, naïve PD patients were also enrolled (n = 19 vs. 18 controls) while the potential VGF peptide role in oxidative stress was investigated using a motoneuron-like cell line (NSC34) stressed with sodium arsenate (SA). Western blot (WB) and sephadex chromatography (SC) were used to identify the molecular weight (MW) forms recognized by the VGF antibodies. Exclusively NERP-1 immunoreactivity was changed (elevated) in all plasma samples of ALS patients (compared to controls). Therefore, the NERP-1 antibody was the sole antibody used in ELISA with PD samples and NSC-34 cells. No alterations were seen in PD samples (vs. controls) while NERP-1 immunoreactivity decreased within SA-treated cells but increased in their culture medium. The viability test performed by adding NERP-1 to the stressed cells showed no protective effect. Using WB and SC, we revealed NERP-1 antibody reactivity against various MW forms, including those compatible with the NERP-1 peptide and/or proVGF. NERP-1 is suggested as a possible ALS blood biomarker.
Collapse
Affiliation(s)
- B Noli
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - G Borghero
- ALS Interdivisional Center, Cagliari, Italy; Neurology UOC, Azienda Ospedaliero-Universitaria di Cagliari, Cagliari, Italy
| | - M M Mascia
- Neurology UOC, Azienda Ospedaliero-Universitaria di Cagliari, Cagliari, Italy
| | - Mustafa Hkir
- Neurology UOC, Azienda Ospedaliero-Universitaria di Cagliari, Cagliari, Italy
| | - M Puligheddu
- Neurology UOC, Azienda Ospedaliero-Universitaria di Cagliari, Cagliari, Italy; Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - C Cocco
- Department of Biomedical Sciences, University of Cagliari, Italy; ALS Interdivisional Center, Cagliari, Italy.
| |
Collapse
|
2
|
Manai AL, Caria P, Noli B, Contini C, Manconi B, Etzi F, Cocco C. VGF and Its Derived Peptides in Amyotrophic Lateral Sclerosis. Brain Sci 2025; 15:329. [PMID: 40309800 PMCID: PMC12024961 DOI: 10.3390/brainsci15040329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 05/02/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by a progressive degeneration in the neurons of the frontal cortex, spinal cord, and brainstem, altering the correct release of neurotransmitters. The disease affects every muscle in the body and could cause death three to five years after symptoms first occur. There is currently no efficient treatment to stop the disease's progression. The lack of identification of potential therapeutic strategies is a consequence of the delayed diagnosis due to the absence of accurate ALS early biomarkers. Indeed, neurotransmitters altered in ALS are not measurable in body fluids at quantities that allow for testing, making their use as diagnostic tools a challenge. Contrarily, neuroproteins and neuropeptides are chemical messengers produced and released by neurons, and most of them have the potential to enter bodily fluids. To find out new possible ALS biomarkers, the research of neuropeptides and proteins is intensified using mass spectrometry and biochemical-based assays. Neuropeptides derived from the proVGF precursor protein act as signaling molecules within neurons. ProVGF and its derived peptides are expressed in the nervous and endocrine systems but are also widely distributed in body fluids such as blood, urine, and cerebrospinal fluid, making them viable options as disease biomarkers. To highlight the proVGF and its derived peptides' major roles as ALS diagnostic biomarkers, this review provides an overview of the VGF peptide alterations in spinal cord and body fluids and outlines the limitations of the reported investigations.
Collapse
Affiliation(s)
- Antonio Luigi Manai
- NEF-Laboratory, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (A.L.M.); (B.N.); (C.C.)
| | - Paola Caria
- Unit of Biology and Genetics, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy;
| | - Barbara Noli
- NEF-Laboratory, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (A.L.M.); (B.N.); (C.C.)
| | - Cristina Contini
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy;
| | - Barbara Manconi
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy;
| | - Federica Etzi
- Unit of Biology and Genetics, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy;
| | - Cristina Cocco
- NEF-Laboratory, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (A.L.M.); (B.N.); (C.C.)
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy;
- ALS Interdivisional Center, 09042 Cagliari, Italy
| |
Collapse
|
3
|
Martinez-Sanchez M, Skarnes W, Jain A, Vemula S, Sun L, Rockowitz S, Whitman MC. Chromosome 4 Duplication Associated with Strabismus Leads to Gene Expression Changes in iPSC-Derived Cortical Neurons. Genes (Basel) 2025; 16:80. [PMID: 39858627 PMCID: PMC11764630 DOI: 10.3390/genes16010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Strabismus is the most common ocular disorder of childhood. Three rare, recurrent genetic duplications have been associated with both esotropia and exotropia, but the mechanisms by which they contribute to strabismus are unknown. This work aims to investigate the mechanisms of the smallest of the three, a 23 kb duplication on chromosome 4 (hg38|4:25,554,985-25,578,843). METHODS Using CRISPR and bridging oligos, we introduced the duplication into the Kolf2.1J iPSC line. We differentiated the parent line and the line with the duplication into cortical neurons using a three-dimensional differentiation protocol, and performed bulk RNASeq on neural progenitors (day 14) and differentiated neurons (day 63). RESULTS We successfully introduced the duplication into Kolf2.1J iPSCs by nucleofecting a bridging oligo for the newly formed junction along with cas9 ribonucleoparticles. We confirmed that the cells had a tandem duplication without inversion or deletion. The parent line and the line with the duplication both differentiated into neurons reliably. There were a total of 37 differentially expressed genes (DEGs) at day 63, 25 downregulated and 12 upregulated. There were 55 DEGs at day 14, 18 of which were also DEGs at day 63. The DEGs included a number of protocadherins, several genes involved in neuronal development, including SLITRK2, CSMD1, and VGF, and several genes of unknown function. CONCLUSIONS A copy number variant (CNV) that confers risk for strabismus affects gene expression of several genes involved in neural development, highlighting that strabismus most likely results from abnormal neural development, and identifying several new genes and pathways for further research into the pathophysiology of strabismus.
Collapse
Affiliation(s)
- Mayra Martinez-Sanchez
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (M.M.-S.); (S.V.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - William Skarnes
- Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA;
| | - Ashish Jain
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA 02115, USA; (A.J.); (L.S.); (S.R.)
| | - Sampath Vemula
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (M.M.-S.); (S.V.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA 02115, USA; (A.J.); (L.S.); (S.R.)
| | - Shira Rockowitz
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA 02115, USA; (A.J.); (L.S.); (S.R.)
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Mary C. Whitman
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (M.M.-S.); (S.V.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
4
|
Wiersema AF, Rennenberg A, Smith G, Varderidou-Minasian S, Pasterkamp RJ. Shared and distinct changes in the molecular cargo of extracellular vesicles in different neurodegenerative diseases. Cell Mol Life Sci 2024; 81:479. [PMID: 39627617 PMCID: PMC11615177 DOI: 10.1007/s00018-024-05522-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/18/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024]
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) affect millions of people worldwide. Curative treatment for these neurodegenerative disorders is still lacking and therefore a further understanding of their cause and progression is urgently needed. Extracellular vesicles (EVs) are nanosized vesicles loaded with cargo, such as proteins and miRNAs, that are released by cells and play an important role in intercellular communication. Intercellular communication through EVs can contribute to the spread of pathological proteins, such as amyloid-beta and tau, or cause pathogenesis through other mechanisms. In addition, EVs may serve as potential biomarkers for diagnosis and for monitoring disease progression. In this review, we summarize and discuss recent advances in our understanding of the role of EVs in AD, ALS an PD with an emphasis on dysregulated cargo in each disease. We highlight shared dysregulated cargo between these diseases, discuss underlying pathways, and outline future implications for therapeutic strategies.
Collapse
Affiliation(s)
- Anna F Wiersema
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Alyssa Rennenberg
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Grace Smith
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Suzy Varderidou-Minasian
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Cocco C, Noli B, Manconi B, Contini C, Manca E, Pisanu C, Meloni A, Manchia M, Paribello P, Chillotti C, Ardau R, Severino G, Squassina A. Lower Plasma Levels of Selective VGF (Non-Acronymic) Peptides in Bipolar Disorder: Comparative Analysis Reveals Distinct Patterns across Mood Disorders and Healthy Controls. Neuropsychobiology 2024; 83:160-169. [PMID: 39245034 PMCID: PMC11548102 DOI: 10.1159/000540673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION Discriminating bipolar disorder (BD) from major depressive disorder (MDD) remains a challenging clinical task. Identifying specific peripheral biosignatures that can differentiate between BD and MDD would significantly increase diagnostic accuracy. Dysregulated neuroplasticity is implicated in BD and MDD, and psychotropic medications restore specific disrupted processes by increasing neurotrophic signalling. The nerve growth factor inducible vgf gene (non-acronymic) encodes a precursor protein named proVGF, which undergoes proteolytic processing to produce several VGF peptides, some of which were suggested to be implicated in mood disorders and have antidepressant effects. Since the presence of VGF peptides in humans has been exclusively investigated in brain and cerebrospinal fluid, we aimed to identify which VGF peptides are present in the plasma and to investigate whether their levels could differentiate BD from MDD as well as responders from non-responders to pharmacological interventions. METHODS VGF peptides were investigated in plasma from patients diagnosed with MDD (n = 37) or BD (n = 40 under lithium plus n = 29 never exposed to lithium), as well as healthy controls (HC; n = 36). RESULTS Three VGF peptides (TLQP-11, AQEE-14, and NAPP-19) were identified using spectrometry analysis of plasma from HC. These peptides were then measured in the entire sample using ELISA, which showed significantly lower levels of AQEE and NAPP in BD than in HC and MDD (p = 5.0 × 10-5, p = 0.001, respectively). CONCLUSION Our findings suggest that lower plasma levels of NAPP and AQEE are specifically associated with BD, thus possibly representing a diagnostic biomarker in mood disorders.
Collapse
Affiliation(s)
- Cristina Cocco
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Barbara Noli
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Barbara Manconi
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Cristina Contini
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Elias Manca
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Claudia Pisanu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Anna Meloni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Clinical Psychiatry Unit, University Hospital Agency of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Pasquale Paribello
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Clinical Psychiatry Unit, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Caterina Chillotti
- Clinical Pharmacology Unit, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Raffaella Ardau
- Clinical Pharmacology Unit, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Giovanni Severino
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Alessio Squassina
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
6
|
Bartl M, Nilsson J, Dakna M, Weber S, Schade S, Xylaki M, Fernandes Gomes B, Ernst M, Muntean ML, Sixel-Döring F, Trenkwalder C, Zetterberg H, Brinkmalm A, Mollenhauer B. Lysosomal and synaptic dysfunction markers in longitudinal cerebrospinal fluid of de novo Parkinson's disease. NPJ Parkinsons Dis 2024; 10:102. [PMID: 38760408 PMCID: PMC11101466 DOI: 10.1038/s41531-024-00714-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/19/2024] [Indexed: 05/19/2024] Open
Abstract
Lysosomal and synaptic dysfunctions are hallmarks in neurodegeneration and potentially relevant as biomarkers, but data on early Parkinson's disease (PD) is lacking. We performed targeted mass spectrometry with an established protein panel, assessing autophagy and synaptic function in cerebrospinal fluid (CSF) of drug-naïve de novo PD, and sex-/age-matched healthy controls (HC) cross-sectionally (88 PD, 46 HC) and longitudinally (104 PD, 58 HC) over 10 years. Multiple markers of autophagy, synaptic plasticity, and secretory pathways were reduced in PD. We added samples from prodromal subjects (9 cross-sectional, 12 longitudinal) with isolated REM sleep behavior disorder, revealing secretogranin-2 already decreased compared to controls. Machine learning identified neuronal pentraxin receptor and neurosecretory protein VGF as most relevant for discriminating between groups. CSF levels of LAMP2, neuronal pentraxins, and syntaxins in PD correlated with clinical progression, showing predictive potential for motor- and non-motor symptoms as a valid basis for future drug trials.
Collapse
Affiliation(s)
- Michael Bartl
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany.
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Goettingen, Goettingen, Germany.
| | - Johanna Nilsson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Mohammed Dakna
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Sandrina Weber
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | | | - Mary Xylaki
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Bárbara Fernandes Gomes
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Marielle Ernst
- Institute of Diagnostic and Interventional Neuroradiology, University Medical Center Goettingen, Goettingen, Germany
| | | | - Friederike Sixel-Döring
- Paracelsus-Elena-Klinik, Kassel, Germany
- Department of Neurology, Philipps-University, Marburg, Germany
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Kassel, Germany
- Department of Neurosurgery, University Medical Center Goettingen, Goettingen, Germany
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Ann Brinkmalm
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| |
Collapse
|
7
|
Manca E, Noli B, Corda G, El-Hassani M, Manai A, Sanna F, Argiolas A, Melis MR, Manconi B, Contini C, Cocco C. VGF modifications related to nigrostriatal dopaminergic neurodegeneration induced by the pesticide fipronil in adult male rats. Ann Anat 2024; 252:152194. [PMID: 38056781 DOI: 10.1016/j.aanat.2023.152194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Dopamine is reduced in the brain of rats treated with fipronil, a broad-spectrum insecticide. VGF (no acronym) is a neurotrophin-inducible protein expressed as the 75 kDa form (precursor or pro-VGF) or its truncated peptides. VGF immunostaining has been revealed using an antibody against the C-terminal nonapeptide of the rat pro-VGF in the nerve terminals of the rat substantia nigra, where it was reduced after 6-hydroxydopamine treatment. It is unknown whether pro-VGF and/or its shortened peptides are present in these neurons. Therefore, the aim of this study was first to determine which types of VGF are expressed in the normal substantia nigra (and striatum) and then to determine VGF modulations and whether they occur in parallel with locomotor changes after fipronil injection. METHODS Rats were divided into two groups that received a unilateral intranigral infusion of either fipronil (25 µg) diluted in dimethyl sulfoxide (DMSO) or DMSO alone, and then were tested for locomotor activity. An untreated group of rats (n=4) was used for identification of the VGF fragments using high performance liquid chromatography-mass spectrometry and western blot, while changes in treated groups (fipronil vs DMSO, each n=6) were investigated by immunohistochemistry using an antibody against the rat pro-VGF C-terminal nonapeptide in parallel with the anti-tyrosine hydroxylase antibody. RESULTS In untreated rats, the VGF C-terminal antibody identified mostly a 75 kDa band in the substantia nigra and striatum, supporting the finding of high-resolution mass spectrometry, which revealed fragments covering the majority of the pro-VGF sequence. Furthermore, several shortened VGF C-terminal forms (varying from 10 to 55 kDa) were also found by western blot, while high-resolution mass spectrometry revealed a C-terminal peptide overlapping the immunogen used to create the VGF antibody in both substantia nigra and striatum. In the substantia nigra of fipronil-treated rats, immunostaining for tyrosine hydroxylase and VGF was reduced compared to DMSO-treated rat group, and this was related with significant changes in locomotor activity. CONCLUSION Fipronil has the ability to modulate the production of pro-VGF and/or its C-terminal truncated peptides in the nigrostriatal system indicating its intimate interaction with the dopaminergic neurotransmission and implying a potential function in modulating locomotor activity.
Collapse
Affiliation(s)
- Elias Manca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Barbara Noli
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giulia Corda
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Majda El-Hassani
- Department of Internal Medicine III, University Hospital RWTH Aachen, Germany
| | - Antonio Manai
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Fabrizio Sanna
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Antonio Argiolas
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Barbara Manconi
- Department of Life Sciences and Environment, University of Cagliari, Italy
| | - Cristina Contini
- Department of Life Sciences and Environment, University of Cagliari, Italy
| | - Cristina Cocco
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
8
|
Chopra A, Outeiro TF. Aggregation and beyond: alpha-synuclein-based biomarkers in synucleinopathies. Brain 2024; 147:81-90. [PMID: 37526295 DOI: 10.1093/brain/awad260] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 08/02/2023] Open
Abstract
Parkinson's disease is clinically known for the loss of dopaminergic neurons in the substantia nigra pars compacta and accumulation of intraneuronal cytoplasmic inclusions rich in alpha-synuclein called 'Lewy bodies' and 'Lewy neurites'. Together with dementia with Lewy bodies and multiple system atrophy, Parkinson's disease is part of a group of disorders called synucleinopathies. Currently, diagnosis of synucleinopathies is based on the clinical assessment which often takes place in advanced disease stages. While the causal role of alpha-synuclein aggregates in these disorders is still debatable, measuring the levels, types or seeding properties of different alpha-synuclein species hold great promise as biomarkers. Recent studies indicate significant differences in peptide, protein and RNA levels in blood samples from patients with Parkinson's disease. Seed amplification assays using CSF, blood, skin biopsy, olfactory swab samples show great promise for detecting synucleinopathies and even for discriminating between different synucleinopathies. Interestingly, small extracellular vesicles, such as exosomes, display differences in their cargoes in Parkinson's disease patients versus controls. In this update, we focus on alpha-synuclein aggregation and possible sources of disease-related species released in extracellular vesicles, which promise to revolutionize the diagnosis and the monitoring of disease progression.
Collapse
Affiliation(s)
- Avika Chopra
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| |
Collapse
|
9
|
Cocco C, Manai AL, Manca E, Noli B. Brain-Biomarker Changes in Body Fluids of Patients with Parkinson's Disease. Int J Mol Sci 2023; 24:10932. [PMID: 37446110 DOI: 10.3390/ijms241310932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Parkinson's disease (PD) is an incurable neurodegenerative disease that is rarely diagnosed at an early stage. Although the understanding of PD-related mechanisms has greatly improved over the last decade, the diagnosis of PD is still based on neurological examination through the identification of motor symptoms, including bradykinesia, rigidity, postural instability, and resting tremor. The early phase of PD is characterized by subtle symptoms with a misdiagnosis rate of approximately 16-20%. The difficulty in recognizing early PD has implications for the potential use of novel therapeutic approaches. For this reason, it is important to discover PD brain biomarkers that can indicate early dopaminergic dysfunction through their changes in body fluids, such as saliva, urine, blood, or cerebrospinal fluid (CSF). For the CFS-based test, the invasiveness of sampling is a major limitation, whereas the other body fluids are easier to obtain and could also allow population screening. Following the identification of the crucial role of alpha-synuclein (α-syn) in the pathology of PD, a very large number of studies have summarized its changes in body fluids. However, methodological problems have led to the poor diagnostic/prognostic value of this protein and alternative biomarkers are currently being investigated. The aim of this paper is therefore to summarize studies on protein biomarkers that are alternatives to α-syn, particularly those that change in nigrostriatal areas and in biofluids, with a focus on blood, and, eventually, saliva and urine.
Collapse
Affiliation(s)
- Cristina Cocco
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Antonio Luigi Manai
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Elias Manca
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Barbara Noli
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
10
|
Filippini F, Nola S, Zahraoui A, Roger K, Esmaili M, Sun J, Wojnacki J, Vlieghe A, Bun P, Blanchon S, Rain JC, Taymans JM, Chartier-Harlin MC, Guerrera C, Galli T. Secretion of VGF relies on the interplay between LRRK2 and post-Golgi v-SNAREs. Cell Rep 2023; 42:112221. [PMID: 36905628 DOI: 10.1016/j.celrep.2023.112221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/12/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
The neuropeptide VGF was recently proposed as a neurodegeneration biomarker. The Parkinson's disease-related protein leucine-rich repeat kinase 2 (LRRK2) regulates endolysosomal dynamics, a process that involves SNARE-mediated membrane fusion and could regulate secretion. Here we investigate potential biochemical and functional links between LRRK2 and v-SNAREs. We find that LRRK2 directly interacts with the v-SNAREs VAMP4 and VAMP7. Secretomics reveals VGF secretory defects in VAMP4 and VAMP7 knockout (KO) neuronal cells. In contrast, VAMP2 KO "regulated secretion-null" and ATG5 KO "autophagy-null" cells release more VGF. VGF is partially associated with extracellular vesicles and LAMP1+ endolysosomes. LRRK2 expression increases VGF perinuclear localization and impairs its secretion. Retention using selective hooks (RUSH) assays show that a pool of VGF traffics through VAMP4+ and VAMP7+ compartments, and LRRK2 expression delays its transport to the cell periphery. Overexpression of LRRK2 or VAMP7-longin domain impairs VGF peripheral localization in primary cultured neurons. Altogether, our results suggest that LRRK2 might regulate VGF secretion via interaction with VAMP4 and VAMP7.
Collapse
Affiliation(s)
- Francesca Filippini
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Sébastien Nola
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Ahmed Zahraoui
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Kevin Roger
- Université Paris Cité, Proteomics Platform Necker, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, 75015 Paris, France
| | - Mansoore Esmaili
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ji Sun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - José Wojnacki
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Anaïs Vlieghe
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Philippe Bun
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Imaging Facility, 75014 Paris, France
| | | | | | - Jean-Marc Taymans
- Université de Lille, INSERM, CHU Lille, UMR-S1172, LilNCog - Lille Neuroscience & Cognition, Lille, France
| | | | - Chiara Guerrera
- Université Paris Cité, Proteomics Platform Necker, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, 75015 Paris, France
| | - Thierry Galli
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France; GHU Paris Psychiatrie & Neurosciences, Paris, France.
| |
Collapse
|
11
|
Wang Y, Qin X, Han Y, Li B. VGF: A prospective biomarker and therapeutic target for neuroendocrine and nervous system disorders. Biomed Pharmacother 2022; 151:113099. [PMID: 35594706 DOI: 10.1016/j.biopha.2022.113099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Neuroendocrine regulatory polypeptide VGF (nerve growth factor inducible) was firstly found in the rapid induction of nerve growth factor on PC12 cells. It was selectively distributed in neurons and many neuroendocrine tissues. This paper reviewed the latest literatures on the gene structure, transcriptional regulation, protein processing, distribution and potential receptors of VGF. The neuroendocrine roles of VGF and its derived polypeptides in regulating energy, water electrolyte balance, circadian rhythm and reproductive activities were also summarized. Furthermore, based on the experimental evidence in vivo and in vitro, dysregulation of VGF in different neuroendocrine diseases and the possible mechanism mediated by VGF polypeptides were discussed. We next discussed the potential as the clinical diagnosis and therapy for VGF related diseases in the future.
Collapse
Affiliation(s)
- Yibei Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, Liaoning Province, China.
| | - Xiaoxue Qin
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, Liaoning Province, China.
| | - Yun Han
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Bo Li
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
12
|
Li Q, Feng Y, Xue Y, Zhan X, Fu Y, Gui G, Zhou W, Richard JP, Taga A, Li P, Mao X, Maragakis NJ, Ying M. Edaravone activates the GDNF/RET neurotrophic signaling pathway and protects mRNA-induced motor neurons from iPS cells. Mol Neurodegener 2022; 17:8. [PMID: 35012575 PMCID: PMC8751314 DOI: 10.1186/s13024-021-00510-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Spinal cord motor neurons (MNs) from human iPS cells (iPSCs) have wide applications in disease modeling and therapeutic development for amyotrophic lateral sclerosis (ALS) and other MN-associated neurodegenerative diseases. We need highly efficient MN differentiation strategies for generating iPSC-derived disease models that closely recapitulate the genetic and phenotypic complexity of ALS. An important application of these models is to understand molecular mechanisms of action of FDA-approved ALS drugs that only show modest clinical efficacy. Novel mechanistic insights will help us design optimal therapeutic strategies together with predictive biomarkers to achieve better efficacy. METHODS We induce efficient MN differentiation from iPSCs in 4 days using synthetic mRNAs coding two transcription factors (Ngn2 and Olig2) with phosphosite modification. These MNs after extensive characterization were applied in electrophysiological and neurotoxicity assays as well as transcriptomic analysis, to study the neuroprotective effect and molecular mechanisms of edaravone, an FDA-approved drug for ALS, for improving its clinical efficacy. RESULTS We generate highly pure and functional mRNA-induced MNs (miMNs) from control and ALS iPSCs, as well as embryonic stem cells. Edaravone alleviates H2O2-induced neurotoxicity and electrophysiological dysfunction in miMNs, demonstrating its neuroprotective effect that was also found in the glutamate-induced miMN neurotoxicity model. Guided by the transcriptomic analysis, we show a previously unrecognized effect of edaravone to induce the GDNF receptor RET and the GDNF/RET neurotrophic signaling in vitro and in vivo, suggesting a clinically translatable strategy to activate this key neuroprotective signaling. Notably, edaravone can replace required neurotrophic factors (BDNF and GDNF) to support long-term miMN survival and maturation, further supporting the neurotrophic function of edaravone-activated signaling. Furthermore, we show that edaravone and GDNF combined treatment more effectively protects miMNs from H2O2-induced neurotoxicity than single treatment, suggesting a potential combination strategy for ALS treatment. CONCLUSIONS This study provides methodology to facilitate iPSC differentiation and disease modeling. Our discoveries will facilitate the development of optimal edaravone-based therapies for ALS and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Qian Li
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 North Broadway, Baltimore, MD 21205 USA
| | - Yi Feng
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 North Broadway, Baltimore, MD 21205 USA
| | - Yingchao Xue
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 North Broadway, Baltimore, MD 21205 USA
| | - Xiping Zhan
- Department of Physiology and Biophysics, Howard University, Washington, DC 20059 USA
| | - Yi Fu
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Gege Gui
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Weiqiang Zhou
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Jean-Philippe Richard
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Arens Taga
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Pan Li
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Xiaobo Mao
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Nicholas J. Maragakis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Mingyao Ying
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 North Broadway, Baltimore, MD 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
13
|
Alqarni S, Alsebai M. Could VGF and/or its derived peptide act as biomarkers for the diagnosis of neurodegenerative diseases: A systematic review. Front Endocrinol (Lausanne) 2022; 13:1032192. [PMID: 36619561 PMCID: PMC9817138 DOI: 10.3389/fendo.2022.1032192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The increasing ageing population has led to an increase in the prevalence of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). However, as yet, there are no simple biomarkers to predict the onset of such diseases. Recently, VGF and its peptides have been highlighted in neurodegenerative diseases. VGF (non-acronymic) is a polypeptide induced in PC12 cells by neurotrophic factors. OBJECTIVE This systematic review aimed to determine whether VGF and/or its derived peptides can be used as biomarkers for the diagnosis of ALS, PD, and AD with specific attention to (1) the levels of VGF and/or its derived peptides, (2) amyloid-beta, (3) dopamine, and (4) cognitive score. METHODOLOGY A search was undertaken in the Ovid EMBASE, Cochrane Library, PubMed, Scopus, and Web of Science for observational studies. Publications that assessed the level of VGF and/or its derived peptides among people with neurodegenerative diseases and compared them with healthy people were included. The quality of the included studies was assessed using the National Heart, Lung, and Blood Institute Quality Assessment Tool. RESULT A search of the databases yielded 834 studies, of which, eight observational studies met the inclusion criteria with a total of 673 participants (51.7% males) aged >18 years. Seven studies showed significant decreases in VGF and its derived peptides in adults with AD, PD, and ALS compared to healthy controls (p<0.05). However, one study showed that there was no significant difference in VGF in AD compared to healthy control(p>0.05). Furthermore, only one study reported that VGF levels were positively correlated with those of tissue dopamine but not with Aβ1-42, and low levels of VGF were associated to cognitive deficits. CONCLUSION The use of VGF and its derivatives for the diagnosis of PD, ALS, AD remains unclear, so further investigation of the role of VGF in neurodegenerative diseases and pathophysiology is needed to provide new insights.
Collapse
|
14
|
Quinn JP, Kandigian SE, Trombetta BA, Arnold SE, Carlyle BC. VGF as a biomarker and therapeutic target in neurodegenerative and psychiatric diseases. Brain Commun 2021; 3:fcab261. [PMID: 34778762 PMCID: PMC8578498 DOI: 10.1093/braincomms/fcab261] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Neurosecretory protein VGF (non-acronymic) belongs to the granin family of neuropeptides. VGF and VGF-derived peptides have been repeatedly identified in well-powered and well-designed multi-omic studies as dysregulated in neurodegenerative and psychiatric diseases. New therapeutics is urgently needed for these devastating and costly diseases, as are new biomarkers to improve disease diagnosis and mechanistic understanding. From a list of 537 genes involved in Alzheimer's disease pathogenesis, VGF was highlighted by the Accelerating Medicines Partnership in Alzheimer's disease as the potential therapeutic target of greatest interest. VGF levels are consistently decreased in brain tissue and CSF samples from patients with Alzheimer's disease compared to controls, and its levels correlate with disease severity and Alzheimer's disease pathology. In the brain, VGF exists as multiple functional VGF-derived peptides. Full-length human VGF1-615 undergoes proteolytic processing by prohormone convertases and other proteases in the regulated secretory pathway to produce at least 12 active VGF-derived peptides. In cell and animal models, these VGF-derived peptides have been linked to energy balance regulation, neurogenesis, synaptogenesis, learning and memory, and depression-related behaviours throughout development and adulthood. The C-terminal VGF-derived peptides, TLQP-62 (VGF554-615) and TLQP-21 (VGF554-574) have differential effects on Alzheimer's disease pathogenesis, neuronal and microglial activity, and learning and memory. TLQP-62 activates neuronal cell-surface receptors and regulates long-term hippocampal memory formation. TLQP-62 also prevents immune-mediated memory impairment, depression-like and anxiety-like behaviours in mice. TLQP-21 binds to microglial cell-surface receptors, triggering microglial chemotaxis and phagocytosis. These actions were reported to reduce amyloid-β plaques and decrease neuritic dystrophy in a transgenic mouse model of familial Alzheimer's disease. Expression differences of VGF-derived peptides have also been associated with frontotemporal lobar dementias, amyotrophic lateral sclerosis, Lewy body diseases, Huntington's disease, pain, schizophrenia, bipolar disorder, depression and antidepressant response. This review summarizes current knowledge and highlights questions for future investigation regarding the roles of VGF and its dysregulation in neurodegenerative and psychiatric disease. Finally, the potential of VGF and VGF-derived peptides as biomarkers and novel therapeutic targets for neurodegenerative and psychiatric diseases is highlighted.
Collapse
Affiliation(s)
- James P Quinn
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Savannah E Kandigian
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Bianca A Trombetta
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven E Arnold
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Becky C Carlyle
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Wongtrakul J, Thongtan T, Kumrapich B, Saisawang C, Ketterman AJ. Neuroprotective effects of Withania somnifera in the SH-SY5Y Parkinson cell model. Heliyon 2021; 7:e08172. [PMID: 34765761 PMCID: PMC8569401 DOI: 10.1016/j.heliyon.2021.e08172] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/25/2021] [Accepted: 10/09/2021] [Indexed: 10/28/2022] Open
Abstract
Parkinson's disease is the most frequent neurodegenerative motor disorder. The clinical syndrome and pathology involve motor disturbance and the degeneration of dopaminergic neurons in the substantia nigra. Root extracts of Withania. somnifera, commonly called Ashwagandha, contain several major chemical constituents known as withanolides. Studies have shown that W. somnifera extracts exhibit numerous therapeutic effects including inflammation and oxidative stress reduction, memory and cognitive function improvement. This study aimed to evaluate the protective effects of KSM-66, W. somnifera root extract, on 6-hydroxydopamine (6-OHDA)-induced toxicity in the human neuroblastoma SH-SY5Y cell line, as well as the associated oxidative response protein expression and redox regulation activity focused on S-glutathionylation. SH-SY5Y cells were treated with 6-OHDA preceded or followed by treatment with the KSM-66 extract. Using KSM-66 concentrations ranging from 0.25 to 1 mg/ml before and after treatment of the cells with 6-OHDA has resulted in an increased viability of SH-SY5Y cells. Interestingly, the extract significantly increased glutathione peroxidase activity and thioltransferase activity upon pre- or post- 6-OHDA treatment. KSM-66 also modulated oxidative response proteins: peroxiredoxin-I, VGF and vimentin proteins upon 6-OHDA pre/post treatments. In addition, the extract controlled redox regulation via S-glutathionylation. Pre-treatment of SH-SY5Y cells with KSM-66 decreased protein-glutathionylation levels in the cells treated with 6-OHDA. The rescue of mitochondria with 0.5 mg/ml KSM-66 extract showed an increase in ATP levels. These findings suggest that W. somnifera root extract acts as a neuroprotectant, thereby introducing a potential agent for the treatment or prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jeerang Wongtrakul
- Research Institute for Health Sciences, Chiang Mai University, 110 Intavaroros Road, Sriphum, Muang District, Chiang Mai, 50200, Thailand
| | - Thananya Thongtan
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Benjawan Kumrapich
- Research Institute for Health Sciences, Chiang Mai University, 110 Intavaroros Road, Sriphum, Muang District, Chiang Mai, 50200, Thailand
| | - Chonticha Saisawang
- Institute of Molecular Biosciences, Mahidol University, 25/25 Putthamonthol Road 4, Salaya, Nakhon Pathom, 73170, Thailand
| | - Albert J. Ketterman
- Institute of Molecular Biosciences, Mahidol University, 25/25 Putthamonthol Road 4, Salaya, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
16
|
Wen G, Pang H, Wu X, Jiang E, Zhang X, Zhan X. Proteomic characterization of secretory granules in dopaminergic neurons indicates chromogranin/secretogranin-mediated protein processing impairment in Parkinson's disease. Aging (Albany NY) 2021; 13:20335-20358. [PMID: 34420933 PMCID: PMC8436928 DOI: 10.18632/aging.203415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Abstract
Parkinson’s disease (PD) is an aging disorder related to vesicle transport dysfunctions and neurotransmitter secretion. Secretory granules (SGs) are large dense-core vesicles for the biosynthesis of neuropeptides and hormones. At present, the involvement of SGs impairment in PD remains unclear. In the current study, we found that the number of SGs in tyrosine hydroxylase-positive neurons and the marker proteins secretogranin III (Scg3) significantly decreased in the substantia nigra and striatum regions of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) exposed mice. Proteomic study of SGs purified from the dopaminergic SH-sy5Y cells under 1-methyl-4-phenylpyridinium (MPP+) treatments (ProteomeXchange PXD023937) identified 536 significantly differentially expressed proteins. The result indicated that disabled lysosome and peroxisome, lipid and energy metabolism disorders are three characteristic features. Protein-protein interaction analysis of 56 secretory proteins and 140 secreted proteins suggested that the peptide processing mediated by chromogranin/secretogranin in SGs was remarkably compromised, accompanied by decreased candidate proteins and peptides neurosecretory protein (VGF), neuropeptide Y, apolipoprotein E, and an increased level of proenkephalin. The current study provided an extensive proteinogram of SGs in PD. It is helpful to understand the molecular mechanisms in the disease.
Collapse
Affiliation(s)
- Gehua Wen
- School of Forensic Medicine, China Medical University, Shenyang, PR China
| | - Hao Pang
- School of Forensic Medicine, China Medical University, Shenyang, PR China
| | - Xu Wu
- School of Forensic Medicine, China Medical University, Shenyang, PR China
| | - Enzhu Jiang
- School of Forensic Medicine, China Medical University, Shenyang, PR China
| | - Xique Zhang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Xiaoni Zhan
- School of Forensic Medicine, China Medical University, Shenyang, PR China
| |
Collapse
|
17
|
Virreira Winter S, Karayel O, Strauss MT, Padmanabhan S, Surface M, Merchant K, Alcalay RN, Mann M. Urinary proteome profiling for stratifying patients with familial Parkinson's disease. EMBO Mol Med 2021; 13:e13257. [PMID: 33481347 PMCID: PMC7933820 DOI: 10.15252/emmm.202013257] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
The prevalence of Parkinson's disease (PD) is increasing but the development of novel treatment strategies and therapeutics altering the course of the disease would benefit from specific, sensitive, and non-invasive biomarkers to detect PD early. Here, we describe a scalable and sensitive mass spectrometry (MS)-based proteomic workflow for urinary proteome profiling. Our workflow enabled the reproducible quantification of more than 2,000 proteins in more than 200 urine samples using minimal volumes from two independent patient cohorts. The urinary proteome was significantly different between PD patients and healthy controls, as well as between LRRK2 G2019S carriers and non-carriers in both cohorts. Interestingly, our data revealed lysosomal dysregulation in individuals with the LRRK2 G2019S mutation. When combined with machine learning, the urinary proteome data alone were sufficient to classify mutation status and disease manifestation in mutation carriers remarkably well, identifying VGF, ENPEP, and other PD-associated proteins as the most discriminating features. Taken together, our results validate urinary proteomics as a valuable strategy for biomarker discovery and patient stratification in PD.
Collapse
Affiliation(s)
- Sebastian Virreira Winter
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
OmicEra Diagnostics GmbHPlaneggGermany
| | - Ozge Karayel
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Maximilian T Strauss
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | | | | | | | - Roy N Alcalay
- Department of NeurologyColumbia UniversityNew YorkNYUSA
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
18
|
Corda G, Noli B, Manconi B, Brancia C, Pellegrini M, Naro F, Olianas A, Ferri GL, Cocco C. TLQP-21 changes in response to a glucose load. Tissue Cell 2020; 68:101471. [PMID: 33348234 DOI: 10.1016/j.tice.2020.101471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND The TLQP-21 peptide potentiates glucose-stimulated insulin secretion, hence we investigated its endogenous response to glucose. METHODS Fasted mice received intraperitoneal glucose (3 g/kg), or saline (controls), and were sacrificed 30 and 120 min later (4 groups, n = 6/group). We investigated TLQP-21 in pancreas and plasma using immunohistochemistry, enzyme-linked immunosorbent assay (ELISA) and high performance liquid chromatography (HPLC), as well as TLQP-21 receptors (gC1q-R and C3a-R1) expression in pancreas by immunohistochemistry. RESULTS In pancreas, TLQP-immunoreactivity (TLQP-ir.) was shown in insulin-, glucagon- and somatostatin-containing cells. Upon glucose, TLQP-ir. decreased at 30 min (∼40 % vs. controls), while returning to basal values at 120 min. In all groups, C3a-R1 was localized in ∼50 % of TLQP labelled islet cells (mostly central), while gC1q-R was detected in ∼25 % of TLQP cells (mainly peripheral). HPLC fractions of control pancreas extracts, assessed by ELISA, confirmed the presence of a TLQP-21 compatible-form (∼2.5 kDa MW). In plasma, TLQP-ir. increased at 30 min (∼30 %), with highest concentrations at 120 min (both: p<0.05 vs. controls), while HPLC fractions showed an increase in the TLQP-21 compatible form. CONCLUSIONS Upon hyperglycaemia, TLQP-21 would be released from islets, to enhance insulin secretion but we cannot exclude an autocrine activity which may regulate insulin storage/secretion.
Collapse
Affiliation(s)
- Giulia Corda
- Department of Biomedical Sciences, University of Cagliari, Monserrato, CA, Italy.
| | - Barbara Noli
- Department of Biomedical Sciences, University of Cagliari, Monserrato, CA, Italy
| | - Barbara Manconi
- Department of Life and Enviromental Sciences, University of Cagliari, Monserrato, CA, Italy
| | - Carla Brancia
- Department of Biomedical Sciences, University of Cagliari, Monserrato, CA, Italy
| | - Manuela Pellegrini
- Department of Anatomical, Istological and Legal Medicine Sciences of the locomotor apparatus, University of "La Sapienza", Roma, Italy
| | - Fabio Naro
- Department of Anatomical, Istological and Legal Medicine Sciences of the locomotor apparatus, University of "La Sapienza", Roma, Italy
| | - Alessandra Olianas
- Department of Life and Enviromental Sciences, University of Cagliari, Monserrato, CA, Italy
| | - Gian-Luca Ferri
- Department of Biomedical Sciences, University of Cagliari, Monserrato, CA, Italy
| | - Cristina Cocco
- Department of Biomedical Sciences, University of Cagliari, Monserrato, CA, Italy
| |
Collapse
|
19
|
Noli B, Brancia C, Corda G, Ferri GL, Cocco C. Dynamic of TLQP-peptides upon fasting. Tissue Cell 2020; 65:101368. [PMID: 32746995 DOI: 10.1016/j.tice.2020.101368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The VGF-derived TLQP peptides (TLQPp), a new potential drug target for obesity, are expressed in stomach, pancreas, adrenal gland as well as in adipose tissues, and, when exogenously injected, regulate energy expenditure and food intake. However, it is not clear if these peptides physiologically change in these organs in response to fasting. METHODS Rats were subdivided into four groups: (A) fed ad libitum, (B) fed with restrictions (once a day) (C) fast for 48 h and (D) fast for 48 h and then fed 1 h before sacrifice. Immunosorbent assay was used to possibly reveal TLQPp changes upon fasting in plasma as well as in pancreas, adrenal gland, stomach and adipose tissues. In the latter organs, we also measured the levels of the VGF precursor protein while immunohistochemistry was used to investigate the presence of the TLQP-21 receptors. RESULTS During fasting, TLQPp were down-regulated in the stomach (45 %), pancreas (47 %), adrenal gland (51 %) and WAT (45.2 %) in parallel with a significant increase in the blood (36.6 %), all versus ad libitum group. In the same organs where the TLQPp were decreased upon fasting, the VGF precursor levels were not changed. In ad libitum rats, TLQP-21 receptors were well represented within the same cells that expressed TLQPp, suggesting an autocrine activity to be better investigated. CONCLUSIONS During fasting, TLQPp are probably produced and immediately secreted into the blood circulation, until the hypoglycaemia is counteracted.
Collapse
Affiliation(s)
- Barbara Noli
- NEF-Laboratory, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Carla Brancia
- NEF-Laboratory, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Giulia Corda
- NEF-Laboratory, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Gian-Luca Ferri
- NEF-Laboratory, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Cristina Cocco
- NEF-Laboratory, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy.
| |
Collapse
|
20
|
The VGF-derived Peptide TLQP21 Impairs Purinergic Control of Chemotaxis and Phagocytosis in Mouse Microglia. J Neurosci 2020; 40:3320-3331. [PMID: 32060170 DOI: 10.1523/jneurosci.1458-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/20/2019] [Accepted: 01/23/2020] [Indexed: 11/21/2022] Open
Abstract
Microglial cells are considered as sensors of brain pathology by detecting any sign of brain lesions, infections, or dysfunction and can influence the onset and progression of neurological diseases. They are capable of sensing their neuronal environment via many different signaling molecules, such as neurotransmitters, neurohormones and neuropeptides. The neuropeptide VGF has been associated with many metabolic and neurological disorders. TLQP21 is a VGF-derived peptide and has been shown to signal via C3aR1 and C1qBP receptors. The effect of TLQP21 on microglial functions in health or disease is not known. Studying microglial cells in acute brain slices, we found that TLQP21 impaired metabotropic purinergic signaling. Specifically, it attenuated the ATP-induced activation of a K+ conductance, the UDP-stimulated phagocytic activity, and the ATP-dependent laser lesion-induced process outgrowth. These impairments were reversed by blocking C1qBP, but not C3aR1 receptors. While microglia in brain slices from male mice lack C3aR1 receptors, both receptors are expressed in primary cultured microglia. In addition to the negative impact on purinergic signaling, we found stimulating effects of TLQP21 in cultured microglia, which were mediated by C3aR1 receptors: it directly evoked membrane currents, stimulated basal phagocytic activity, evoked intracellular Ca2+ transient elevations, and served as a chemotactic signal. We conclude that TLQP21 has differential effects on microglia depending on C3aR1 activation or C1qBP-dependent attenuation of purinergic signaling. Thus, TLQP21 can modulate the functional phenotype of microglia, which may have an impact on their function in health and disease.SIGNIFICANCE STATEMENT The neuropeptide VGF and its peptides have been associated with many metabolic and neurological disorders. TLQP21 is a VGF-derived peptide that activates C1qBP receptors, which are expressed by microglia. We show here, for the first time, that TLQP21 impairs P2Y-mediated purinergic signaling and related functions. These include modulation of phagocytic activity and responses to injury. As purinergic signaling is central for microglial actions in the brain, this TLQP21-mediated mechanism might regulate microglial activity in health and disease. We furthermore show that, in addition to C1qBP, functional C3aR1 responses contribute to TLQP21 action on microglia. However, C3aR1 responses were only present in primary cultures but not in situ, suggesting that the expression of these receptors might vary between different microglial activation states.
Collapse
|