1
|
Sabotič J, Bayram E, Ezra D, Gaudêncio SP, Haznedaroğlu BZ, Janež N, Ktari L, Luganini A, Mandalakis M, Safarik I, Simes D, Strode E, Toruńska-Sitarz A, Varamogianni-Mamatsi D, Varese GC, Vasquez MI. A guide to the use of bioassays in exploration of natural resources. Biotechnol Adv 2024; 71:108307. [PMID: 38185432 DOI: 10.1016/j.biotechadv.2024.108307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/05/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Bioassays are the main tool to decipher bioactivities from natural resources thus their selection and quality are critical for optimal bioprospecting. They are used both in the early stages of compounds isolation/purification/identification, and in later stages to evaluate their safety and efficacy. In this review, we provide a comprehensive overview of the most common bioassays used in the discovery and development of new bioactive compounds with a focus on marine bioresources. We present a comprehensive list of practical considerations for selecting appropriate bioassays and discuss in detail the bioassays typically used to explore antimicrobial, antibiofilm, cytotoxic, antiviral, antioxidant, and anti-ageing potential. The concept of quality control and bioassay validation are introduced, followed by safety considerations, which are critical to advancing bioactive compounds to a higher stage of development. We conclude by providing an application-oriented view focused on the development of pharmaceuticals, food supplements, and cosmetics, the industrial pipelines where currently known marine natural products hold most potential. We highlight the importance of gaining reliable bioassay results, as these serve as a starting point for application-based development and further testing, as well as for consideration by regulatory authorities.
Collapse
Affiliation(s)
- Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
| | - Engin Bayram
- Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - David Ezra
- Department of Plant Pathology and Weed Research, ARO, The Volcani Institute, P.O.Box 15159, Rishon LeZion 7528809, Israel
| | - Susana P Gaudêncio
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Biomolecular Sciences Unit, Department of Chemistry, Blue Biotechnology & Biomedicine Lab, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Berat Z Haznedaroğlu
- Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Nika Janež
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Leila Ktari
- B3Aqua Laboratory, National Institute of Marine Sciences and Technologies, Carthage University, Tunis, Tunisia
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Dina Simes
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; 2GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Evita Strode
- Latvian Institute of Aquatic Ecology, Agency of Daugavpils University, Riga LV-1007, Latvia
| | - Anna Toruńska-Sitarz
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, 81-378 Gdynia, Poland
| | - Despoina Varamogianni-Mamatsi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | | | - Marlen I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 3036 Limassol, Cyprus
| |
Collapse
|
2
|
Sakai S, Aramaki-Hattori N, Kishi K. Fetal Fibroblast Transplantation via Ablative Fractional Laser Irradiation Reduces Scarring. Biomedicines 2023; 11:biomedicines11020347. [PMID: 36830884 PMCID: PMC9953175 DOI: 10.3390/biomedicines11020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Scar treatments include fractional laser treatment, cell transplantation, surgery, skin needling, and dermal fillers. Fractional laser treatments are used to reduce scarring and blurring. Cell transplantation is promising, with mature fibroblasts and adipose-derived stem cells being used clinically, while embryonic fibroblasts are used experimentally. Herein, we developed a combination of ablative CO2 (carbon dioxide) fractional laser and cell transplantation for the treatment of scars. Eight-week-old male C57Bl/6 mice were used to create a full-layer skin defect in the back skin and create scars. The scar was then irradiated using a CO2 fractional laser. The cells were then transplanted onto the scar surface and sealed with a film agent. The transplanted cells were GFP-positive murine fetal fibroblasts (FB), fetal fibroblasts with a long-term sphere-forming culture (LS), and fetal skin with a short-term sphere-forming culture (SS). After transplantation, green fluorescent protein (GFP)-positive cells were scattered in the dermal papillary layer and subcutis in all the groups. LS significantly reduced the degree of scarring, which was closest to normal skin. In conclusion, the combination of ablative fractional laser irradiation and fetal fibroblast transplantation allowed us to develop new methods for scar treatment.
Collapse
Affiliation(s)
| | | | - Kazuo Kishi
- Correspondence: ; Tel.: +81-3-5363-3814; Fax: +81-3-3352-1054
| |
Collapse
|