1
|
Volf M, Volfová T, Seifert CL, Ludwig A, Engelmann RA, Jorge LR, Richter R, Schedl A, Weinhold A, Wirth C, van Dam NM. A mosaic of induced and non-induced branches promotes variation in leaf traits, predation and insect herbivore assemblages in canopy trees. Ecol Lett 2021; 25:729-739. [PMID: 34958165 DOI: 10.1111/ele.13943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/10/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
Forest canopies are complex and highly diverse environments. Their diversity is affected by pronounced gradients in abiotic and biotic conditions, including variation in leaf chemistry. We hypothesised that branch-localised defence induction and vertical stratification in mature oaks constitute sources of chemical variation that extend across trophic levels. To test this, we combined manipulation of plant defences, predation monitoring, food-choice trials with herbivores and sampling of herbivore assemblages. Both induction and vertical stratification affected branch chemistry, but the effect of induction was stronger. Induction increased predation in the canopy and reduced herbivory in bioassays. The effects of increased predation affected herbivore assemblages by decreasing their abundance, and indirectly, their richness. In turn, we show that there are multiple factors contributing to variation across canopies. Branch-localised induction, variation between tree individuals and predation may be the ones with particularly strong effects on diverse assemblages of insects in temperate forests.
Collapse
Affiliation(s)
- Martin Volf
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Tereza Volfová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Carlo L Seifert
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Faculty of Forest Sciences and Forest Ecology, Department of Forest Nature Conservation, Georg-August-University, Göttingen, Germany
| | - Antonia Ludwig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute for Biology, University of Leipzig, Leipzig, Germany
| | - Rolf A Engelmann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute for Biology, University of Leipzig, Leipzig, Germany
| | - Leonardo Ré Jorge
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Ronny Richter
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute for Biology, University of Leipzig, Leipzig, Germany.,Geoinformatics and Remote Sensing, Institute for Geography, University of Leipzig, Leipzig, Germany
| | - Andreas Schedl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute for Biology, University of Leipzig, Leipzig, Germany.,Max-Planck Institute for Biogeochemistry, Jena, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
2
|
Iqbal Z, Iqbal MS, Hashem A, Abd_Allah EF, Ansari MI. Plant Defense Responses to Biotic Stress and Its Interplay With Fluctuating Dark/Light Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:631810. [PMID: 33763093 PMCID: PMC7982811 DOI: 10.3389/fpls.2021.631810] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 05/24/2023]
Abstract
Plants are subjected to a plethora of environmental cues that cause extreme losses to crop productivity. Due to fluctuating environmental conditions, plants encounter difficulties in attaining full genetic potential for growth and reproduction. One such environmental condition is the recurrent attack on plants by herbivores and microbial pathogens. To surmount such attacks, plants have developed a complex array of defense mechanisms. The defense mechanism can be either preformed, where toxic secondary metabolites are stored; or can be inducible, where defense is activated upon detection of an attack. Plants sense biotic stress conditions, activate the regulatory or transcriptional machinery, and eventually generate an appropriate response. Plant defense against pathogen attack is well understood, but the interplay and impact of different signals to generate defense responses against biotic stress still remain elusive. The impact of light and dark signals on biotic stress response is one such area to comprehend. Light and dark alterations not only regulate defense mechanisms impacting plant development and biochemistry but also bestow resistance against invading pathogens. The interaction between plant defense and dark/light environment activates a signaling cascade. This signaling cascade acts as a connecting link between perception of biotic stress, dark/light environment, and generation of an appropriate physiological or biochemical response. The present review highlights molecular responses arising from dark/light fluctuations vis-à-vis elicitation of defense mechanisms in plants.
Collapse
Affiliation(s)
- Zahra Iqbal
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
3
|
Boyle WA, Shogren EH, Brawn JD. Hygric Niches for Tropical Endotherms. Trends Ecol Evol 2020; 35:938-952. [PMID: 32693967 DOI: 10.1016/j.tree.2020.06.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Biotic selective pressures dominate explanations for the evolutionary ecology of tropical endotherms. Yet, abiotic factors, principally precipitation regimes, shape biogeographical and phenological patterns in tropical regions. Despite its importance, we lack a framework for understanding when, why, and how rain affects endotherms. Here, we review how tropical birds and mammals respond to rain at individual, population, and community levels, and propose a conceptual framework to interpret divergent responses. Diverse direct and indirect mechanisms underlie responses to rainfall, including physiological, top-down, and food-related drivers. Our framework constitutes a roadmap for the empirical studies required to understand the consequences of rainfall variability. Identifying the patterns and mechanisms underpinning responses to temporal variation in precipitation is crucial to anticipate consequences of anthropogenic climate change.
Collapse
Affiliation(s)
- W Alice Boyle
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| | - Elsie H Shogren
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Jeffrey D Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Zvereva EL, Paolucci LN, Kozlov MV. Top-down factors contribute to differences in insect herbivory between saplings and mature trees in boreal and tropical forests. Oecologia 2020; 193:167-176. [PMID: 32314043 PMCID: PMC7235072 DOI: 10.1007/s00442-020-04659-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/15/2020] [Indexed: 11/26/2022]
Abstract
Ontogenetic changes in herbivory are generally not consistent with ontogenetic changes in defensive traits of woody plants. This inconsistency suggests that other factors may affect ontogenetic trajectories in herbivory. We tested the hypothesis that top-down factors contribute to differences in foliar losses to insects between juvenile and mature trees in tropical and boreal forests. We used artificial caterpillars made of modelling clay to compare predation rates between saplings and mature trees of two common forest species, Siparuna guianensis in Brazil (tropical site) and Betula pubescens in Finland (boreal site). Leaf area losses to chewing insects in saplings were 2.5-fold higher than in mature trees in both species. Physical plant defences (measured as specific leaf area, SLA) did not differ between saplings and mature trees in the boreal forest, whereas in the tropical forest, SLA was greater in saplings than in mature trees. Attack rates on the model prey by birds were higher in the boreal forest, whereas attack rates by arthropod predators were higher in the tropical forest. Overall, predation rates on model prey were consistently higher on mature trees than on saplings at both sites, but in the boreal site, this pattern was primarily driven by birds, whereas in the tropical site, it was primarily driven by arthropod predators. We conclude that the effect of predation on herbivorous insects may considerably contribute to ontogenetic differences in herbivory, but the relative roles of different predatory groups and of top-down and bottom-up factors may vary between environments.
Collapse
Affiliation(s)
- Elena L Zvereva
- Department of Biology, University of Turku, 20014, Turku, Finland.
| | - Lucas N Paolucci
- Setor de Ecologia E Conservação, Departamento de Biologia, Universidade Federal de Lavras, Lavras, CEP: 37200-000, Brazil
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Universitário, Viçosa, MG, CEP: 36570-900, Brazil
| | - Mikhail V Kozlov
- Department of Biology, University of Turku, 20014, Turku, Finland
| |
Collapse
|
5
|
Gunnarsson B, Wiklander K. Foraging mode of spiders affects risk of predation by birds. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12489] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Bengt Gunnarsson
- Department of Biological and Environmental Sciences; University of Gothenburg; Box 461 SE 405 30 Göteborg Sweden
| | - Kerstin Wiklander
- Mathematical Sciences; University of Gothenburg; Chalmers University of Technology; SE 412 96 Göteborg Sweden
| |
Collapse
|
6
|
The omnivorous collared peccary negates an insectivore-generated trophic cascade in Costa Rican wet tropical forest understorey. JOURNAL OF TROPICAL ECOLOGY 2013. [DOI: 10.1017/s0266467413000709] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract:Insectivorous birds and bats often protect plants through density- and trait-mediated cascades, but the degree to which insectivores reduce herbivorous arthropods and leaf damage varies among systems. Top-down interaction strength may be influenced by the biotic and abiotic context, including the presence of vegetation-disturbing animals. We tested two hypotheses: (1) insectivorous birds and bats initiate trophic cascades in tropical rain-forest understorey; and (2) the native, omnivorous collared peccary (Pecari tajacu) negates these cascades via non-trophic effects. We studied the top-down effects of birds and bats on understorey plants in north-eastern Costa Rica using 60 netted exclosures within and outside existing peccary exclosures. Excluding birds and bats increased total arthropod densities by half, both with and without peccaries. Bird/bat exclosures increased Diptera density by 28% and leaf damage by 24% without peccaries, consistent with a trophic cascade. However, bird/bat exclosures decreased Diptera density by 32% and leaf damage by 34% with peccaries, a negation of the trophic cascade. Excluding peccaries increased leaf damage by 43% on plants without birds and bats. This is the first study, to our knowledge, to demonstrate that the non-trophic activity of an omnivorous ungulate can reverse a trophic cascade.
Collapse
|
7
|
Morrison EB, Lindell CA. Birds and bats reduce insect biomass and leaf damage in tropical forest restoration sites. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2012; 22:1526-1534. [PMID: 22908711 DOI: 10.1890/11-1118.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Both birds and bats are important insect predators in tropical systems. However, the relative influence of birds and bats on insect populations and their indirect effects on leaf damage have not previously been investigated in tropical forest restoration sites. Leaf damage by herbivorous insects can negatively affect the growth and survival of tropical plants and thus can influence the success of tropical forest restoration efforts. We used an exclosure experiment to examine the top-down effects of birds and bats on insects and leaf damage in a large-scale forest restoration experiment. Given the potential influence of tree planting design on bird and bat abundances, we also investigated planting design effects on bird and bat insectivory and leaf damage. The experiment included two planting treatment plots: islands, where trees were planted in patches, and plantations, where trees were planted in rows to create continuous cover. In both types of plots, insect biomass was highest on tree branches where both birds and bats were excluded from foraging and lowest on branches without exclosures where both birds and bats were present. In the island plots, birds and bats had approximately equal impacts on insect populations, while in plantations bats appeared to have a slightly stronger effect on insects than did birds. In plantations, the levels of leaf damage were higher on branches where birds and bats were excluded than on branches where both had access. In island plots, no significant differences in leaf damage were found between exclosure treatments although potential patterns were in the same direction as in the plantations. Our results suggest that both birds and bats play important roles as top predators in restoration systems by reducing herbivorous insects and their damage to planted trees. Tropical restoration projects should include efforts to attract and provide suitable habitat for birds and bats, given their demonstrated ecological importance.
Collapse
Affiliation(s)
- Emily B Morrison
- Department of Zoology and Center for Global Change and Earth Observations, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
8
|
Beckman NG, Muller-Landau HC. Linking fruit traits to variation in predispersal vertebrate seed predation, insect seed predation, and pathogen attack. Ecology 2012; 92:2131-40. [PMID: 22164837 DOI: 10.1890/10-2378.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The importance of vertebrates, invertebrates, and pathogens for plant communities has long been recognized, but their absolute and relative importance in early recruitment of multiple coexisting tropical plant species has not been quantified. Further, little is known about the relationship of fruit traits to seed mortality due to natural enemies in tropical plants. To investigate the influences of vertebrates, invertebrates, and pathogens on reproduction of seven canopy plant species varying in fruit traits, we quantified reductions in fruit development and seed germination due to vertebrates, invertebrates, and fungal pathogens through experimental removal of these enemies using canopy exclosures, insecticide, and fungicide, respectively. We also measured morphological fruit traits hypothesized to mediate interactions of plants with natural enemies of seeds. Vertebrates, invertebrates, and fungi differentially affected predispersal seed mortality depending on the plant species. Fruit morphology explained some variation among species; species with larger fruit and less physical protection surrounding seeds exhibited greater negative effects of fungi on fruit development and germination and experienced reduced seed survival integrated over fruit development and germination in response to vertebrates. Within species, variation in seed size also contributed to variation in natural enemy effects on seed viability. Further, seedling growth was higher for seeds that developed in vertebrate exclosures for Anacardium excelsum and under the fungicide treatment for Castilla elastica, suggesting that predispersal effects of natural enemies may carry through to the seedling stage. This is the first experimental test of the relative effects of vertebrates, invertebrates, and pathogens on seed survival in the canopy. This study motivates further investigation to determine the generality of our results for plant communities. If there is strong variation in natural enemy attack among species related to differences in fruit morphology, then quantification of fruit traits will aid in predicting the outcomes of interactions between plants and their natural enemies. This is particularly important in tropical forests, where high species diversity makes it logistically impossible to study every plant life history stage of every species.
Collapse
Affiliation(s)
- Noelle G Beckman
- Smithsonian Tropical Research Institute, Unit 9100 Box 0948, DPO AA 34002, USA.
| | | |
Collapse
|
9
|
Stephenson NL, van Mantgem PJ, Bunn AG, Bruner H, Harmon ME, O'Connell KB, Urban DL, Franklin JF. Causes and implications of the correlation between forest productivity and tree mortality rates. ECOL MONOGR 2011. [DOI: 10.1890/10-1077.1] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Ruiz-Guerra B, Renton K, Dirzo R. Consequences of Fragmentation of Tropical Moist Forest for Birds and Their Role in Predation of Herbivorous Insects. Biotropica 2011. [DOI: 10.1111/j.1744-7429.2011.00795.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Heyman E, Gunnarsson B. Management effect on bird and arthropod interaction in suburban woodlands. BMC Ecol 2011; 11:8. [PMID: 21362174 PMCID: PMC3058007 DOI: 10.1186/1472-6785-11-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 03/01/2011] [Indexed: 11/21/2022] Open
Abstract
Background Experiments from a range of ecosystems have shown that insectivorous birds are important in controlling the populations of their invertebrate prey. Here, we report on a large field experiment testing the hypothesis that management for enhancing recreational values in suburban woodlands affects the intensity of bird predation on canopy-living arthropods. Bird exclosures were used in two types of management (understory clearance and dense understory) at two foraging heights in oak Quercus robur canopies and the experiment was replicated at two sites. Results The biomass and abundance of arthropods were high on net-enclosed branches but strongly reduced on control branches in both types of management. In woods with dense understory, the effect of bird predation on arthropod abundance was about twice as high as in woods with understory clearance. The effect of bird predation on arthropod biomass was not significantly affected by management. Conclusions Our data provide experimental evidence to support the idea that bird predation on arthropods can be affected by forest management. We suggest that the mechanism is twofold: reduction of bird abundance and shift of foraging behaviour. In urban woodlands, there may be a management trade-off between enhancing recreational values and promoting bird predation rates on arthropods.
Collapse
Affiliation(s)
- Erik Heyman
- Department of Plant and Environmental Sciences, University of Gothenburg, Göteborg, Sweden.
| | | |
Collapse
|
12
|
Caterpillar abundance and parasitism in a seasonally dry versus wet tropical forest of Panama. JOURNAL OF TROPICAL ECOLOGY 2010. [DOI: 10.1017/s0266467410000568] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract:Rainfall seasonality can strongly influence biotic interactions by affecting host plant quality, and thus potentially regulating herbivore exposure to natural enemies. Plant defences are predicted to increase from dry to wet forests, rendering wet-forest caterpillars more vulnerable to parasitoids due to the slow-growth-high-mortality hypothesis. We collected and reared caterpillars from the understorey and trail edges of a wet forest and a seasonally dry forest to determine whether wet-forest caterpillars suffered a higher prevalence of parasitism and were less abundant than dry-forest caterpillars. In the two forests, caterpillar abundances (on average 8 h−1) and prevalence of parasitism (18%) were very similar regardless of feeding niche for both parasitism (27% versus 29% in shelter builders, and 16% versus 11% in external feeders) and caterpillar abundances (shelter builders: 1.42 versus 2.39, and external feeders: 8.27 versus 5.49 caterpillars h−1) in the dry and wet forests, respectively. A similar comparative analysis conducted in the canopy and understorey of the dry forest revealed a higher prevalence of parasitism in the canopy (43%) despite caterpillar densities similar to those in the understorey. Overall, shelter builders suffered higher parasitism than external feeders (32% versus 14.9%), and were attacked primarily by flies, whereas external feeders were more vulnerable to attack by parasitoid wasps.
Collapse
|
13
|
Mäntylä E, Klemola T, Laaksonen T. Birds help plants: a meta-analysis of top-down trophic cascades caused by avian predators. Oecologia 2010; 165:143-51. [DOI: 10.1007/s00442-010-1774-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 08/27/2010] [Indexed: 11/27/2022]
|
14
|
Comita LS, Engelbrecht BMJ. Seasonal and spatial variation in water availability drive habitat associations in a tropical forest. Ecology 2009; 90:2755-65. [DOI: 10.1890/08-1482.1] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
|
16
|
Barber NA, Marquis RJ. Spatial Variation in Top-down Direct and Indirect Effects on White Oak (Quercus alba L.). AMERICAN MIDLAND NATURALIST 2009. [DOI: 10.1674/0003-0031-162.1.169] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Van Bael SA, Philpott SM, Greenberg R, Bichier P, Barber NA, Mooney KA, Gruner DS. Birds as predators in tropical agroforestry systems. Ecology 2008; 89:928-34. [PMID: 18481517 DOI: 10.1890/06-1976.1] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Insectivorous birds reduce arthropod abundances and their damage to plants in some, but not all, studies where predation by birds has been assessed. The variation in bird effects may be due to characteristics such as plant productivity or quality, habitat complexity, and/or species diversity of predator and prey assemblages. Since agroforestry systems vary in such characteristics, these systems provide a good starting point for understanding when and where we can expect predation by birds to be important. We analyze data from bird exclosure studies in forests and agroforestry systems to ask whether birds consistently reduce their arthropod prey base and whether bird predation differs between forests and agroforestry systems. Further, we focus on agroforestry systems to ask whether the magnitude of bird predation (1) differs between canopy trees and understory plants, (2) differs when migratory birds are present or absent, and (3) correlates with bird abundance and diversity. We found that, across all studies, birds reduce all arthropods, herbivores, carnivores, and plant damage. We observed no difference in the magnitude of bird effects between agroforestry systems and forests despite simplified habitat structure and plant diversity in agroforests. Within agroforestry systems, bird reduction of arthropods was greater in the canopy than the crop layer. Top-down effects of bird predation were especially strong during censuses when migratory birds were present in agroforestry systems. Importantly, the diversity of the predator assemblage correlated with the magnitude of predator effects; where the diversity of birds, especially migratory birds, was greater, birds reduced arthropod densities to a greater extent. We outline potential mechanisms for relationships between bird predator, insect prey, and habitat characteristics, and we suggest future studies using tropical agroforests as a model system to further test these areas of ecological theory.
Collapse
|
18
|
|
19
|
Skoczylas DR, Muth NZ, Niesenbaum RA. Contribution of insectivorous avifauna to top down control of Lindera benzoin herbivores at forest edge and interior habitats. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2007. [DOI: 10.1016/j.actao.2007.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Roberts MR, Paul ND. Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defence against pests and pathogens. THE NEW PHYTOLOGIST 2006; 170:677-99. [PMID: 16684231 DOI: 10.1111/j.1469-8137.2006.01707.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plants frequently suffer attack from herbivores and microbial pathogens, and have evolved a complex array of defence mechanisms to resist defoliation and disease. These include both preformed defences, ranging from structural features to stores of toxic secondary metabolites, and inducible defences, which are activated only after an attack is detected. It is well known that plant defences against pests and pathogens are commonly affected by environmental conditions, but the mechanisms by which responses to the biotic and abiotic environments interact are only poorly understood. In this review, we consider the impact of light on plant defence, in terms of both plant life histories and rapid scale molecular responses to biotic attack. We bring together evidence that illustrates that light not only modulates defence responses via its influence on biochemistry and plant development but, in some cases, is essential for the development of resistance. We suggest that the interaction between the light environment and plant defence is multifaceted, and extends across different temporal and biological scales.
Collapse
Affiliation(s)
- Michael R Roberts
- Department of Biological Sciences, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | | |
Collapse
|