1
|
Nakamuta S, Noda H, Kato H, Yokoyama T, Yamamoto Y, Nakamuta N. Expression patterns of the transcription factors Fezf1, Fezf2, and Bcl11b in the olfactory organs of turtle embryos. J Morphol 2023; 284:e21655. [PMID: 37856277 DOI: 10.1002/jmor.21655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Many tetrapod vertebrates have two distinct olfactory organs, the olfactory epithelium (OE) and vomeronasal organ (VNO). In turtles, the olfactory organ consists of two types of sensory epithelia, the upper chamber epithelium (UCE; corresponding to the OE) and the lower chamber epithelium (LCE; corresponding to the VNO). In many turtle species, the UCE contains ciliated olfactory receptor cells (ORCs) and the LCE contains microvillous ORCs. To date, several transcription factors involved in the development of the OE and VNO have been identified in mammals. Fez family zinc-finger protein 1 and 2 (Fezf1 and 2) are expressed in the OE and VNO, respectively, of mouse embryos, and are involved in the development and maintenance of ORCs. B-cell lymphoma/leukemia 11B (Bcl11b) is expressed in the mouse embryo OE except the dorsomedial parts of the nasal cavity, and regulates the expression of odorant receptors in the ORCs. In this study, we examined the expression of Fezf1, Fezf2, and Bcl11b in the olfactory organs of embryos in three turtle species, Pelodiscus sinensis, Trachemys scripta elegans, and Centrochelys sulcata, to evaluate their involvement in the development of reptile olfactory organs. In all three turtle species, Bcl11b was expressed in the UCE, Fezf2 in the LCE, and Fezf1 in both the UCE and LCE. These results imply that the roles of the transcription factors Fezf1, Fezf2, and Bcl11b in olfactory organ development are conserved among mammals and turtles.
Collapse
Affiliation(s)
- Shoko Nakamuta
- Laboratory of Veterinary Anatomy, Iwate University, Morioka, Japan
| | | | - Hideaki Kato
- Faculty of Education, Shizuoka University, Shizuoka, Japan
| | - Takuya Yokoyama
- Laboratory of Veterinary Anatomy, Iwate University, Morioka, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy, Iwate University, Morioka, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy, Iwate University, Morioka, Japan
| |
Collapse
|
2
|
Kondoh D, Kaneoya Y, Tonomori W, Kitayama C. Histological features and Gα olf expression patterns in the nasal cavity of sea turtles. J Anat 2023; 243:486-503. [PMID: 37042468 PMCID: PMC10439381 DOI: 10.1111/joa.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
Sea turtles use olfaction to detect volatile and water-soluble substances. The nasal cavity of green turtles (Chelonia mydas) comprises morphologically defined the anterodorsal, anteroventral, and posterodorsal diverticula, as well as a single posteroventral fossa. Here, we detailed the histological features of the nasal cavity of a mature female green turtle. The posterodorsal diverticulum contained spongy-like venous sinuses and a wave-shaped sensory epithelium that favored ventilation. Secretory structures that were significant in sensory and non-sensory epithelia were probably involved in protection against seawater. These findings suggested that green turtles efficiently intake airborne substances and dissolve water-soluble substances in mucous, while suppressing the effects of salts. In addition, positive staining of Gαs/olf that couples with olfactory, but not vomeronasal, receptors was predominant in all three types of sensory epithelium in the nasal cavity. Both of airborne and water-soluble odorants seemed to be detected in cells expressing Gαolf and olfactory receptors.
Collapse
Affiliation(s)
- Daisuke Kondoh
- Department of Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineObihiroHokkaidoJapan
| | - Yuka Kaneoya
- Department of Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineObihiroHokkaidoJapan
| | - Wataru Tonomori
- Department of Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineObihiroHokkaidoJapan
| | | |
Collapse
|
3
|
Jacobs LF. How the evolution of air breathing shaped hippocampal function. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200532. [PMID: 34957846 PMCID: PMC8710879 DOI: 10.1098/rstb.2020.0532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
To make maps from airborne odours requires dynamic respiratory patterns. I propose that this constraint explains the modulation of memory by nasal respiration in mammals, including murine rodents (e.g. laboratory mouse, laboratory rat) and humans. My prior theories of limbic system evolution offer a framework to understand why this occurs. The answer begins with the evolution of nasal respiration in Devonian lobe-finned fishes. This evolutionary innovation led to adaptive radiations in chemosensory systems, including the emergence of the vomeronasal system and a specialization of the main olfactory system for spatial orientation. As mammals continued to radiate into environments hostile to spatial olfaction (air, water), there was a loss of hippocampal structure and function in lineages that evolved sensory modalities adapted to these new environments. Hence the independent evolution of echolocation in bats and toothed whales was accompanied by a loss of hippocampal structure (whales) and an absence of hippocampal theta oscillations during navigation (bats). In conclusion, models of hippocampal function that are divorced from considerations of ecology and evolution fall short of explaining hippocampal diversity across mammals and even hippocampal function in humans. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Lucia F. Jacobs
- Department of Psychology, University of California, 2121 Berkeley Way, Berkeley, CA 94720-1650, USA
| |
Collapse
|
4
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
5
|
Kitayama C, Ueda K, Omata M, Tomita T, Fukada S, Murakami S, Tanaka Y, Kaji A, Kondo S, Suganuma H, Aiko Y, Fujimoto A, Kawai YK, Yanagawa M, Kondoh D. Morphological features of the nasal cavities of hawksbill, olive ridley, and black sea turtles: Comparative studies with green, loggerhead and leatherback sea turtles. PLoS One 2021; 16:e0250873. [PMID: 33914838 PMCID: PMC8084137 DOI: 10.1371/journal.pone.0250873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/15/2021] [Indexed: 11/18/2022] Open
Abstract
We analyzed the internal structure of the nasal cavities of hawksbill, olive ridley and black sea turtles from computed tomography images. The nasal cavities of all three species consisted of a vestibule, nasopharyngeal duct and cavum nasi proprium that included anterodorsal, posterodorsal and anteroventral diverticula, and a small posteroventral salience formed by a fossa of the wall. These findings were similar to those of green and loggerhead sea turtles (Cheloniidae), but differed from those of leatherback sea turtles (Dermochelyidae). Compared to the Cheloniidae species, the nasal cavity in leatherback sea turtles was relatively shorter, wider and larger in volume. Those structural features of the nasal cavity of leatherback sea turtles might help to suppress heat dissipation and reduce water pressure within the nasal cavity in cold and deep waters.
Collapse
Affiliation(s)
- Chiyo Kitayama
- Everlasting Nature of Asia (ELNA), Ogasawara Marine Center, Ogasawara, Tokyo, Japan
| | - Keiichi Ueda
- Okinawa Churaumi Aquarium, Motobu, Okinawa, Japan
- Okinawa Churashima Research Center, Motobu, Okinawa, Japan
| | - Mariko Omata
- Okinawa Churaumi Aquarium, Motobu, Okinawa, Japan
| | - Taketeru Tomita
- Okinawa Churaumi Aquarium, Motobu, Okinawa, Japan
- Okinawa Churashima Research Center, Motobu, Okinawa, Japan
| | | | | | | | | | - Satomi Kondo
- Everlasting Nature of Asia (ELNA), Ogasawara Marine Center, Ogasawara, Tokyo, Japan
| | | | - Yuki Aiko
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Atsuru Fujimoto
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Yusuke K. Kawai
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Masashi Yanagawa
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Daisuke Kondoh
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
6
|
Affiliation(s)
- Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany.
| | - Ivan Manzini
- Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|