1
|
Farha AK, Habimana O, Corke H. Guanabenz acetate, an antihypertensive drug repurposed as an inhibitor of Escherichia coli biofilm. Microbiol Spectr 2024; 12:e0073824. [PMID: 39311590 PMCID: PMC11537090 DOI: 10.1128/spectrum.00738-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/09/2024] [Indexed: 11/07/2024] Open
Abstract
Biofilms formed by Escherichia coli are composed of amyloid curli and cellulose and have been shown to be linked to pathogenicity, antibiotic resistance, and chronic infections. Guanabenz acetate (GABE), an antihypertensive drug, was identified as a potential strategic repurposing drug due to its biofilm inhibitory properties following an extensive antimicrobial screening assay of 2,202 Food and Drug Administration-approved non-antibiotic agents. The results of this study provide insights into the effectiveness of GABE as a therapeutic alternative against E. coli biofilm-associated infectious diseases. IMPORTANCE Biofilm-associated bacterial infections are one of the major problems in medical settings. There are currently limited biofilm inhibitors available for clinical use. Guanabenz acetate, a drug used to treat high blood pressure, was found to be an effective anti-biofilm agent against Escherichia coli. Our results show that this drug can inhibit the production of cellulose and curli amyloid protein, which are the two main components of E. coli biofilms. Our findings highlight the possibility of repurposing a drug to prevent E. coli biofilm formation.
Collapse
Affiliation(s)
- Arakkaveettil Kabeer Farha
- Biotechnology and Food Engineering Program; and Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion-Israel Institute of Technology, Shantou, China
| | - Olivier Habimana
- Biotechnology and Food Engineering Program; and Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion-Israel Institute of Technology, Shantou, China
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Harold Corke
- Biotechnology and Food Engineering Program; and Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion-Israel Institute of Technology, Shantou, China
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
2
|
Lu HJ, Koju N, Sheng R. Mammalian integrated stress responses in stressed organelles and their functions. Acta Pharmacol Sin 2024; 45:1095-1114. [PMID: 38267546 PMCID: PMC11130345 DOI: 10.1038/s41401-023-01225-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024]
Abstract
The integrated stress response (ISR) triggered in response to various cellular stress enables mammalian cells to effectively cope with diverse stressful conditions while maintaining their normal functions. Four kinases (PERK, PKR, GCN2, and HRI) of ISR regulate ISR signaling and intracellular protein translation via mediating the phosphorylation of eukaryotic translation initiation factor 2 α (eIF2α) at Ser51. Early ISR creates an opportunity for cells to repair themselves and restore homeostasis. This effect, however, is reversed in the late stages of ISR. Currently, some studies have shown the non-negligible impact of ISR on diseases such as ischemic diseases, cognitive impairment, metabolic syndrome, cancer, vanishing white matter, etc. Hence, artificial regulation of ISR and its signaling with ISR modulators becomes a promising therapeutic strategy for relieving disease symptoms and improving clinical outcomes. Here, we provide an overview of the essential mechanisms of ISR and describe the ISR-related pathways in organelles including mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosomes. Meanwhile, the regulatory effects of ISR modulators and their potential application in various diseases are also enumerated.
Collapse
Affiliation(s)
- Hao-Jun Lu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Nirmala Koju
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
3
|
Singh A, Tiwari S, Singh S. Pirh2 modulates the mitochondrial function and cytochrome c-mediated neuronal death during Alzheimer's disease. Cell Death Dis 2024; 15:331. [PMID: 38740775 PMCID: PMC11091053 DOI: 10.1038/s41419-024-06662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024]
Abstract
Pirh2 is an E3 ubiquitin ligase known to regulate the DNA damage responses through ubiquitylation of various participating signaling factors. DNA damage is a key pathological contributor to Alzheimer's disease (AD), therefore, the role of Pirh2 was investigated in streptozotocin and oligomer Aβ1-42 induced rodent experimental model of AD. Pirh2 protein abundance increased during AD conditions, and transient silencing of Pirh2 inhibited the disease-specific pathological markers like level of p-Tau, βamyloid, acetylcholinesterase activity, and neuronal death. Biochemically, Pirh2 silencing significantly attenuated the oxidative stress, depleted mitochondrial membrane potential, cytochrome c translocation from mitochondria to cytosol, and depleted mitochondrial complex-I activity, and ATP level. Pirh2 silencing also inhibited the altered level of VDAC1, hsp75, hexokinase1, t-Bid, caspase-9, and altered level of apoptotic proteins (Bcl-2, Bax). MALDI-TOF/TOF, co-immunoprecipitation, and UbcH13-linked ubiquitylation assay confirmed the interaction of Pirh2 with cytochrome c and the role of Pirh2 in ubiquitylation of cytochrome c, along with Pirh2-dependent altered proteasome activity. Additionally, Pirh2 silencing further inhibited the translocation of mitochondrion-specific endonuclease G and apoptosis-inducing factors to the nucleus and DNA damage. In conclusion, findings suggested the significant implication of Pirh2 in disease pathogenesis, particularly through impaired mitochondrial function, including biochemical alterations, translocation of cytochrome c, endonuclease G and apoptosis-inducing factor, DNA damage, and neuronal apoptosis.
Collapse
Affiliation(s)
- Abhishek Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shubhangini Tiwari
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sarika Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Singh A, Tiwari S, Singh S. Pirh2 modulates amyloid-β aggregation through the regulation of glucose-regulated protein 78 and chaperone-mediated signaling. J Cell Physiol 2023; 238:2841-2854. [PMID: 37882235 DOI: 10.1002/jcp.31134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/27/2023]
Abstract
Amyloid-β (Aβ) protein aggregation in the brain is a pathological hallmark of Alzheimer's disease (AD) however, the underlying molecular mechanisms regulating amyloid aggregation are not well understood. Here, we studied the propitious role of E3 ubiquitin ligase Pirh2 in Aβ protein aggregation in view of its regulatory ligase activity in the ubiquitin-proteasome system employing both cellular and sporadic rodent models of AD. Pirh2 protein abundance was significantly increased during Streptozotocin (STZ) induced AD conditions, and transient silencing of Pirh2 significantly inhibited the Aβ aggregation and modified the dendrite morphology along with the substantial decrease in choline level in the differentiated neurons. MALDI-TOF/TOF, coimmunoprecipitation, and UbcH7-linked in vitro ubiquitylation analysis confirmed the high interaction of Pirh2 with chaperone GRP78. Furthermore, Pirh2 silencing inhibits the STZ induced altered level of endoplasmic reticulum stress and intracellular Ca2+ levels in neuronal N2a cells. Pirh2 silencing also inhibited the AD conditions related to the altered protein abundance of HSP90 and its co-chaperones which may collectively involve in the reduced burden of amyloid aggregates in neuronal cells. Pirh2 silencing further stabilized the nuclear translocation of phospho-Nrf2 and inhibited the altered level of autophagy factors. Taken together, our data indicated that Pirh2 is critically involved in STZ induced AD pathogenesis through its interaction with ER-chaperone GRP78, improves the neuronal connectivity, affects the altered level of chaperones, co-chaperones, & autophagic markers, and collectively inhibits the Aβ aggregation.
Collapse
Affiliation(s)
- Abhishek Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Shubhangini Tiwari
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sarika Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Kotańska M, Marcinkowska M, Kuder KJ, Walczak M, Bednarski M, Siwek A, Kołaczkowski M. Metabolic and cardiovascular benefits and risks of 4-hydroxy guanabenz hydrochloride: α 2-adrenoceptor and trace amine-associated receptor 1 ligand. Pharmacol Rep 2023; 75:1211-1229. [PMID: 37624466 PMCID: PMC10539439 DOI: 10.1007/s43440-023-00518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND α2-adrenoceptor ligands have been investigated as potential therapeutic agents for the treatment of obesity. Our previous studies have shown that guanabenz reduces the body weight of obese rats, presumably through its anorectic action. This demonstrates an additional beneficial effect on selected metabolic parameters, including glucose levels. The purpose of this present research was to determine the activity of guanabenz's metabolite-4-hydroxy guanabenz hydrochloride (4-OH-Guanabenz). METHODS We performed in silico analyses, involving molecular docking to targets of specific interest as well as other potential biological targets. In vitro investigations were conducted to assess the selectivity profile of 4-OH-Guanabenz binding to α-adrenoceptors, along with intrinsic activity studies involving α2-adrenoceptors and trace amine-associated receptor 1 (TAAR1). Additionally, the effects of 4-OH-Guanabenz on the body weight of rats and selected metabolic parameters were evaluated using the diet-induced obesity model. Basic safety and pharmacokinetic parameters were also examined. RESULTS 4-OH-guanabenz is a partial agonist of α2A-adrenoceptor. The calculated EC50 value for it is 316.3 nM. It shows weak agonistic activity at TAAR1 too. The EC50 value for 4-OH-Guanabenz calculated after computer simulation is 330.6 µM. Its primary mode of action is peripheral. The penetration of 4-OH-Guanabenz into the brain is fast (tmax = 15 min), however, with a low maximum concentration of 64.5 ng/g. 4-OH-Guanabenz administered ip at a dose of 5 mg/kg b.w. to rats fed a high-fat diet causes a significant decrease in body weight (approximately 14.8% compared to the baseline weight before treatment), reduces the number of calories consumed by rats, and decreases plasma glucose and triglyceride levels. CONCLUSIONS The precise sequence of molecular events within the organism, linking the impact of 4-OH-Guanabenz on α2A-adrenoceptor and TAAR1 with weight reduction and the amelioration of metabolic disturbances, remains an unresolved matter necessitating further investigation. Undoubtedly, the fact that 4-OH-Guanabenz is a metabolite of a well-known drug has considerable importance, which is beneficial from an economic point of view and towards its further development as a drug candidate.
Collapse
Affiliation(s)
- Magdalena Kotańska
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Monika Marcinkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Kamil J. Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Maria Walczak
- Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Marek Bednarski
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Marcin Kołaczkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
- Adamed Pharma Ltd, Czosnów, Poland
| |
Collapse
|
6
|
Tiwari S, Singh A, Gupta P, K A, Singh S. UBA52 Attunes VDAC1-Mediated Mitochondrial Dysfunction and Dopaminergic Neuronal Death. ACS Chem Neurosci 2023; 14:839-850. [PMID: 36755387 DOI: 10.1021/acschemneuro.2c00579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Mitochondrial homeostasis regulates energy metabolism, calcium buffering, cell function, and apoptosis. The present study has been conducted to investigate the implications of the ubiquitin-encoding gene UBA52 in mitochondrial physiology. Transient expression of Myc-UBA52 in neurons significantly inhibited the rotenone-induced increase in reactive oxygen species generation, nitrite level, and depleted glutathione level. Mass spectrometric and coimmunoprecipitation data suggested the profound interaction of UBA52 with mitochondrial outer membrane channel protein, VDAC1 in both the wild-type and Myc-α-synuclein overexpressed neuronal cells and in the Parkinson's disease (PD)-specific substantia nigra and striatal region of the rat brain. In vitro ubiquitylation assay revealed that UBA52 participates in the ubiquitylation of VDAC1 through E3 ligase CHIP. Myc-UBA52 overexpression in neurons further improved the mitochondrial functionality and cell viability by preventing the alteration in mitochondrial membrane potential, mitochondrial complex I activity, and translocation of cytochrome c and p-Nrf2 along with the effect on intracellular calcium uptake, thus collectively inhibiting the opening of mitochondrial permeability transition pore. Additionally, Myc-UBA52 expression in neuronal cells offered protection against apoptotic and autophagic cell death. Altogether, our findings delineate a functional association between UBA52 and mitochondrial homeostasis, providing new insights into the deterrence of dopaminergic cell death during acute PD pathogenesis.
Collapse
Affiliation(s)
- Shubhangini Tiwari
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Abhishek Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parul Gupta
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amrutha K
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sarika Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Tiwari S, Singh A, Gupta P, Singh S. UBA52 Is Crucial in HSP90 Ubiquitylation and Neurodegenerative Signaling during Early Phase of Parkinson's Disease. Cells 2022; 11:cells11233770. [PMID: 36497031 PMCID: PMC9738938 DOI: 10.3390/cells11233770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
Protein aggregation is one of the major pathological events in age-related Parkinson's disease (PD) pathology, predominantly regulated by the ubiquitin-proteasome system (UPS). UPS essentially requires core component ubiquitin; however, its role in PD pathology is obscure. This study aimed to investigate the role of ubiquitin-encoding genes in sporadic PD pathology. Both cellular and rat models of PD as well as SNCA C57BL/6J-Tg (Th-SNCA*A30P*A53T)39 Eric/J transgenic mice showed a decreased abundance of UBA52 in conjunction with significant downregulation of tyrosine hydroxylase (TH) and neuronal death. In silico predictions, mass spectrometric analysis, and co-immunoprecipitation findings suggested the protein-protein interaction of UBA52 with α-synuclein, HSP90 and E3-ubiquitin ligase CHIP, and its co-localization with α-synuclein in the mitochondrion. Next, in vitro ubiquitylation assay indicated an imperative requirement of the lysine-63 residue of UBA52 in CHIP-mediated HSP90 ubiquitylation. Myc-UBA52 expressed neurons inhibited alteration in PD-specific markers such as α-synuclein and TH protein along with increased proteasome activity in diseased conditions. Furthermore, Myc-UBA52 expression inhibited the altered protein abundance of HSP90 and its various client proteins, HSP75 (homolog of HSP90 in mitochondrion) and ER stress-related markers during early PD. Taken together, the data highlights the critical role of UBA52 in HSP90 ubiquitylation in parallel to its potential contribution to the modulation of various disease-related neurodegenerative signaling targets during the early phase of PD pathology.
Collapse
Affiliation(s)
- Shubhangini Tiwari
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Abhishek Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parul Gupta
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarika Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence:
| |
Collapse
|
8
|
Tiwari S, Gupta P, Singh A, Chaturvedi S, Wahajuddin M, Mishra A, Singh S. 4-Phenylbutyrate Mitigates the Motor Impairment and Dopaminergic Neuronal Death During Parkinson's Disease Pathology via Targeting VDAC1 Mediated Mitochondrial Function and Astrocytes Activation. Neurochem Res 2022; 47:3385-3401. [PMID: 35922743 DOI: 10.1007/s11064-022-03691-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/15/2022] [Accepted: 07/12/2022] [Indexed: 10/16/2022]
Abstract
Parkinson's disease (PD) is a progressive motor neurodegenerative disorder significantly associated with protein aggregation related neurodegenerative mechanisms. In view of no disease modifying drugs, the present study was targeted to investigate the therapeutic effects of pharmacological agent 4-phenylbutyric acid (4PBA) in PD pathology. 4PBA is an FDA approved monocarboxylic acid with inhibitory activity towards histone deacetylase and clinically treats urea cycle disorder. First, we observed the significant protective effects of 4PBA on PD specific neuromuscular coordination, level of tyrosine hydroxylase, α-synuclein level and neurotransmitter dopamine in both substantia nigra and striatal regions of the experimental rat model of PD. Further results revealed that treatment with 4PBA drug exhibited significant protection against disease related oxidative stress and augmented nitrite levels. The disease pathology-related depletion in mitochondrial membrane potential and augmented level of calcium as well as mitochondrion membrane located VDAC1 protein level and cytochrome-c translocation were also significantly attenuated with 4PBA administration. Inhibited neuronal apoptosis and restored neuronal morphology were also observed with 4PBA treatment as measured by level of pro-apoptotic proteins t-Bid, Bax and cleaved caspase-3 along with cresyl violet staining in both substantia nigra and striatal regions. Lastly, PD-linked astrocyte activation was significantly inhibited with 4PBA treatment. Altogether, our findings suggest that 4PBA exerts broad-spectrum neuroprotective effects in PD animal model.
Collapse
Affiliation(s)
- Shubhangini Tiwari
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Parul Gupta
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Abhishek Singh
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Swati Chaturvedi
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - M Wahajuddin
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342011, India
| | - Sarika Singh
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India. .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|