1
|
Cai H, Huang X, Chen H, Zhao J, Sun H, Huang Y, Guo J, Shen J. A Novel Subtype of Spondylocostal Dysplasia Associated With a Heterozygous Missense FLNA Variant. Orthop Surg 2025. [PMID: 40264431 DOI: 10.1111/os.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Spondylocostal dysplasia (SCD) is characterized by vertebral defects and rib abnormalities. Following radiological diagnosis, further genetic testing is conducted to confirm the mutant loci and identify the subtype of SCD. While seven loci potentially associated with SCD have been identified, rare cases remain unexplained. CASE PRESENTATIONS A 37-year-old female diagnosed with SCD at birth was reported in this study. She exhibited scoliosis and thoracic asymmetry, along with a left-sided bilateral breast deformity. Imaging analysis revealed congenital scoliosis with a lack of segmentation, deformity of multiple ribs, and a lower spinal cord. Using whole-exome sequencing, we identified the genetic variant in the afflicted individual. We detected a heterozygous exon 16 FLNA variant in the afflicted individual and confirmed the absence of pathogenic variants of other known SCD-associated genes. CONCLUSIONS The variant NM_001456.4: c.2351T>C detected in this study enhances our knowledge of the pleiotropy linked with heterozygous FLNA variants. By expanding the mutation spectrum of FLNA, these findings will lay a foundation for further studies on the correlation between genotypes and phenotypes.
Collapse
Affiliation(s)
- Haoyu Cai
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | - Xu'an Huang
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | - Haojie Chen
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | - Junduo Zhao
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | - Heng Sun
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | - Yizhen Huang
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | - Jiayue Guo
- School of Health Policy and Management, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, People's Republic of China
| | - Jianxiong Shen
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
2
|
Holtzhausen C, Heil L, Klingel K, Fox H, Gummert J, Gärtner A, Schmidt A, Krüger M, Kirfel G, van der Ven PFM, Milting H, Clemen CS, Schröder R, Fürst DO, Tiesmeier J. Sudden cardiac death, arrhythmogenic cardiomyopathy and intercalated disc pathology due to reduced filamin C protein levels: a matter of life and death. Hum Mol Genet 2025; 34:726-738. [PMID: 39895064 DOI: 10.1093/hmg/ddaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025] Open
Abstract
Mutations in the human FLNC gene encoding filamin C (FLNc) cause a broad spectrum of sporadic and familial cardiomyopathies and myopathies. We report on the genetic, clinical, morphological and biochemical findings in a German family harboring an FLNC variant that leads to severe cardiac disease comprising sudden cardiac death and arrhythmogenic cardiomyopathy. Genetic analysis identified a novel heterozygous FLNC variant in exon 16 (NM_001458.4:c.2495_2498delAGTA, het; p.K832TfsX45) in i) the index patient suffering from dilated cardiomyopathy necessitating heart transplantation, ii) a son, who died from sudden cardiac death, iii) a second son, who survived an episode of sudden cardiac arrest and iv) a third son affected by isolated skeletal muscle myopathy. FLNc protein levels were markedly reduced in cardiac tissue obtained from the index patient, implying that the p.K832TfsX45 FLNc variant most probably caused nonsense-mediated decay of the corresponding mRNA. Morphological analysis of the diseased cardiac tissue revealed extensive fibrotic remodeling, and marked degenerative changes of the contractile apparatus of cardiomyocytes and severe structural alterations of intercalated discs. Connexin-43 signal intensity at intercalated discs was diminished and FLNc labelling of myofibrils was attenuated or even absent. Proteome analyses demonstrated complex alterations of extracellular matrix and intercalated disc proteins. Our findings demonstrate that this novel, truncating FLNC mutation likely leads to haploinsufficiency, thereby causing a deleterious sequence of degenerative changes of cardiac tissue with extensive fibrotic remodeling and intercalated disc pathology as the structural basis for FLNC-related cardiomyopathy with life-threatening cardiac arrhythmias.
Collapse
MESH Headings
- Female
- Humans
- Male
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/pathology
- Arrhythmogenic Right Ventricular Dysplasia/genetics
- Arrhythmogenic Right Ventricular Dysplasia/pathology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/pathology
- Connexin 43/metabolism
- Connexin 43/genetics
- Death, Sudden, Cardiac/etiology
- Death, Sudden, Cardiac/pathology
- Filamins/genetics
- Filamins/metabolism
- Mutation
- Myocardium/pathology
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Pedigree
Collapse
Affiliation(s)
- Christian Holtzhausen
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Lorena Heil
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Liebermeisterstr. 8, 72076 Tübingen, Germany
| | - Henrik Fox
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany
| | - Jan Gummert
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany
| | - Andreas Schmidt
- Center for Molecular Medicine (CMMC), Medical Faculty, and Excellence Cluster "Cellular Stress Responses in Aging-Associated Diseases" (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50937 Cologne, Germany
| | - Marcus Krüger
- Center for Molecular Medicine (CMMC), Medical Faculty, and Excellence Cluster "Cellular Stress Responses in Aging-Associated Diseases" (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50937 Cologne, Germany
| | - Gregor Kirfel
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Peter F M van der Ven
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany
| | - Christoph S Clemen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, 51147 Cologne, Germany
- Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Dieter O Fürst
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Jens Tiesmeier
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany
- Institute for Anesthesiology, Intensive Care- and Emergency Medicine, MLK-Hospital, Voedestr. 79, Luebbecke, Campus OWL, Ruhr-University Bochum, 32312 Lübbecke, Germany
| |
Collapse
|
3
|
Kokot T, Zimmermann JP, Schwäble AN, Reimann L, Herr AL, Höfflin N, Köhn M, Warscheid B. Protein phosphatase-1 regulates the binding of filamin C to FILIP1 in cultured skeletal muscle cells under mechanical stress. Sci Rep 2024; 14:27348. [PMID: 39521905 PMCID: PMC11550807 DOI: 10.1038/s41598-024-78953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
The actin-binding protein filamin c (FLNc) is a key mediator in the response of skeletal muscle cells to mechanical stress. In addition to its function as a structural scaffold, FLNc acts as a signaling adaptor which is phosphorylated at S2234 in its mechanosensitive domain 20 (d20) through AKT. Here, we discovered a strong dephosphorylation of FLNc-pS2234 in cultured skeletal myotubes under acute mechanical stress, despite high AKT activity. We found that all three protein phosphatase 1 (PP1) isoforms are part of the FLNc d18-21 interactome. Enzymatic assays demonstrate that PP1 efficiently dephosphorylates FLNc-pS2234 and in vitro and in cells upon PP1 activation using specific modulators. FLNc-pS2234 dephosphorylation promotes the interaction with FILIP1, a mediator for filamin degradation. Altogether, we present a model in which dephosphorylation of FLNc d20 by the dominant action of PP1c prevails over AKT activity to promote the binding of the filamin degradation-inducing factor FILIP1 during acute mechanical stress.
Collapse
Affiliation(s)
- Thomas Kokot
- Integrative Signaling Research, Institute of Biology III, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Johannes P Zimmermann
- Biochemistry II, Theodor-Boveri-Institut, Biozentrum, Faculty of Chemistry and Pharmacy, University of Würzburg, Würzburg, Germany
| | - Anja N Schwäble
- Biochemistry - Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Current address: Celonic AG, Basel, Switzerland
| | - Lena Reimann
- Biochemistry - Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Current address: Celonic AG, Basel, Switzerland
| | - Anna L Herr
- Biochemistry - Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Current address: Sartorius CellGenix GmbH, Freiburg, Germany
| | - Nico Höfflin
- Integrative Signaling Research, Institute of Biology III, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Maja Köhn
- Integrative Signaling Research, Institute of Biology III, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Bettina Warscheid
- Biochemistry II, Theodor-Boveri-Institut, Biozentrum, Faculty of Chemistry and Pharmacy, University of Würzburg, Würzburg, Germany.
- Biochemistry - Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Johnson OD, Paul S, Gutierrez JA, Russell WK, Ward MC. DNA damage-associated protein co-expression network in cardiomyocytes informs on tolerance to genetic variation and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607863. [PMID: 39185220 PMCID: PMC11343126 DOI: 10.1101/2024.08.14.607863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Cardiovascular disease (CVD) is associated with both genetic variants and environmental factors. One unifying consequence of the molecular risk factors in CVD is DNA damage, which must be repaired by DNA damage response proteins. However, the impact of DNA damage on global cardiomyocyte protein abundance, and its relationship to CVD risk remains unclear. We therefore treated induced pluripotent stem cell-derived cardiomyocytes with the DNA-damaging agent Doxorubicin (DOX) and a vehicle control, and identified 4,178 proteins that contribute to a network comprising 12 co-expressed modules and 403 hub proteins with high intramodular connectivity. Five modules correlate with DOX and represent distinct biological processes including RNA processing, chromatin regulation and metabolism. DOX-correlated hub proteins are depleted for proteins that vary in expression across individuals due to genetic variation but are enriched for proteins encoded by loss-of-function intolerant genes. While proteins associated with genetic risk for CVD, such as arrhythmia are enriched in specific DOX-correlated modules, DOX-correlated hub proteins are not enriched for known CVD risk proteins. Instead, they are enriched among proteins that physically interact with CVD risk proteins. Our data demonstrate that DNA damage in cardiomyocytes induces diverse effects on biological processes through protein co-expression modules that are relevant for CVD, and that the level of protein connectivity in DNA damage-associated modules influences the tolerance to genetic variation.
Collapse
Affiliation(s)
- Omar D. Johnson
- Biochemistry, Cellular and Molecular Biology Graduate Program, University of Texas Medical Branch, Galveston, Texas, USA
- MD-PhD Combined Degree Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sayan Paul
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jose A. Gutierrez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michelle C. Ward
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
5
|
Berwanger C, Terres D, Pesta D, Eggers B, Marcus K, Wittig I, Wiesner RJ, Schröder R, Clemen CS. Immortalised murine R349P desmin knock-in myotubes exhibit a reduced proton leak and decreased ADP/ATP translocase levels in purified mitochondria. Eur J Cell Biol 2024; 103:151399. [PMID: 38412640 DOI: 10.1016/j.ejcb.2024.151399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024] Open
Abstract
Desmin gene mutations cause myopathies and cardiomyopathies. Our previously characterised R349P desminopathy mice, which carry the ortholog of the common human desmin mutation R350P, showed marked alterations in mitochondrial morphology and function in muscle tissue. By isolating skeletal muscle myoblasts from offspring of R349P desminopathy and p53 knock-out mice, we established an immortalised cellular disease model. Heterozygous and homozygous R349P desmin knock-in and wild-type myoblasts could be well differentiated into multinucleated spontaneously contracting myotubes. The desminopathy myoblasts showed the characteristic disruption of the desmin cytoskeleton and desmin protein aggregation, and the desminopathy myotubes showed the characteristic myofibrillar irregularities. Long-term electrical pulse stimulation promoted myotube differentiation and markedly increased their spontaneous contraction rate. In both heterozygous and homozygous R349P desminopathy myotubes, this treatment restored a regular myofibrillar cross-striation pattern as seen in wild-type myotubes. High-resolution respirometry of mitochondria purified from myotubes by density gradient ultracentrifugation revealed normal oxidative phosphorylation capacity, but a significantly reduced proton leak in mitochondria from the homozygous R349P desmin knock-in cells. Consistent with a reduced proton flux across the inner mitochondrial membrane, our quantitative proteomic analysis of the purified mitochondria revealed significantly reduced levels of ADP/ATP translocases in the homozygous R349P desmin knock-in genotype. As this alteration was also detected in the soleus muscle of R349P desminopathy mice, which, in contrast to the mitochondria purified from cultured cells, showed a variety of other dysregulated mitochondrial proteins, we consider this finding to be an early step in the pathogenesis of secondary mitochondriopathy in desminopathy.
Collapse
Affiliation(s)
- Carolin Berwanger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Dominic Terres
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Dominik Pesta
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Medical Faculty, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Britta Eggers
- Medizinisches Proteom-Center, Medical Faculty, and Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Medical Faculty, and Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Rudolf J Wiesner
- Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Rolf Schröder
- Department of Neuropathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph S Clemen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Zawadka P, Zielińska W, Gagat M, Izdebska M. Role of Filamin A in Growth and Migration of Breast Cancer-Review. Curr Issues Mol Biol 2024; 46:3408-3423. [PMID: 38666944 PMCID: PMC11049233 DOI: 10.3390/cimb46040214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Despite ongoing research in the field of breast cancer, the morbidity rates indicate that the disease remains a significant challenge. While patients with primary tumors have relatively high survival rates, these chances significantly decrease once metastasis begins. Thus, exploring alternative approaches, such as targeting proteins overexpressed in malignancies, remains significant. Filamin A (FLNa), an actin-binding protein (ABP), is involved in various cellular processes, including cell migration, adhesion, proliferation, and DNA repair. Overexpression of the protein was confirmed in samples from patients with numerous oncological diseases such as prostate, lung, gastric, colorectal, and pancreatic cancer, as well as breast cancer. Although most researchers concur on its role in promoting breast cancer progression and aggressiveness, discrepancies exist among studies. Moreover, the precise mechanisms through which FLNa affects cell migration, invasion, and even cancer progression remain unclear, highlighting the need for further research. To evaluate FLNa's potential as a therapeutic target, we have summarized its roles in breast cancer.
Collapse
Affiliation(s)
- Patryk Zawadka
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (P.Z.); (W.Z.); (M.I.)
| | - Wioletta Zielińska
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (P.Z.); (W.Z.); (M.I.)
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (P.Z.); (W.Z.); (M.I.)
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland
| | - Magdalena Izdebska
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (P.Z.); (W.Z.); (M.I.)
| |
Collapse
|