1
|
Wada Y, Iwasaki K, Yusa Y. Effects of adult and egg predators on hatching plasticity of the pulmonate limpet. Oecologia 2025; 207:86. [PMID: 40397028 PMCID: PMC12095334 DOI: 10.1007/s00442-025-05712-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 04/10/2025] [Indexed: 05/22/2025]
Abstract
In response to predation threats during the embryonic period, prey from diverse taxonomic groups exhibit plasticity in their hatching timing. In theory, predators of adult prey, as well as predators of eggs or embryos, can influence hatching timing. Similarly, not only embryos but also parents of prey can regulate hatching timing. However, research on the influence of adult predators and adult prey on hatching timing in species with separate predators for adults and eggs remains limited. To the best of our knowledge, no study has investigated this phenomenon in marine invertebrates under natural conditions. In this study, we investigated the effects of life-stage-specific predators (i.e., adult and egg predators) on the hatching timing of the pulmonate limpet (Siphonaria sirius), which undergoes planktonic development on an intertidal rocky shore. The presence of adult predators before and after egg-laying did not affect the hatching timing. Furthermore, while the egg predators present before egg-laying did not influence hatching timing, those present after egg-laying accelerated it. The results indicate that embryos, rather than their parents, determine hatching timing in response to their own predation risk. This finding highlights a strategy in which organisms with planktonic development rely on embryonic plasticity to mitigate strong predation risks during the egg stage. To understand how predation risk shapes predator-prey dynamics, it is critical to identify how predators, specific to each life-history stage of prey (such as adult and egg), interact with prey at different life-history stages during key events like reproduction.
Collapse
Affiliation(s)
- Yoko Wada
- Faculty of Agriculture, Miyazaki University, Miyazaki, Japan.
| | | | - Yoichi Yusa
- Faculty of Science, Nara Women's University, Nara, Japan
| |
Collapse
|
2
|
Sniegula S, Stoks R, Golab MJ. Insect responses to seasonal time constraints under global change are facilitated by warming and counteracted by invasive alien predators. Sci Rep 2024; 14:24565. [PMID: 39427019 PMCID: PMC11490650 DOI: 10.1038/s41598-024-76057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
In seasonal environments, organisms with complex life cycles not only contend with seasonal time constraints (TC) but also increasingly face global change stressors that may interfere with responses to TC. Here, we tested how warming and predator stress imposed during the egg and larval stages shaped life history and behavioural responses to TC in the temperate damselfly Ischnura elegans. Eggs from early and late clutches in the season were subjected to ambient and 4 °C warming temperature and the presence or absence of predator cues from perch and signal crayfish. After hatching, larvae were retained at the same thermal regime, and the predator treatment was continued or not up to emergence. The late eggs decreased their development time, especially under warming and when not exposed to predator cues. However, the late eggs increased their development time when exposed to predator cues, especially to crayfish cues. The TC decreased survival of late larvae that were as eggs exposed to crayfish cues, indicating a carry-over effect. The TC and warming additively reduced late larvae development time to emergence. Independent of the TC, predator cue effects on development time were stronger during the egg than during the larval stage. The late individuals expressed lower mass at emergence, which mirrored the size difference between field-collected mothers. Warming caused a higher mass at emergence. The late individuals increased their boldness and showed a higher number of moves, whereas warming caused a decreased boldness. There was no predator cue effect on larval behaviour. The results indicate that late individuals compensate for late season egg laying, which is facilitated under warming but counteracted under predation risk, especially when imposed by the crayfish.
Collapse
Affiliation(s)
- Szymon Sniegula
- Institute of Nature Conservation Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Maria J Golab
- Institute of Nature Conservation Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| |
Collapse
|
3
|
Treadaway KD, Hale RE. Hatching plasticity is associated with a more advanced stage at hatching in an Ambystoma with terrestrial eggs. Ecol Evol 2024; 14:e11160. [PMID: 38505175 PMCID: PMC10948370 DOI: 10.1002/ece3.11160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
Hatching plasticity allows animals to initiate hatching in response to environmental cues including predation, flooding, and hypoxia. In species with terrestrial eggs but aquatic larvae, hatching plasticity often manifests as extended development of embryos when water is not available. Although these effects are taxonomically widespread, little attention has focused on differences in plasticity across closely related species with terrestrial and aquatic embryos. We propose that the terrestrial embryonic environment favors slower and prolonged development and, consequently, that we should see differences in development between closely related species that differ in where they lay their eggs. We test this hypothesis by comparing embryonic development between two mole salamanders, Ambystoma opacum and A. annulatum. Most Ambystoma lay eggs submerged in ponds but A. opacum lays its eggs on land, where hatching is triggered when eggs are submerged by rising pond levels. Embryos of both species were reared under common laboratory conditions simulating both aquatic and terrestrial nest sites. Consistent with our hypothesis, we found that A. opacum embryos exhibited slower development and took longer to hatch than A. annulatum embryos in both rearing environments. Furthermore, we observed in A. opacum a plasticity in hatching stage that was absent in A. annulatum. Our results indicate that the terrestrial-laying A. opacum has evolved slower and prolonged development relative to its aquatic-laying congener and suggest that embryonic survival in the unpredictable terrestrial environment may be facilitated by developmental plasticity.
Collapse
Affiliation(s)
| | - Rebecca E. Hale
- Biology DepartmentUniversity of North Carolina AshevilleAshevilleNorth CarolinaUSA
| |
Collapse
|
4
|
Majoris JE, Francisco FA, Burns CM, Brandl SJ, Warkentin KM, Buston PM. Paternal care regulates the timing, synchrony and success of hatching in a coral reef fish. Proc Biol Sci 2022; 289:20221466. [PMID: 36100017 PMCID: PMC9470247 DOI: 10.1098/rspb.2022.1466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/19/2022] [Indexed: 11/12/2022] Open
Abstract
In oviparous species, the timing of hatching is a crucial decision, but for developing embryos, assessing cues that indicate the optimal time to hatch is challenging. In species with pre-hatching parental care, parents can assess environmental conditions and induce their offspring to hatch. We provide the first documentation of parental hatching regulation in a coral reef fish, demonstrating that male neon gobies (Elacatinus colini) directly regulate hatching by removing embryos from the clutch and spitting hatchlings into the water column. All male gobies synchronized hatching within 2 h of sunrise, regardless of when eggs were laid. Paternally incubated embryos hatched later in development, more synchronously, and had higher hatching success than artificially incubated embryos that were shaken to provide a vibrational stimulus or not stimulated. Artificially incubated embryos displayed substantial plasticity in hatching times (range: 80-224 h post-fertilization), suggesting that males could respond to environmental heterogeneity by modifying the hatching time of their offspring. Finally, paternally incubated embryos hatched with smaller yolk sacs and larger propulsive areas than artificially incubated embryos, suggesting that paternal effects on hatchling phenotypes may influence larval dispersal and fitness. These findings highlight the complexity of fish parental care behaviour and may have important, and currently unstudied, consequences for fish population dynamics.
Collapse
Affiliation(s)
- John E. Majoris
- Marine Program, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Department of Marine Science, The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Fritz A. Francisco
- Department of Biology, Humboldt University Berlin, Berlin 10587, Germany
- Excellence Cluster Science of Intelligence, Technical University Berlin, Berlin 10587, Germany
| | - Corinne M. Burns
- Marine Program, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, 315 alleé des Ursulines, C.P. 3300, Rimouski, QC, Canada G2 L 3A1
| | - Simon J. Brandl
- Department of Marine Science, The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Karen M. Warkentin
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Peter M. Buston
- Marine Program, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| |
Collapse
|
5
|
Du WG, Shine R. The behavioural and physiological ecology of embryos: responding to the challenges of life inside an egg. Biol Rev Camb Philos Soc 2022; 97:1272-1286. [PMID: 35166012 DOI: 10.1111/brv.12841] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/24/2022]
Abstract
Adaptations of post-hatching animals have attracted far more study than have embryonic responses to environmental challenges, but recent research suggests that we have underestimated the complexity and flexibility of embryos. We advocate a dynamic view of embryos as organisms capable of responding - on both ecological and evolutionary timescales - to their developmental environments. By viewing embryos in this way, rather than assuming an inability of pre-hatching stages to adapt and respond, we can broaden the ontogenetic breadth of evolutionary and ecological research. Both biotic and abiotic factors affect embryogenesis, and embryos exhibit a broad range of behavioural and physiological responses that enable them to deal with changes in their developmental environments in the course of interactions with their parents, with other embryos, with predators, and with the physical environment. Such plasticity may profoundly affect offspring phenotypes and fitness, and in turn influence the temporal and spatial dynamics of populations and communities. Future research in this field could benefit from an integrated framework that combines multiple approaches (field investigations, manipulative experiments, ecological modelling) to clarify the mechanisms and consequences of embryonic adaptations and plasticity.
Collapse
Affiliation(s)
- Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Richard Shine
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
6
|
Antoł A, Sniegula S. Damselfly eggs alter their development rate in the presence of an invasive alien cue but not a native predator cue. Ecol Evol 2021; 11:9361-9369. [PMID: 34306627 PMCID: PMC8293780 DOI: 10.1002/ece3.7729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/19/2021] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
Biological invasions are a serious problem in natural ecosystems. Local species that are potential prey of invasive alien predators can be threatened by their inability to recognize invasive predator cues. Such an inability of prey to recognize the presence of the predator supports the naïve prey hypothesis. We exposed eggs of a damselfly, Ischnura elegans, to four treatments: water with no predator cue (control), water with a native predator cue (perch), water with an invasive alien predator cue (spinycheek crayfish) that is present in the damselfly sampling site, and water with an invasive alien predator cue (signal crayfish) that is absent in the damselfly sampling site but is expected to invade it. We measured egg development time, mortality between ovipositing and hatching, and hatching synchrony. Eggs took longer to develop in the signal crayfish group (however, in this group, we also observed high green algae growth), and there was a trend of shorter egg development time in the spinycheek crayfish group than in the control group. There was no difference in egg development time between the perch and the control group. Neither egg mortality nor hatching synchrony differed between groups. We suggest that egg response to signal crayfish could be a general stress reaction to an unfamiliar cue or an artifact due to algae development in this group. The egg response to the spinycheek crayfish cue could be caused by the predation of crayfish on damselfly eggs in nature. The lack of egg response to the perch cue could be caused by perch predation on damselfly larvae rather than on eggs. Such differences in egg responses to alternative predator cues can have important implications for understanding how this group of insects responds to biological invasions, starting from the egg stage.
Collapse
Affiliation(s)
- Andrzej Antoł
- Institute of Nature ConservationPolish Academy of SciencesKrakówPoland
| | - Szymon Sniegula
- Institute of Nature ConservationPolish Academy of SciencesKrakówPoland
| |
Collapse
|
7
|
Wada Y, Yusa Y. Extremely short embryonic period of the intertidal pulmonate limpet Siphonaria sirius (Pilsbry, 1895). MOLLUSCAN RESEARCH 2021. [DOI: 10.1080/13235818.2021.1943601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yoko Wada
- Faculty of Science, Kobe University, Kobe, Japan
| | - Yoichi Yusa
- Faculty of Science, Nara Women’s University, Nara, Japan
| |
Collapse
|
8
|
Delayed mite hatching in response to mechanical stimuli simulating egg predation attempts. Sci Rep 2019; 9:13395. [PMID: 31527733 PMCID: PMC6746699 DOI: 10.1038/s41598-019-50007-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/04/2019] [Indexed: 11/09/2022] Open
Abstract
Delayed or induced hatching in response to predation risk has been reported mainly in aquatic systems, where waterborne cues from predators and injured neighbouring eggs are available. Newly emerged larvae of the terrestrial predatory mite Neoseiulus womersleyi are vulnerable to predation by con- and heterospecific predatory mites, whereas their eggs are not. We examined whether N. womersleyi embryos delay hatching in response to artificial mechanical stimuli that simulates egg predation attempts. When embryos near the hatching stage were artificially stimulated every 5 min for 60 min, most stopped hatching for the duration of the 60-min period, whereas unstimulated embryos did not. Stimulated embryos resumed hatching when the treatment was stopped, and the proportion of hatched stimulated embryos caught up with that of unstimulated embryos within 120 min after stimuli stopped. Since hatching did not stop in response to changes in gravity direction, the effect of direct mechanical stimuli on the eggs was considered a proximate factor in delayed hatching. These results suggest that N. womersleyi embryos recognise immediate predation risk via mechanical stimuli, and delay hatching until the predation risk is reduced.
Collapse
|
9
|
Guo J, Martín PR, Zhang C, Zhang JE. Predation risk affects growth and reproduction of an invasive snail and its lethal effect depends on prey size. PLoS One 2017; 12:e0187747. [PMID: 29136660 PMCID: PMC5685626 DOI: 10.1371/journal.pone.0187747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 10/25/2017] [Indexed: 11/18/2022] Open
Abstract
The behavior of invasive species under predation risk has been studied extensively, but their growth and reproductive responses have rarely been investigated. We conducted experiments with juveniles and adults of the invasive freshwater snail Pomacea canaliculata, and we observed changes in growth and reproduction in response to predation risk from a caged predator (Trachemys scripta elegans). P. canaliculata produced eggs earlier in the presence of predators and injured conspecifics compared with the control group (no risk), although the total number of egg masses laid by per female was exceeded by that of the controls after 15 days. Egg hatching success noticeably decreased under predation risk, and the incubation period was significantly prolonged; however, the oviposition height of the snails was not affected. A lethal effect of predation risk was detected in juvenile snails but not in adults. The growth of juvenile P. canaliculata was inhibited under predation risk, probably due to a reduction in food intake. Adult females exhibited a greater reduction in growth under predation risk than males, which likely resulted in part from the high reproductive investment of females in egg laying. These results indicate that P. canaliculata snails under predation risk face a trade-off between predator avoidance and growth and reproduction, where the lethal effect of predation risk is linked to the size of the prey.
Collapse
Affiliation(s)
- Jing Guo
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Pablo R. Martín
- Laboratorio de Ecología, INBIOSUR (UNS/CONICET), Departmento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Chunxia Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jia-en Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, Guangzhou, China
- Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou, China
- * E-mail:
| |
Collapse
|
10
|
Carrillo-Baltodano A, Collin R. Crepidula Slipper Limpets Alter Sex Change in Response to Physical Contact with Conspecifics. THE BIOLOGICAL BULLETIN 2015; 229:232-242. [PMID: 26695822 DOI: 10.1086/bblv229n3p232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Chemical signaling, especially signaling with waterborne cues, is an important mode of communication between conspecifics of aquatic organisms. Although conspecific associations play an important role in sex allocation of sequential hermaphroditic slipper limpets, the mode of signaling is unknown. We tested the hypothesis that the effects of conspecifics on animal size and time of sex change in the tropical slipper limpet Crepidula cf. marginalis are mediated by waterborne cues. In our experiment, pairs of snails (one small and one large) were kept in cups, either together or partitioned off with fine or coarse mesh, or partitioned, but switched from side to side to allow contact with the cup mate's pedal mucus. The larger snails that were allowed contact with the smaller companions grew faster, and generally changed sex sooner, than did the larger snails in the barrier treatments, which allowed no physical contact. The smaller snails that were allowed contact with the larger cup mate delayed sex change compared to those separated from their cup mates. We were, therefore, able to reject the hypothesis that waterborne cues mediate communication between these snails. Our results suggest that the cue that affects size and time to sex change requires some kind of physical interaction that is lost when the snails are separated. Furthermore, contact with another snail's pedal mucus does not compensate for the loss of physical contact. Since males often attach to the shell of larger females, direct contact may mediate this kind of physical interaction via positional information, physical stimulation, or contact-based chemical communication. Whatever the cue, contact with conspecifics influences both partners, resulting in, surprisingly, a higher growth rate in the larger animal and delayed sex change in the smaller animal.
Collapse
Affiliation(s)
| | - Rachel Collin
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa Ancon, Panama
| |
Collapse
|
11
|
|
12
|
Wojdak JM, Touchon JC, Hite JL, Meyer B, Vonesh JR. Consequences of induced hatching plasticity depend on predator community. Oecologia 2014; 175:1267-76. [PMID: 24844644 DOI: 10.1007/s00442-014-2962-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
Abstract
Many prey species face trade-offs in the timing of life history switch points like hatching and metamorphosis. Costs associated with transitioning early depend on the biotic and abiotic conditions found in the subsequent life stage. The red-eyed treefrog, Agalychnis callidryas, faces risks from predators in multiple, successive life stages, and can hatch early in response to mortality threats at the egg stage. Here we tested how the consequences of life history plasticity, specifically early hatching in response to terrestrial egg predators, depend on the assemblage of aquatic larval predators. We predicted that diverse predator assemblages would impose lower total predation pressure than the most effective single predator species and might thereby reduce the costs of hatching early. We then conducted a mesocosm experiment where we crossed hatchling phenotype (early vs. normal hatching) with five larval-predator environments (no predators, either waterbugs, dragonflies, or mosquitofish singly, or all three predator species together). The consequences of hatching early varied across predator treatments, and tended to disappear through time in some predation treatments, notably the waterbug and diverse predator assemblages. We demonstrate that the fitness costs of life history plasticity in an early life stage depend critically on the predator community composition in the next stage.
Collapse
Affiliation(s)
- Jeremy M Wojdak
- Department of Biology, Radford University, P.O. Box 6931, Radford, VA, 24142, USA,
| | | | | | | | | |
Collapse
|
13
|
Glebov K, Voronezhskaya EE, Khabarova MY, Ivashkin E, Nezlin LP, Ponimaskin EG. Mechanisms underlying dual effects of serotonin during development of Helisoma trivolvis (Mollusca). BMC DEVELOPMENTAL BIOLOGY 2014; 14:14. [PMID: 24625099 PMCID: PMC4007640 DOI: 10.1186/1471-213x-14-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 02/21/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Serotonin (5-HT) is well known as widely distributed modulator of developmental processes in both vertebrates and invertebrates. It is also the earliest neurotransmitter to appear during neuronal development. In aquatic invertebrates, which have larvae in their life cycle, 5-HT is involved in regulation of stages transition including larval metamorphosis and settlement. However, molecular and cellular mechanisms underlying developmental transition in aquatic invertebrate species are yet poorly understood. Earlier we demonstrated that in larvae of freshwater molluscs and marine polychaetes, endogenous 5-HT released from the neurons of the apical sensory organ (ASO) in response to external stimuli retarded larval development at premetamorphic stages, and accelerated it at metamorphic stages. Here we used a freshwater snail Helisoma trivolvis to study molecular mechanisms underlying these dual developmental effects of 5-HT. RESULTS Larval development of H. trivolvis includes transition from premetamorphic to metamorphic stages and shares the main features of metamorphosis with free-swimming aquatic larvae. Three types of 5-HT receptors (5-HT1-, 5-HT4- and 5-HT7-like) are functionally active at premetamorphic (trochophore, veliger) and metamorphic (veliconcha) stages, and expression patterns of these receptors and respective G proteins undergo coordinated changes during development. Stimulation of these receptors modulated cAMP-dependent regulation of cell divisions. Expression of 5-HT4- and 5-HT7-like receptors and their downstream Gs protein was down-regulated during the transition of pre- to metamorphic stage, while expression of 5-HT1 -like receptor and its downstream Gi protein was upregulated. In accordance with relative amount of these receptors, stimulation of 5-HTRs at premetamorphic stages induces developmental retardation, while their stimulation at metamorphic stages induces developmental acceleration. CONCLUSIONS We present a novel molecular mechanism that underlies stage-specific changes in developmental tempo of H. trivolvis larvae in response to endogenous 5-HT produced by the neurons of the ASO. We suggest that consecutive changes in expression patterns of different receptors and their downstream partners in the course of larval development represent the molecular base of larval transition from premetamorphic (non-competent) to metamorphic (competent) state.
Collapse
Affiliation(s)
| | | | | | | | | | - Evgeni G Ponimaskin
- DFG-Research Center Molecular Physiology of the Brain (CMPB), Göttingen, Germany.
| |
Collapse
|
14
|
Carryover effects of predation risk on postembryonic life-history stages in a freshwater shrimp. ZOOLOGY 2014; 117:139-45. [PMID: 24556030 DOI: 10.1016/j.zool.2013.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 11/22/2022]
Abstract
For organisms with complex life histories it is well known that risk experienced early in life, as embryos or larvae, may have effects throughout the life cycle. Although carryover effects have been well documented in invertebrates with different levels of parental care, there are few examples of predator-induced responses in externally brooded embryos. Here, we studied the effects of nonlethal predation risk throughout the embryonic development of newly spawned eggs carried by female shrimp on the timing of egg hatching, hatchling morphology, larval development and juvenile morphology. We also determined maternal body mass at the end of the embryonic period. Exposure to predation risk cues during embryonic development led to larger larvae which also had longer rostra but reached the juvenile stage sooner, at a smaller size and with shorter rostra. There was no difference in hatching timing, but changes in larval morphology and developmental timing showed that the embryos had perceived waterborne substances indicative of predation risk. In addition to carryover effects on larval and juvenile stages, predation threat provoked a decrease of body mass in mothers exposed to predator cues while brooding. Our results suggest that risk-exposed embryos were able to recognize the same infochemicals as their mothers, manifesting a response in the free-living larval stage. Thus, future studies assessing anti-predator phenotypes should include embryonic development, which seems to determine the morphology and developmental time of subsequent life-history stages according to perceived environmental conditions.
Collapse
|
15
|
Pompini M, Clark ES, Wedekind C. Pathogen-induced hatching and population-specific life-history response to waterborne cues in brown trout (Salmo trutta). Behav Ecol Sociobiol 2013. [DOI: 10.1007/s00265-013-1484-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Anchor down or hunker down: an experimental study on zebra mussels’ response to predation risk from crayfish. Anim Behav 2011. [DOI: 10.1016/j.anbehav.2011.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Oyarzun FX, Strathmann RR. Plasticity of Hatching and the Duration of Planktonic Development in Marine Invertebrates. Integr Comp Biol 2011; 51:81-90. [DOI: 10.1093/icb/icr009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Warkentin KM. Environmentally Cued Hatching across Taxa: Embryos Respond to Risk and Opportunity. Integr Comp Biol 2011; 51:14-25. [DOI: 10.1093/icb/icr017] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
19
|
Touchon JC, Urbina J, Warkentin KM. Habitat-specific constraints on induced hatching in a treefrog with reproductive mode plasticity. Behav Ecol 2010. [DOI: 10.1093/beheco/arq192] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|