1
|
Khalilzad MA, Mohammadi J, Najafi S, Amirsaadat S, Zare S, Khalilzad M, Shamloo A, Khaghani A, Peyrovan A, Khalili SFS, Fayyaz N, Zare S. Harnessing the Anti-Inflammatory Effects of Perinatal Tissue Derived Therapies for the Treatment of Inflammatory Skin Diseases: A Comprehensive Review. Stem Cell Rev Rep 2025; 21:351-371. [PMID: 39531196 DOI: 10.1007/s12015-024-10822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Dealing with chronic inflammatory skin conditions like atopic dermatitis and psoriasis can be extremely difficult. Current treatments, such as topical corticosteroids, often have limitations and side effects. However, researchers have discovered that the placenta's remarkable properties may provide a breakthrough in effectively addressing these skin conditions. The placenta comprises three essential tissues: decidua, placental membrane, and umbilical cord. Placental derivatives have shown significant potential in treating psoriasis by reducing inflammatory cytokines and inhibiting keratinocyte proliferation. In the case of atopic dermatitis, umbilical cord stem cells have demonstrated anti-inflammatory effects by targeting critical factors and promoting anti-inflammatory cytokines. The scope of benefits associated with placental derivatives transcends these specific applications. They also potentially address other inflammatory skin diseases, such as vitiligo, by stimulating melanin production. Moreover, these derivatives have been leveraged in the treatment of pemphigus and epidermolysis bullosa (EB), showcasing potential as a wound dressing that could eliminate the necessity for painful dressing changes in EB patients. In summary, the integration of placental derivatives stands to revolutionize our approach to inflammatory skin conditions owing to their distinct properties and the prospective benefits they offer. This comprehensive review delves into the current applications of placental derivatives in addressing inflammatory skin diseases, presenting a novel treatment approach.
Collapse
Affiliation(s)
- Mohammad Amin Khalilzad
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Mohammadi
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Soumaye Amirsaadat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sona Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mitra Khalilzad
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Ayoub Khaghani
- Department of Gynecological Surgery, Tehranpars Hospital, Tehran, Iran
| | - Aysan Peyrovan
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Negin Fayyaz
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Zare
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Tang B, Bi Y, Zheng X, Yang Y, Huang X, Yang K, Zhong H, Han L, Lu C, Chen H. The Role of Extracellular Vesicles in the Development and Treatment of Psoriasis: Narrative Review. Pharmaceutics 2024; 16:1586. [PMID: 39771564 PMCID: PMC11677080 DOI: 10.3390/pharmaceutics16121586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Psoriasis is a chronic inflammatory polygenic disease with significant impacts on skin and joints, leading to substantial treatment challenges and healthcare costs. The quest for novel therapeutic avenues has recently highlighted extracellular vesicles (EVs) due to their potential as biomarkers and therapeutic agents in autoimmune diseases, including psoriasis. EVs are nano-sized, lipid membrane-bound particles secreted by cells that have emerged as promising tools for targeted drug delivery, owing to their unique structure. This review delves into how EVs, either as mediators of cell communication or via their cargo (such as miRNA), directly participate in the pathology of psoriasis, influencing processes such as immune regulation, cell proliferation, and differentiation. Furthermore, this review explores the innovative application of EVs in psoriasis treatment, both as direct therapeutic agents and as vehicles for drug delivery, offering a novel approach to overcoming the current treatment limitations.
Collapse
Affiliation(s)
- Bin Tang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou 510120, China
- Guangdong-Hongkong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Yang Bi
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Xuwei Zheng
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Yujie Yang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Xiaobing Huang
- Hospital of Osteopathy The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510378, China
| | - Kexin Yang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Haixin Zhong
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Ling Han
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou 510120, China
- Guangdong-Hongkong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Chuanjian Lu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou 510120, China
- Guangdong-Hongkong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Haiming Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou 510120, China
- Guangdong-Hongkong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| |
Collapse
|
3
|
Dairov A, Sekenova A, Alimbek S, Nurkina A, Shakhatbayev M, Kumasheva V, Kuanysh S, Adish Z, Issabekova A, Ogay V. Psoriasis: The Versatility of Mesenchymal Stem Cell and Exosome Therapies. Biomolecules 2024; 14:1351. [PMID: 39595528 PMCID: PMC11591958 DOI: 10.3390/biom14111351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multilineage differentiating stromal cells with extensive immunomodulatory and anti-inflammatory properties. MSC-based therapy is widely used in the treatment of various pathologies, including bone and cartilage diseases, cardiac ischemia, diabetes, and neurological disorders. Along with MSCs, it is promising to study the therapeutic properties of exosomes derived from MSCs (MSC-Exo). A number of studies report that the therapeutic properties of MSC-Exo are superior to those of MSCs. In particular, MSC-Exo are used for tissue regeneration in various diseases, such as healing of skin wounds, cancer, coronary heart disease, lung injury, liver fibrosis, and neurological, autoimmune, and inflammatory diseases. In this regard, it is not surprising that the scientific community is interested in studying the therapeutic properties of MSCs and MSC-Exo in the treatment of psoriasis. This review summarizes the recent advancements from preclinical and clinical studies of MSCs and MSC-Exo in the treatment of psoriasis, and it also discusses their mechanisms of therapeutic action involved in the treatment of this disease.
Collapse
Affiliation(s)
- Aidar Dairov
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Aliya Sekenova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Symbat Alimbek
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Assiya Nurkina
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Miras Shakhatbayev
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Venera Kumasheva
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Sandugash Kuanysh
- Obstetrics and Gynecology, Astana Medical University, Astana 010000, Kazakhstan
| | - Zhansaya Adish
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, Astana 010000, Kazakhstan;
- Department of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Assel Issabekova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Vyacheslav Ogay
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| |
Collapse
|
4
|
Gao Y, Zhan W, Guo D, Lin H, Farooq MA, Jin C, Zhang L, Zhou Y, Yao J, Duan Y, He C, Jiang S, Jiang W. GPR97 depletion aggravates imiquimod-induced psoriasis pathogenesis via amplifying IL-23/IL-17 axis signal pathway. Biomed Pharmacother 2024; 179:117431. [PMID: 39260323 DOI: 10.1016/j.biopha.2024.117431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Skin psoriasis is defined as receiving external stimulation to activate skin dendritic cells (DCs) which can release interleukin 23 (IL-23) to interlink the innate and adaptive immunity as well as induce T helper 17 (Th17) cell differentiation leading to elevated production of interleukin 17 (IL-17) for keratinocytes over production. This autoimmune loop in psoriasis pathogenesis is influenced by G protein-coupled receptor (GPCR) signalling transduction, and in particular, function of adhesion molecule GPR97 in psoriasis endures to be utterly addressed. In this research, our team allocated GPR97 depletion (GPR97-/-), GPR97 conditional depletion on dendritic cell (DC-cKO), and keratin 14-conditional knockout (K14-cKO) mice models to explore the function of GPR97 which influences keratinocytes and skin immunity. It was found that significantly aggravated psoriasis-like lesion in GPR97-/- mice. In addition, hyperproliferative keratinocytes as well as accumulation of DCs and Th17 cells were detected in imiquimod (IMQ)-induced GPR97-/- mice, which was consistent with the results in DC-cKO and K14-cKO psoriasis model. Additional investigations indicated that beclomethasone dipropionate (BDP), an agonist of GPR97, attenuated the psoriasis-like skin disease and restricted HaCaT cells abnormal proliferation as well as Th17 cells differentiation. Particularly, we found that level of NF-κB p65 was increased in GPR97-/- DCs and BDP could inhibit p65 activation in DCs. Role of GPR97 is indispensable and this adhesion receptor may affect immune cell enrichment and function in skin and alter keratinocytes proliferation as well as differentiation in psoriasis.
Collapse
Affiliation(s)
- Yaoxin Gao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Weirong Zhan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dandan Guo
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Haizhen Lin
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Muhammad Asad Farooq
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chenxu Jin
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ying Zhou
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jie Yao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yixin Duan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Cong He
- Laboratory of Cancer Genomics and Biology, Department of Urology and Institute of Translational Medicine. Shanghai General Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shuai Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute Fudan University, Shanghai 200438, China
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
5
|
Chen YK, Mohamed AH, Amer Alsaiari A, Olegovich Bokov D, Ali Patel A, Al Abdulmonem W, Shafie A, Adnan Ashour A, Azhar Kamal M, Ahmad F, Ahmad I. The role of mesenchymal stem cells in the treatment and pathogenesis of psoriasis. Cytokine 2024; 182:156699. [PMID: 39033730 DOI: 10.1016/j.cyto.2024.156699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Psoriasis, a prevalent inflammatory skin condition impacting millions globally, continues to pose treatment challenges, despite the availability of multiple therapies. This underscores the demand for innovative treatments. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic option due to their capacity to modulate the immune system and facilitate tissue healing. Recent research indicates that MSCs don't just work through direct cell-to-cell interactions but also release extracellular vesicles (EVs), containing various bioactive substances like proteins, lipids, and nucleic acids. This article explores our current knowledge of psoriasis's origins and the potential utilization of MSCs and their EVs, particularly exosomes, in managing the condition. Additionally, we delve into how MSCs and EVs function in therapy, including their roles in regulating immune responses and promoting tissue repair. Lastly, we discuss the obstacles and opportunities associated with translating MSC-based treatments for psoriasis into clinical practice.
Collapse
Affiliation(s)
- Yan-Kun Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518109, China; Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519000, China
| | - Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil 51001, Hilla, Iraq.
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy Named After A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | - Ayyub Ali Patel
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
6
|
Chatzianagnosti S, Dermitzakis I, Theotokis P, Kousta E, Mastorakos G, Manthou ME. Application of Mesenchymal Stem Cells in Female Infertility Treatment: Protocols and Preliminary Results. Life (Basel) 2024; 14:1161. [PMID: 39337944 PMCID: PMC11433628 DOI: 10.3390/life14091161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Infertility is a global phenomenon that impacts people of both the male and the female sex; it is related to multiple factors affecting an individual's overall systemic health. Recently, investigators have been using mesenchymal stem cell (MSC) therapy for female-fertility-related disorders such as polycystic ovarian syndrome (PCOS), premature ovarian failure (POF), endometriosis, preeclampsia, and Asherman syndrome (AS). Studies have shown promising results, indicating that MSCs can enhance ovarian function and restore fertility for affected individuals. Due to their regenerative effects and their participation in several paracrine pathways, MSCs can improve the fertility outcome. However, their beneficial effects are dependent on the methodologies and materials used from isolation to reimplantation. In this review, we provide an overview of the protocols and methods used in applications of MSCs. Moreover, we summarize the findings of published preclinical studies on infertility treatments and discuss the multiple properties of these studies, depending on the isolation source of the MSCs used.
Collapse
Affiliation(s)
- Sofia Chatzianagnosti
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleni Kousta
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Mastorakos
- Department of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
7
|
Li X, Zhang F, Sun L, Cai X, Lou F, Sun Y, Gao M, Wang Z, Tang S, Fan L, Wu Y, Jin X, Deng S, Xu Z, Sun X, Li Q, Wang H. Single-Cell RNA Sequencing Identifies WARS1+ Mesenchymal Stem Cells with Enhanced Immunomodulatory Capacity and Improved Therapeutic Efficacy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:257-267. [PMID: 38856632 DOI: 10.4049/jimmunol.2300752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/26/2024] [Indexed: 06/11/2024]
Abstract
Psoriasis is a common inflammatory skin disorder with no cure. Mesenchymal stem cells (MSCs) have immunomodulatory properties for psoriasis, but the therapeutic efficacies varied, and the molecular mechanisms were unknown. In this study, we improved the efficacy by enhancing the immunomodulatory effects of umbilical cord-derived MSCs (UC-MSCs). UC-MSCs stimulated by TNF-α and IFN-γ exhibited a better therapeutic effect in a mouse model of psoriasis. Single-cell RNA sequencing revealed that the stimulated UC-MSCs overrepresented a subpopulation expressing high tryptophanyl-tRNA synthetase 1 (WARS1). WARS1-overexpressed UC-MSCs treat psoriasis-like skin inflammation more efficiently than control UC-MSCs by restraining the proinflammatory macrophages. Mechanistically, WARS1 maintained a RhoA-Akt axis and governed the immunomodulatory properties of UC-MSCs. Together, we identify WARS1 as a master regulator of UC-MSCs with enhanced immunomodulatory capacities, which paves the way for the directed modification of UC-MSCs for escalated therapeutic efficacy.
Collapse
Affiliation(s)
- Xiangxiao Li
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengjiao Zhang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Libo Sun
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojie Cai
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangzhou Lou
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Sun
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Gao
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhikai Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sibei Tang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Fan
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Wu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinping Jin
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyu Deng
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyao Xu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuxu Sun
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qun Li
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honglin Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Kuang YH, Zhu W, Lin G, Cheng LM, Qin Q, Huang ZJ, Shi YL, Zhang CL, Xu JH, Yan KX, Lv CZ, Li W, Han Q, Stambler I, Lim LW, Chakrabarti S, Ulfhake B, Min KJ, Ellison-Hughes G, Cho WC, Jin K, Yao D, Lu C, Zhao RC, Chen X. Expert Consensus on the Application of Stem Cells in Psoriasis Research and Clinical Trials. Aging Dis 2024; 16:1363-1377. [PMID: 39012666 PMCID: PMC12096900 DOI: 10.14336/ad.2024.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
Psoriasis is an immune-mediated, chronic, relapsing, inflammatory, systemic disease induced by individual-environmental interactions, and is often lifelong because of the difficulty of treatment. In recent years, a variety of targeted therapies, including biologics, have improved the lesions and quality of life of most psoriasis patients, but they still do not address the problem of relapse and may be associated with decreased efficacy or adverse events such as infections over time. Therefore, there is an urgent need for breakthroughs in psoriasis treatment and in relapse-delaying and non-pharmacologic strategies, and stem cell therapy for psoriasis has emerged. In recent years, research on stem cell therapy for psoriasis has received a lot of attention, however, there is no reference standard as well as consensus in this field of research. Therefore, according to the latest consensus and guidelines, combined with relevant literature reports, clinical practice experience and the results of discussions with experts, this consensus specifies the types of stem cells commonly used in the treatment of psoriasis, the methods, dosages, and routes of stem cell therapy for psoriasis, as well as the clinical evaluations (efficacy and safety) of stem cell therapy for psoriasis. In addition, this consensus also provides normative standards for the processes of collection, preparation, preservation and quality control of stem cells and their related products, as well as recommendations for the management of stem cells during infusion for the treatment of psoriasis. This consensus provides the latest specific reference standards and practice guidelines for the field of stem cell therapy for psoriasis.
Collapse
Affiliation(s)
- Ye-Hong Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- China Dermatologist Association, China.
- Chinese Society of Dermatology, China.
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- China Dermatologist Association, China.
- Chinese Society of Dermatology, China.
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.
- National Engineering Research Center of Human Stem Cell, Changsha, China.
| | - La-Mei Cheng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.
- National Engineering Research Center of Human Stem Cell, Changsha, China.
| | - Qun Qin
- The Office of Drug Clinical Trials Institution, Xiangya Hospital, Central South University, Changsha, China.
| | - Zhi-Jun Huang
- Center for Clinical Pharmacology, The Third Xiangya Hospital of Central South University, Changsha, China.
| | - Yu-Ling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.
- China Dermatologist Association, China.
- Chinese Society of Dermatology, China.
| | - Chun-Lei Zhang
- Department of Dermatology, Peking University Third Hospital, Beijing, China.
- China Dermatologist Association, China.
- Chinese Society of Dermatology, China.
| | - Jin-Hua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
- China Dermatologist Association, China.
- Chinese Society of Dermatology, China.
| | - Ke-Xiang Yan
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
- China Dermatologist Association, China.
- Chinese Society of Dermatology, China.
| | - Cheng-Zhi Lv
- Department of Dermatology, Dalian Dermatosis Hospital, Dalian, China.
- China Dermatologist Association, China.
- Chinese Society of Dermatology, China.
| | - Wei Li
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.
- China Dermatologist Association, China.
- Chinese Society of Dermatology, China.
| | - Qin Han
- International Society on Aging and Disease, Fort Worth, TX, USA.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
- Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China.
| | - Ilia Stambler
- International Society on Aging and Disease, Fort Worth, TX, USA.
- Department of Science, Technology and Society, Bar Ilan University, Ramat Gan, Israel.
| | - Lee Wei Lim
- International Society on Aging and Disease, Fort Worth, TX, USA.
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.
| | - Sasanka Chakrabarti
- International Society on Aging and Disease, Fort Worth, TX, USA.
- Maharishi Markandeshwar Deemed University, Mullana-Ambala, India.
| | - Brun Ulfhake
- International Society on Aging and Disease, Fort Worth, TX, USA.
- Karolinska University Hospital, Stockholm, Sweden.
| | - Kyung-Jin Min
- International Society on Aging and Disease, Fort Worth, TX, USA.
- Department of Biological Sciences, Inha University, Incheon, Republic of Korea.
| | - Georgina Ellison-Hughes
- International Society on Aging and Disease, Fort Worth, TX, USA.
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, UK.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China.
| | - Kunlin Jin
- International Society on Aging and Disease, Fort Worth, TX, USA.
- University of North Texas Health Science Center, Bryan, TX, USA.
| | - Danni Yao
- Department of Dermatology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | | | - Robert Chunhua Zhao
- International Society on Aging and Disease, Fort Worth, TX, USA.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
- Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- China Dermatologist Association, China.
- Chinese Society of Dermatology, China.
| |
Collapse
|
9
|
Chang L, Fan WW, Yuan HL, Liu X, Wang Q, Ruan GP, Pan XH, Zhu XQ. Role of umbilical cord mesenchymal stromal cells in skin rejuvenation. NPJ Regen Med 2024; 9:20. [PMID: 38729990 PMCID: PMC11087646 DOI: 10.1038/s41536-024-00363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Aging is the main cause of many degenerative diseases. The skin is the largest and the most intuitive organ that reflects the aging of the body. Under the interaction of endogenous and exogenous factors, there are cumulative changes in the structure, function, and appearance of the skin, which are characterized by decreased synthesis of collagen and elastin, increased wrinkles, relaxation, pigmentation, and other aging characteristics. skin aging is inevitable, but it can be delayed. The successful isolation of mesenchymal stromal cells (MSC) in 1991 has greatly promoted the progress of cell therapy in human diseases. The International Society for Cellular Therapy (ISCT) points out that the MSC is a kind of pluripotent progenitor cells that have self-renewal ability (limited) in vitro and the potential for mesenchymal cell differentiation. This review mainly introduces the role of perinatal umbilical cord-derived MSC(UC-MSC) in the field of skin rejuvenation. An in-depth and systematic understanding of the mechanism of UC-MSCs against skin aging is of great significance for the early realization of the clinical transformation of UC-MSCs. This paper summarized the characteristics of skin aging and summarized the mechanism of UC-MSCs in skin rejuvenation reported in recent years. In order to provide a reference for further research of UC-MSCs to delay skin aging.
Collapse
Affiliation(s)
- Le Chang
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Wei-Wen Fan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - He-Ling Yuan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Xin Liu
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Qiang Wang
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Guang-Ping Ruan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Xing-Hua Pan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China.
| | - Xiang-Qing Zhu
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China.
| |
Collapse
|
10
|
Liu Y, Han J, Fang J, Li R. The Beneficial Effects of Mesenchymal Stem Cells in Acute Kidney Injury: A Narrative Review. Curr Stem Cell Res Ther 2024; 19:200-209. [PMID: 36748221 PMCID: PMC10680085 DOI: 10.2174/1574888x18666230206115046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is a multifaced disease characterized by a rapid decline in renal function. However, with growing insight into the pathophysiologic mechanisms of AKI, currently available interventions for AKI are merely supportive. Thus, novel therapies are urgently needed to improve the outcomes of patients with AKI. This narrative review aims to explore enhancing the beneficial effects of Mesenchymal Stem Cells(MSCs) in AKI. METHODS The authors examined all studies regarding the role of MSCs in AKI. And the authors undertook a structured search of bibliographic databases for peer-reviewed research literature using a focused review question. The most relevant and up-to-date research was included. RESULTS AND DISCUSSION Based on encouraging preclinical results, stem cell therapy has been widely explored over the last decade. Among the various stem cell types investigated, mesenchymal stem cells are being intensely investigated by virtue of their numerous strengths, such as easy derivation, undemanding cell culture conditions, anti-apoptosis, immunomodulation, and anti-inflammation effects. Mounting evidence suggests that MSCs hold great potential in accelerating kidney repair following AKI in various preclinical models. Unfortunately, low engrafting efficiency and poor survival rate of injected MSCs in the injured renal tissue are major obstacles MSCs clinical application faces. CONCLUSION Various strategies, including genetic manipulation, mimicking the cellular microenvironment with different culture conditions, optimizing MSCs preparation and administration schedule, and screening patients who may more like benefit from MSCs therapy, have been developed to enhance the therapeutic potential of MSCs in AKI.
Collapse
Affiliation(s)
- Yuxiang Liu
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, 030012, Shanxi, China
- Department of the Fifth Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, Taiyuan, 030012, Shanxi, China
| | - Jibin Han
- Department of Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, 030012, Shanxi, China
| | - Jingai Fang
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, Taiyuan, 030012, Shanxi, China
| | - Rongshan Li
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, 030012, Shanxi, China
| |
Collapse
|
11
|
Margiana R. Enhancing Spermatogenesis in Non-obstructive Azoospermia Through Mesenchymal Stem Cell Therapy22. Curr Stem Cell Res Ther 2024; 19:1429-1441. [PMID: 38243988 DOI: 10.2174/011574888x283311231226081845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 01/22/2024]
Abstract
Stem cells hold great promise as novel and encouraging therapeutic tools in the treatment of degenerative disorders due to their differentiation potential while maintaining the capability to self-renewal and their unlimited ability to divide and regenerate tissue. A variety of different types of stem cells can be used in cell therapy. Among these, mesenchymal stem cell (MSC) therapy has gradually established itself as a novel method for treating damaged tissues that need restoration and renewal. Male infertility is an important health challenge affecting approximately 8-12% of people around the world. This abnormality can be caused by primary, congenital, acquired, or idiopathic reasons. Men with no sperm in their semen have a condition called azoospermia, caused by non-obstructive (NOA) causes and post-testicular obstructive causes. Accumulating evidence has shown that various types of MSCs can differentiate into germ cells and improve spermatogenesis in the seminiferous tubules of animal models. In addition, recent studies in animal models have exhibited that extracellular vesicles derived from MSCs can stimulate the progression of spermatogenesis and germ cell regeneration in the recipient testes. In spite of the fact that various improvements have been made in the treatment of azoospermia disorder in animal models by MSC or their extracellular vesicles, no clinical trials have been carried out to test their therapeutic effect on the NOA. In this review, we summarize the potential of MSC transplantation for treating infertility caused by NOA.
Collapse
Affiliation(s)
- Ria Margiana
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Indonesia General Academic Hospital, Depok, Indonesia
- Ciptomangunkusumo General Academic Hospital, Jakarta, Indonesia
| |
Collapse
|
12
|
Rizano A, Margiana R, Supardi S, Narulita P. Exploring the future potential of mesenchymal stem/stromal cells and their derivatives to support assisted reproductive technology for female infertility applications. Hum Cell 2023; 36:1604-1619. [PMID: 37407748 DOI: 10.1007/s13577-023-00941-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
Women's infertility impacts the quality of life of both patients and couples and has multifaceted dimensions that increase the number of challenges associated with female infertility and how to face them. Female reproductive disorders, such as premature ovarian failure (POF), endometriosis, Asherman syndrome (AS), polycystic ovary syndrome (PCOS), and preeclampsia, can stimulate infertility. In the last decade, translational medicine has advanced, and scientists are focusing on infertility therapy with innovative attitudes. Recent investigations have suggested that stem cell treatments could be safe and effective. Stem cell therapy has established a novel method for treating women's infertility as part of a regeneration approach. The chief properties and potential of mesenchymal stem/stromal cells (MSCs) in the future of women's infertility should be considered by researchers. Due to their high abundance, great ability to self-renew, and high differentiation capacity, as well as less ethical concerns, MSC-based therapy has been found to be an effective alternative strategy to the previous methods for treating female infertility, such as intrauterine insemination, in vitro fertilization, medicines, and surgical procedures. These types of stem cells exert their beneficial role by releasing active mediators, promoting cell homing, and contributing to immune modulation. Here we first provide an overview of MSCs and their crucial roles in both biological and immunological processes. The next large chapter covers current preclinical and clinical studies on the application of MSCs to treat various female reproductive disorders. Finally, we deliberate on the extant challenges that hinder the application of MSCs in female infertility and suggest plausible measures to alleviate these impediments.
Collapse
Affiliation(s)
- Andrew Rizano
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Ria Margiana
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Indonesia General Academic Hospital, Depok, Indonesia.
- Ciptomangunkusumo General Academic Hospital, Jakarta, Indonesia.
| | - Supardi Supardi
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Pety Narulita
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| |
Collapse
|
13
|
Abstract
Bone marrow is known as the site of hematopoiesis. What is not being described in textbooks of immunology is the fact that bone marrow is not only a generative, but also an antigen-responsive, immune organ. It is also a major storage site for antigen-specific memory B and T cells. That bone marrow is a priming site for T cell responses to blood borne antigens was discovered exactly 20 years ago. This review celebrates this important discovery. The review provides a number of examples of medical relevance of bone marrow as a central immune system, including cancer, microbial infections, autoimmune reactions, and bone marrow transplantation. Bone marrow mesenchymal stem cell-derived stromal cells provide distinct bone marrow niches for stem cells and immune cells. By transmitting anti-inflammatory dampening effects, facilitating wound healing and tissue regeneration mesenchymal stem cells contribute to homeostasis of bone and other tissues. Based on the evidence presented, the review proposes that bone marrow is a multifunctional and protective immune system. In an analogy to the central nervous system, it is suggested that bone marrow be designated as the central immune system.
Collapse
|
14
|
Wang Z, Hu Y, Wang X, Chen Y, Wu D, Ji H, Yu C, Fang J, Pan C, Wang L, Wang S, Guo Y, Lu Y, Wu D, Ren F, Zhu H, Shi Y. Comparative Analysis of the Therapeutic Effects of Fresh and Cryopreserved Human Umbilical Cord Derived Mesenchymal Stem Cells in the Treatment of Psoriasis. Stem Cell Rev Rep 2023:10.1007/s12015-023-10556-8. [PMID: 37199874 DOI: 10.1007/s12015-023-10556-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Psoriasis, an inflammatory autoimmune skin disease, is characterized by scaly white or erythematous plaques, which severely influence patients' quality of life and social activities. Mesenchymal stem cells derived from the human umbilical cord (UCMSCs) represent a promising therapeutic approach for psoriasis because of its unique superiority in ethical agreeableness, abundant source, high proliferation capacity, and immunosuppression. Although cryopreservation provided multiple benefits to the cell therapy, it also greatly compromised clinical benefits of MSCs due to impaired cell functions. The current study aims to evaluate the therapeutic efficacy of cryopreserved UCMSCs in a mouse model of psoriasis as well as in patients with psoriasis. Our results showed that cryopreserved and fresh UCMSCs have comparable effects on the suppression of psoriasis-like symptoms such as thickening, erythema, and scaling, and serum IL-17 A secretion in mice model of psoriasis. Moreover, psoriatic patients injected with cryopreserved UCMSCs had a significant improvement in the Psoriasis Area and Severity Index (PASI), Physician Global Assessment (PGA), and Patient Global Assessments (PtGAs) scores compared to baseline values. Mechanically, cryopreserved UCMSCs markedly inhibit the proliferation of PHA-activated PBMCs, type 1 T helper (Th1) and type 17 T helper (Th17) cell differentiation and secretion of inflammatory cytokines including IFN-γ, TNF-a and IL-17 A in PBMCs stimulated by anti-CD3/CD28 beads. Taken together, these data indicated that cryopreserved UCMSCs exhibited great beneficial effect on psoriasis. Thus, cryopreserved UCMSCs can be systemically administered as ''off-the-shelf'' cell product for psoriasis therapy. Trial Registration ChiCTR1800019509. Registered on November 15, 2018-Retrospectively registered, http://www.chictr.org.cn/ .
Collapse
Affiliation(s)
- Zhifeng Wang
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China.
| | - Yifan Hu
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, 200443, China
| | - Xiaoyu Wang
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China
| | - Youdong Chen
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, 200443, China
| | - Danfeng Wu
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China
| | - Houli Ji
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China
| | - Cuicui Yu
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China
| | - Jingmeng Fang
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China
| | - Chunrong Pan
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China
| | - Lianjian Wang
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China
| | - Shouxin Wang
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China
| | - Yinhong Guo
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China
| | - Yi Lu
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China
| | - Di Wu
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China
| | - Fangfang Ren
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China
| | - Hao Zhu
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China.
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, 200443, China.
| |
Collapse
|
15
|
Kuczyńska M, Gabig-Cimińska M, Moskot M. Molecular treatment trajectories within psoriatic T lymphocytes: a mini review. Front Immunol 2023; 14:1170273. [PMID: 37251381 PMCID: PMC10213638 DOI: 10.3389/fimmu.2023.1170273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Multiple biological processes in mammalian cells are implicated in psoriasis (Ps) development and progression, as well as in the pathogenic mechanisms associated with this chronic immune-mediated inflammatory disease (IMID). These refer to molecular cascades contributing to the pathological topical and systemic reactions in Ps, where local skin-resident cells derived from peripheral blood and skin-infiltrating cells originating from the circulatory system, in particular T lymphocytes (T cells), are key actors. The interplay between molecular components of T cell signalling transduction and their involvement in cellular cascades (i.e. throughout Ca2+/CaN/NFAT, MAPK/JNK, PI3K/Akt/mTOR, JAK/STAT pathways) has been of concern in the last few years; this is still less characterised than expected, even though some evidence has accumulated to date identifying them as potential objects in the management of Ps. Innovative therapeutic strategies for the use of compounds such as synthetic Small Molecule Drugs (SMDs) and their various combinations proved to be promising tools for the treatment of Ps via incomplete blocking, also known as modulation of disease-associated molecular tracks. Despite recent drug development having mainly centred on biological therapies for Ps, yet displaying serious limitations, SMDs acting on specific pathway factor isoforms or single effectors within T cell, could represent a valid innovation in real-world treatment patterns in patients with Ps. Of note, due to the intricate crosstalk between intracellular pathways, the use of selective agents targeting proper tracks is, in our opinion, a challenge for modern science regarding the prevention of disease at its onset and also in the prediction of patient response to Ps treatment.
Collapse
Affiliation(s)
| | | | - Marta Moskot
- Department of Medical Biology and Genetics, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
16
|
Yang J, Xiao M, Ma K, Li H, Ran M, Yang S, Yang Y, Fu X, Yang S. Therapeutic effects of mesenchymal stem cells and their derivatives in common skin inflammatory diseases: Atopic dermatitis and psoriasis. Front Immunol 2023; 14:1092668. [PMID: 36891306 PMCID: PMC9986293 DOI: 10.3389/fimmu.2023.1092668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Chronic skin inflammatory diseases including atopic dermatitis (AD) and psoriasis have been considered uncontrolled inflammatory responses, which have usually troubled patients around the world. Moreover, the recent method to treat AD and psoriasis has been based on the inhibition, not regulation, of the abnormal inflammatory response, which can induce a number of side effects and drug resistance in long-term treatment. Mesenchymal stem/stromal cells (MSCs) and their derivatives have been widely used in immune diseases based on their regeneration, differentiation, and immunomodulation with few adverse effects, which makes MSCs a promising treatment for chronic skin inflammatory diseases. As a result, in this review, we aim to systematically discuss the therapeutic effects of various resources of MSCs, the application of preconditioning MSCs and engineering extracellular vesicles (EVs) in AD and psoriasis, and the clinical evaluation of the administration of MSCs and their derivatives, which can provide a comprehensive vision for the application of MSCs and their derivatives in future research and clinical treatment.
Collapse
Affiliation(s)
- Jie Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Minglu Xiao
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Kui Ma
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Hongyu Li
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China.,Tianjin Medical University, Tianjin, China
| | - Mingzi Ran
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Shuxu Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Yuguang Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China
| | - Xiaobing Fu
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Siming Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| |
Collapse
|
17
|
Lu X, Wang H, Wang H, Xie F, Jiang C, Shen D, Zhang H, Yang J, Lin Y. Indirubin combined with umbilical cord mesenchymal stem cells to relieve psoriasis-like skin lesions in BALB/c mice. Front Immunol 2022; 13:1033498. [PMID: 36466901 PMCID: PMC9709816 DOI: 10.3389/fimmu.2022.1033498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/28/2022] [Indexed: 10/08/2023] Open
Abstract
Objective To investigate the efficacy of indirubin combined with human umbilical cord mesenchymal stem cells (hUC-MSCs) in the treatment of psoriatic lesions in BALB/c mice and to explore the related mechanism of indirubin in the treatment of psoriasis. Methods A BALB/c mouse psoriasis model induced by imiquimod was established and randomly divided into the control group, model group, indirubin group, hUC-MSCs group, and indirubin combined with hUC-MSCs group. Psoriasis area and severity index (PASI) score was used to observe skin lesion changes in the psoriasis-like mouse model. The epidermal scale, the degree of keratinization, and the infiltration of inflammatory cells were observed by hematoxylin eosin (HE) staining. The concentrations of TNF-α, IFN-γ, IL-17A, and IL-23 in serum of mice were measured using enzyme-linked immunosorbent assay (ELISA). Results The PASI integral trend chart indicates that hUC-MSCs and indirubin and the combination of drugs could relieve the appearance of skin lesions and accelerate the recovery of skin lesions. The indirubin group had the best effect in improving the scale of skin lesions. HE staining showed that the number of parakeratosis cells in the three treatment groups was significantly reduced, the degree of erythrocyte extravasation dermis hyperplasia and inflammatory cell infiltration was significantly lower than that in the model group, and the skin thickness and spleen index of the combined treatment group exhibited the most noticeable improvement. ELISA showed that the concentrations of TNF-α, IFN-γ, IL-17A, and IL-23 in serum of mice in the hUC-MSCs treatment group, indirubin group, and combined administration group were all decreased compared with those in the model group, and the concentrations of IFN-γ, IL-17A, and IL-23 could be decreased significantly in the indirubin group. Conclusions Both hUC-MSCs and indirubin can effectively reduce psoriasis-like lesions in BALB/c mice, and the combined administration of these drugs has the best effect.
Collapse
Affiliation(s)
- XiaoJuan Lu
- Department of Dermatology, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Hao Wang
- Lab Animal Research Center, Asia Stem Cell Regenerative Pharmaceutical Co. Ltd., Shanghai, China
| | - Hongwei Wang
- Lab Animal Research Center, Asia Stem Cell Regenerative Pharmaceutical Co. Ltd., Shanghai, China
| | - Fan Xie
- Lab Animal Research Center, Asia Stem Cell Regenerative Pharmaceutical Co. Ltd., Shanghai, China
| | - Cuibao Jiang
- Lab Animal Research Center, Asia Stem Cell Regenerative Pharmaceutical Co. Ltd., Shanghai, China
| | - Danpeng Shen
- Lab Animal Research Center, Asia Stem Cell Regenerative Pharmaceutical Co. Ltd., Shanghai, China
| | - Hongpeng Zhang
- Lab Animal Research Center, Asia Stem Cell Regenerative Pharmaceutical Co. Ltd., Shanghai, China
| | - Jie Yang
- Department of Dermatology, The Fifth People’s Hospital of Hainan Province, Haikou, China
| | - Youshu Lin
- Department of Dermatology, The Fifth People’s Hospital of Hainan Province, Haikou, China
| |
Collapse
|
18
|
Human umbilical cord mesenchymal stem cells for psoriasis: a phase 1/2a, single-arm study. Signal Transduct Target Ther 2022; 7:263. [PMID: 35927231 PMCID: PMC9352692 DOI: 10.1038/s41392-022-01059-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/28/2022] [Accepted: 06/13/2022] [Indexed: 12/31/2022] Open
Abstract
Psoriasis is a common, chronic immune-mediated systemic disease that had no effective and durable treatment. Mesenchymal stem cells (MSCs) have immunomodulatory properties. Therefore, we performed a phase 1/2a, single-arm clinical trial to evaluate the safety and efficacy of human umbilical cord-derived MSCs (UMSCs) in the treatment of psoriasis and to preliminarily explore the possible mechanisms. Seventeen patients with psoriasis were enrolled and received UMSC infusions. Adverse events, laboratory parameters, PASI, and PGA were analyzed. We did not observe obvious side effects during the treatment and 6-month follow-up. A total of 47.1% (8/17) of the psoriasis patients had at least 40% improvement in the PASI score, and 17.6% (3/17) had no sign of disease or minimal disease based on the PGA score. And the efficiency was 25% (2/8) for males and 66.7% (6/9) for females. After UMSC transplantation (UMSCT), the frequencies of Tregs and CD4+ memory T cells were significantly increased, and the frequencies of T helper (Th) 17 and CD4+ naive T cells were significantly decreased in peripheral blood (PB) of psoriasis patients. And all responders showed significant increases in Tregs and CD4+ memory T cells, and significant decreases in Th17 cells and serum IL-17 level after UMSCT. And baseline level of Tregs in responders were significantly lower than those in nonresponders. In conclusion, allogeneic UMSCT is safe and partially effective in psoriasis patients, and level of Tregs may be used as a potent biomarker to predict the clinical efficacy of UMSCT. Trial registration Clinical Trials NCT03765957.
Collapse
|
19
|
Yang M, Wang L, Chen Z, Hao W, You Q, Lin J, Tang J, Zhao X, Gao WQ, Xu H. Topical administration of the secretome derived from human amniotic epithelial cells ameliorates psoriasis-like skin lesions in mice. Stem Cell Res Ther 2022; 13:393. [PMID: 35922852 PMCID: PMC9351215 DOI: 10.1186/s13287-022-03091-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease. Tissue stem cells have exhibited a therapeutic effect on psoriatic mice. However, the therapeutic effect of topical administration of the secretome derived from tissue stem cells on psoriasis has not been reported. METHODS The secretome from human amniotic epithelial cells (AEC-SC) and human umbilical cord mesenchymal stem cells (UMSC-SC) was topically administrated on the back of imiquimod-induced psoriasis-like mice. Subsequently, we observed the skin lesions and skin inflammation of psoriasis-like mice. Next, we further analyzed the paracrine factors in AEC-SC and UMSC-SC by protein chips. Lastly, the effect of the crucial paracrine factor was investigated by imiquimod-induced psoriasis-like mice. RESULTS We found that AEC-SC had a better therapeutic effect on attenuating psoriasis-like skin lesions including skin scales, skin redness and skin thickness than UMSC-SC, and it had a better regulatory effect on keratinocyte hyperproliferation and altered differentiation. Thus, we focused on AEC-SC. Further study showed that AEC-SC reduced the infiltration of neutrophils and interleukin-17-producing T cells. Next, the analysis of AEC-SC with protein chip revealed that the levels of anti-inflammatory factor interleukin-1 receptor antagonist (IL-1ra) were much higher in AEC-SC compared to that in UMSC-SC. More importantly, the beneficial effect of AEC-SC on psoriasis-like skin lesions and skin inflammation of mice were significantly impaired when neutralizing with IL-1ra antibody, while the recombinant human IL-1ra showed a less protective effect than AEC-SC. CONCLUSIONS The present study demonstrated that AEC-SC could efficiently ameliorate psoriasis-like skin lesions and skin inflammation and IL-1ra plays an essential role. Therefore, topical administration of AEC-SC may provide a novel strategy for treating psoriasis-like inflammatory skin diseases.
Collapse
Affiliation(s)
- Mengbo Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lanqi Wang
- Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhimin Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Weijie Hao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qian You
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianhua Lin
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jingzhi Tang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xin Zhao
- Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Med-X Research Institute and School of Biological Medical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|