1
|
Franklin PA, Bašić T, Davison PI, Dunkley K, Ellis J, Gangal M, González-Ferreras AM, Gutmann Roberts C, Hunt G, Joyce D, Klöcker CA, Mawer R, Rittweg T, Stoilova V, Gutowsky LFG. Aquatic connectivity: challenges and solutions in a changing climate. JOURNAL OF FISH BIOLOGY 2024; 105:392-411. [PMID: 38584261 DOI: 10.1111/jfb.15727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024]
Abstract
The challenge of managing aquatic connectivity in a changing climate is exacerbated in the presence of additional anthropogenic stressors, social factors, and economic drivers. Here we discuss these issues in the context of structural and functional connectivity for aquatic biodiversity, specifically fish, in both the freshwater and marine realms. We posit that adaptive management strategies that consider shifting baselines and the socio-ecological implications of climate change will be required to achieve management objectives. The role of renewable energy expansion, particularly hydropower, is critically examined for its impact on connectivity. We advocate for strategic spatial planning that incorporates nature-positive solutions, ensuring climate mitigation efforts are harmonized with biodiversity conservation. We underscore the urgency of integrating robust scientific modelling with stakeholder values to define clear, adaptive management objectives. Finally, we call for innovative monitoring and predictive decision-making tools to navigate the uncertainties inherent in a changing climate, with the goal of ensuring the resilience and sustainability of aquatic ecosystems.
Collapse
Affiliation(s)
- Paul A Franklin
- National Institute of Water & Atmospheric Research, Hamilton, New Zealand
| | - Tea Bašić
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, UK
| | - Phil I Davison
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, UK
| | - Katie Dunkley
- Christ's College, University of Cambridge, Cambridge, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Jonathan Ellis
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Mayuresh Gangal
- Manipal Academy of Higher Education, Manipal, India
- Nature Conservation Foundation, Mysore, India
| | - Alexia M González-Ferreras
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria. C/Isabel Torres 15, Santander, Spain
- School of Life Sciences, University of Essex, Colchester, UK
| | | | - Georgina Hunt
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Domino Joyce
- Biological Sciences, School of Natural Sciences, University of Hull, Hull, UK
| | - C Antonia Klöcker
- Institute of Marine Research, Tromsø, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Rachel Mawer
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Timo Rittweg
- Leibniz Institute of Freshwater Ecology and Inland Fisheries Berlin, Berlin, Germany
- Division of Integrative Fisheries Management, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden, Berlin, Germany
| | - Velizara Stoilova
- Department of Environmental and Life Sciences, Karlstad University, Karlstad, Sweden
| | | |
Collapse
|
2
|
Firkowski CR, Thompson PL, Gonzalez A, Cadotte MW, Fortin M. Multi‐trophic metacommunity interactions mediate asynchrony and stability in fluctuating environments. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Carina R. Firkowski
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario M5S 3B2 Canada
| | - Patrick L. Thompson
- Biodiversity Research Centre and Department of Zoology University of British Columbia Vancouver British Columbia V6T 1Z4 Canada
| | - Andrew Gonzalez
- Department of Biology McGill University Montreal Quebec H3A 1B1 Canada
| | - Marc W. Cadotte
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario M5S 3B2 Canada
- Department of Biological Sciences University of Toronto at Scarborough Scarborough Ontario M1C 1A4 Canada
| | - Marie‐Josée Fortin
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario M5S 3B2 Canada
| |
Collapse
|
3
|
A Classification Framework to Assess Ecological, Biogeochemical, and Hydrologic Synchrony and Asynchrony. Ecosystems 2021; 25:989-1005. [DOI: 10.1007/s10021-021-00700-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Patch isolation and periodic environmental disturbances have idiosyncratic effects on local and regional population variabilities in meta-food chains. THEOR ECOL-NETH 2021. [DOI: 10.1007/s12080-021-00510-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractWhile habitat loss is a known key driver of biodiversity decline, the impact of other landscape properties, such as patch isolation, is far less clear. When patch isolation is low, species may benefit from a broader range of foraging opportunities, but are at the same time adversely affected by higher predation pressure from mobile predators. Although previous approaches have successfully linked such effects to biodiversity, their impact on local and metapopulation dynamics has largely been ignored. Since population dynamics may also be affected by environmental disturbances that temporally change the degree of patch isolation, such as periodic changes in habitat availability, accurate assessment of its link with isolation is highly challenging. To analyze the effect of patch isolation on the population dynamics on different spatial scales, we simulate a three-species meta-food chain on complex networks of habitat patches and assess the average variability of local populations and metapopulations, as well as the level of synchronization among patches. To evaluate the impact of periodic environmental disturbances, we contrast simulations of static landscapes with simulations of dynamic landscapes in which 30 percent of the patches periodically become unavailable as habitat. We find that increasing mean patch isolation often leads to more asynchronous population dynamics, depending on the parameterization of the food chain. However, local population variability also increases due to indirect effects of increased dispersal mortality at high mean patch isolation, consequently destabilizing metapopulation dynamics and increasing extinction risk. In dynamic landscapes, periodic changes of patch availability on a timescale much slower than ecological interactions often fully synchronize the dynamics. Further, these changes not only increase the variability of local populations and metapopulations, but also mostly overrule the effects of mean patch isolation. This may explain the often small and inconclusive impact of mean patch isolation in natural ecosystems.
Collapse
|
5
|
Wood ZT, Palkovacs EP, Olsen BJ, Kinnison MT. The Importance of Eco-evolutionary Potential in the Anthropocene. Bioscience 2021. [DOI: 10.1093/biosci/biab010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Humans are dominant global drivers of ecological and evolutionary change, rearranging ecosystems and natural selection. In the present article, we show increasing evidence that human activity also plays a disproportionate role in shaping the eco-evolutionary potential of systems—the likelihood of ecological change generating evolutionary change and vice versa. We suggest that the net outcome of human influences on trait change, ecology, and the feedback loops that link them will often (but not always) be to increase eco-evolutionary potential, with important consequences for stability and resilience of populations, communities, and ecosystems. We also integrate existing ecological and evolutionary metrics to predict and manage the eco-evolutionary dynamics of human-affected systems. To support this framework, we use a simple eco–evo feedback model to show that factors affecting eco-evolutionary potential are major determinants of eco-evolutionary dynamics. Our framework suggests that proper management of anthropogenic effects requires a science of human effects on eco-evolutionary potential.
Collapse
Affiliation(s)
- Zachary T Wood
- School of Biology and Ecology and with the Maine Center for Genetics in the Environment at the University of Maine, Orono, Maine, United States
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States
| | - Brian J Olsen
- School of Biology and Ecology and with the Maine Center for Genetics in the Environment at the University of Maine, Orono, Maine, United States
| | - Michael T Kinnison
- School of Biology and Ecology and with the Maine Center for Genetics in the Environment at the University of Maine, Orono, Maine, United States
| |
Collapse
|
6
|
Srivastava DS, Céréghino R, Trzcinski MK, MacDonald AAM, Marino NAC, Mercado DA, Leroy C, Corbara B, Romero GQ, Farjalla VF, Barberis IM, Dézerald O, Hammill E, Atwood TB, Piccoli GCO, Ospina-Bautista F, Carrias JF, Leal JS, Montero G, Antiqueira PAP, Freire R, Realpe E, Amundrud SL, de Omena PM, Campos ABA. Ecological response to altered rainfall differs across the Neotropics. Ecology 2020; 101:e02984. [PMID: 31958151 DOI: 10.1002/ecy.2984] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/17/2019] [Accepted: 11/12/2019] [Indexed: 11/07/2022]
Abstract
There is growing recognition that ecosystems may be more impacted by infrequent extreme climatic events than by changes in mean climatic conditions. This has led to calls for experiments that explore the sensitivity of ecosystems over broad ranges of climatic parameter space. However, because such response surface experiments have so far been limited in geographic and biological scope, it is not clear if differences between studies reflect geographic location or the ecosystem component considered. In this study, we manipulated rainfall entering tank bromeliads in seven sites across the Neotropics, and characterized the response of the aquatic ecosystem in terms of invertebrate functional composition, biological stocks (total invertebrate biomass, bacterial density) and ecosystem fluxes (decomposition, carbon, nitrogen). Of these response types, invertebrate functional composition was the most sensitive, even though, in some sites, the species pool had a high proportion of drought-tolerant families. Total invertebrate biomass was universally insensitive to rainfall change because of statistical averaging of divergent responses between functional groups. The response of invertebrate functional composition to rain differed between geographical locations because (1) the effect of rainfall on bromeliad hydrology differed between sites, and invertebrates directly experience hydrology not rainfall and (2) the taxonomic composition of some functional groups differed between sites, and families differed in their response to bromeliad hydrology. These findings suggest that it will be difficult to establish thresholds of "safe ecosystem functioning" when ecosystem components differ in their sensitivity to climatic variables, and such thresholds may not be broadly applicable over geographic space. In particular, ecological forecast horizons for climate change may be spatially restricted in systems where habitat properties mediate climatic impacts, and those, like the tropics, with high spatial turnover in species composition.
Collapse
Affiliation(s)
- Diane S Srivastava
- Departmetn of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Régis Céréghino
- Ecolab, Laboratoire Ecologie Fonctionnelle et Environnement, CNRS, UPS, INPT, Université de Toulouse, Toulouse, 21941-901, France
| | - M Kurtis Trzcinski
- Ecolab, Laboratoire Ecologie Fonctionnelle et Environnement, CNRS, UPS, INPT, Université de Toulouse, Toulouse, 21941-901, France
| | - A Andrew M MacDonald
- Departmetn of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Ecolab, Laboratoire Ecologie Fonctionnelle et Environnement, CNRS, UPS, INPT, Université de Toulouse, Toulouse, 21941-901, France
| | - Nicholas A C Marino
- Departamento de Ecologia, Instituto de Biologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, 68020, Rio de Janeiro, RJ, Brazil.,Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, 68020, Rio de Janeiro, RJ, Brazil
| | - Dimaris Acosta Mercado
- Department of Biology, University of Puerto Rico Mayaguez Campus, Mayaguez, 00681, Puerto Rico, USA
| | - Céline Leroy
- AMAP, IRD, CIRAD, CNRS, INRA, Université Montpellier, Montpellier, CEDEX-5, 34095, France.,ECOFOG (AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles), 97379, Kourou, France
| | - Bruno Corbara
- CNRS, LMGE (Laboratoire Microorganismes: Génome et Environnement), Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Gustavo Q Romero
- Laboratory of Multitrophic Interactions and Biodiversity, Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas, SP, Brazil
| | - Vinicius F Farjalla
- Departamento de Ecologia, Instituto de Biologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, 68020, Rio de Janeiro, RJ, Brazil
| | - Ignacio M Barberis
- Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario, IICAR-CONICET-UNR, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Olivier Dézerald
- ECOFOG (AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles), 97379, Kourou, France.,Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC)-CNRS UMR 7360, Université de Lorraine, Campus Bridoux, 57070, Metz, France.,INRA, Agrocampus-Ouest, Ecology and Ecosystem Health, 65 rue de Saint-Brieuc, F-35042, Rennes, France
| | - Edd Hammill
- Departmetn of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Department of Watershed Sciences and the Ecology Center, Utah State University, Logan, 84322, USA
| | - Trisha B Atwood
- Department of Watershed Sciences and the Ecology Center, Utah State University, Logan, 84322, USA.,Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Gustavo C O Piccoli
- Department of Zoology and Botany, University of São Paulo State (UNESP/IBILCE), 15054 - 000, São José do Rio Preto, SP, Brazil
| | - Fabiola Ospina-Bautista
- Department of Biological Sciences, Andes University, Bogotá, 111711, Colombia.,Departamento de Ciencias Biológicas, Universidad de Caldas, Caldas, 170001, Colombia
| | - Jean-François Carrias
- CNRS, LMGE (Laboratoire Microorganismes: Génome et Environnement), Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Juliana S Leal
- Departamento de Ecologia, Instituto de Biologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, 68020, Rio de Janeiro, RJ, Brazil
| | - Guillermo Montero
- Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario, IICAR-CONICET-UNR, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Pablo A P Antiqueira
- Laboratory of Multitrophic Interactions and Biodiversity, Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas, SP, Brazil
| | - Rodrigo Freire
- Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario, IICAR-CONICET-UNR, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Emilio Realpe
- Department of Biological Sciences, Andes University, Bogotá, 111711, Colombia
| | - Sarah L Amundrud
- Departmetn of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Paula M de Omena
- Laboratory of Multitrophic Interactions and Biodiversity, Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas, SP, Brazil
| | - Alice B A Campos
- Departamento de Ecologia, Instituto de Biologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, 68020, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
7
|
Laske SM, Rosenberger AE, Wipfli MS, Zimmerman CE. Surface water connectivity controls fish food web structure and complexity across local- and meta-food webs in Arctic Coastal Plain lakes. FOOD WEBS 2019. [DOI: 10.1016/j.fooweb.2019.e00123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Ryser R, Häussler J, Stark M, Brose U, Rall BC, Guill C. The biggest losers: habitat isolation deconstructs complex food webs from top to bottom. Proc Biol Sci 2019; 286:20191177. [PMID: 31362639 PMCID: PMC6710599 DOI: 10.1098/rspb.2019.1177] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Habitat fragmentation threatens global biodiversity. To date, there is only limited understanding of how the different aspects of habitat fragmentation (habitat loss, number of fragments and isolation) affect species diversity within complex ecological networks such as food webs. Here, we present a dynamic and spatially explicit food web model which integrates complex food web dynamics at the local scale and species-specific dispersal dynamics at the landscape scale, allowing us to study the interplay of local and spatial processes in metacommunities. We here explore how the number of habitat patches, i.e. the number of fragments, and an increase of habitat isolation affect the species diversity patterns of complex food webs (α-, β-, γ-diversities). We specifically test whether there is a trophic dependency in the effect of these two factors on species diversity. In our model, habitat isolation is the main driver causing species loss and diversity decline. Our results emphasize that large-bodied consumer species at high trophic positions go extinct faster than smaller species at lower trophic levels, despite being superior dispersers that connect fragmented landscapes better. We attribute the loss of top species to a combined effect of higher biomass loss during dispersal with increasing habitat isolation in general, and the associated energy limitation in highly fragmented landscapes, preventing higher trophic levels to persist. To maintain trophic-complex and species-rich communities calls for effective conservation planning which considers the interdependence of trophic and spatial dynamics as well as the spatial context of a landscape and its energy availability.
Collapse
Affiliation(s)
- Remo Ryser
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Strasse 159, 07743 Jena, Germany
| | - Johanna Häussler
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Strasse 159, 07743 Jena, Germany
| | - Markus Stark
- Institute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 2, 14469 Potsdam, Germany
| | - Ulrich Brose
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Strasse 159, 07743 Jena, Germany
| | - Björn C Rall
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Strasse 159, 07743 Jena, Germany
| | - Christian Guill
- Institute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 2, 14469 Potsdam, Germany
| |
Collapse
|
9
|
Hawn CL, Herrmann JD, Griffin SR, Haddad NM. Connectivity increases trophic subsidies in fragmented landscapes. Ecol Lett 2018; 21:1620-1628. [PMID: 30182428 DOI: 10.1111/ele.12958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/30/2017] [Accepted: 02/25/2018] [Indexed: 11/28/2022]
Abstract
Landscape corridors mitigate the negative effects of habitat fragmentation by increasing dispersal. Corridors also increase biodiversity in connected habitat fragments, suggestive of metacommunity dynamics. What is unknown in this case is the mechanisms through which metacommunity dynamics act. Working in a large-scale fragmentation experiment, we tested the effect of corridors on the movement of prey species and subsequent effects on predator nutrition (which we call trophic subsidies). We enriched plants of central patches with 15 N, then measured δ15 N in green lynx spiders, the most abundant insect predator, in patches that were either connected to or isolated from the enriched patch. We found that corridors increased prey movement, as they increased spider δ15 N by 40% in connected patches. Corridors also improved spider body condition, increasing nitrogen relative to carbon. We suggest a novel mechanism, trophic subsidies, through which corridors may increase the stability or size of populations in connected landscapes.
Collapse
Affiliation(s)
- Christine L Hawn
- Geography and Environmental Systems, University of Maryland Baltimore County, Baltimore, MD, USA
| | - John D Herrmann
- Department of Landscape Ecology, Kiel University, Kiel, Germany
| | - Sean R Griffin
- Kellogg Biological Station, Department of Integrative Biology, Michigan State University, Hickory Corners, MI, USA
| | - Nick M Haddad
- Kellogg Biological Station, Department of Integrative Biology, Michigan State University, Hickory Corners, MI, USA
| |
Collapse
|
10
|
Bernabé TN, de Omena PM, Santos VPD, de Siqueira VM, de Oliveira VM, Romero GQ. Warming weakens facilitative interactions between decomposers and detritivores, and modifies freshwater ecosystem functioning. GLOBAL CHANGE BIOLOGY 2018; 24:3170-3186. [PMID: 29485732 DOI: 10.1111/gcb.14109] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
Warming is among the major drivers of changes in biotic interactions and, in turn, ecosystem functioning. The decomposition process occurs in a chain of facilitative interactions between detritivores and microorganisms. It remains unclear, however, what effect warming may have on the interrelations between detritivores and microorganisms, and the consequences for the functioning of natural freshwater ecosystems. To address these gaps, we performed a field experiment using tank bromeliads and their associated aquatic fauna. We manipulated the presence of bacteria and detritivorous macroinvertebrates (control, "bacteria," and "bacteria + macroinvertebrates") under ambient and warming scenarios, and analyzed the effects on the microorganisms and ecosystem functioning (detritus mass loss, colored dissolved organic matter, and nitrogen flux). We applied antibiotic solution to eliminate or reduce bacteria from control bromeliads. After 60 days incubation, bacterial density was higher in the presence than in the absence of macroinvertebrates. In the absence of macroinvertebrates, temperature did not influence bacterial density. However, in the presence of macroinvertebrates, bacterial density decreased by 54% with warming. The magnitude of the effects of organisms on ecosystem functioning was higher in the combined presence of bacteria and macroinvertebrates. However, warming reduced the overall positive effects of detritivores on bacterial density, which in turn, cascaded down to ecosystem functioning by decreasing decomposition and nitrogen flux. These results show the existence of facilitative mechanisms between bacteria and detritivores in the decomposition process, which might collapse due to warming. Detritivores seem to contribute to nutrient cycling as they facilitate bacterial populations, probably by increasing nutrient input (feces) in the ecosystem. However, increased temperature mitigated these beneficial effects. Our results add to a growing research body that shows that warming can affect the structure of aquatic communities, and highlight the importance of considering the interactive effects between facilitation and climatic drivers on the functioning of freshwater ecosystems.
Collapse
Affiliation(s)
- Tiago N Bernabé
- Pós-Graduação em Biologia Animal, Universidade Estadual Paulista "Júlio de Mesquita Filho", São José do Rio Preto, SP, Brasil
- Laboratory of Multitrophic Interactions and Biodiversity (LIMBIO), Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Paula M de Omena
- Laboratory of Multitrophic Interactions and Biodiversity (LIMBIO), Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Viviane Piccin Dos Santos
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, Brazil
| | - Virgínia M de Siqueira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, Brazil
| | - Valéria M de Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, Brazil
| | - Gustavo Q Romero
- Laboratory of Multitrophic Interactions and Biodiversity (LIMBIO), Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Research Network on Climate Change (Rede Clima), São Paulo, Brazil
| |
Collapse
|
11
|
van Schrojenstein Lantman IM, Hertzog LR, Vandegehuchte ML, Martel A, Verheyen K, Lens L, Bonte D. Leaf herbivory is more impacted by forest composition than by tree diversity or edge effects. Basic Appl Ecol 2018. [DOI: 10.1016/j.baae.2018.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Wood ZT, Palkovacs EP, Kinnison MT. Eco-evolutionary Feedbacks from Non-target Species Influence Harvest Yield and Sustainability. Sci Rep 2018; 8:6389. [PMID: 29686227 PMCID: PMC5913267 DOI: 10.1038/s41598-018-24555-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/21/2018] [Indexed: 11/22/2022] Open
Abstract
Evolution in harvested species has become a major concern for its potential to affect yield, sustainability, and recovery. However, the current singular focus on harvest-mediated evolution in target species overlooks the potential for evolution in non-target members of communities. Here we use an individual-based model to explore the scope and pattern of harvest-mediated evolution at non-target trophic levels and its potential feedbacks on abundance and yield of the harvested species. The model reveals an eco-evolutionary trophic cascade, in which harvest at top trophic levels drives evolution of greater defense or competitiveness at subsequently lower trophic levels, resulting in alternating feedbacks on the abundance and yield of the harvested species. The net abundance and yield effects of these feedbacks depends on the intensity of harvest and attributes of non-target species. Our results provide an impetus and framework to evaluate the role of non-target species evolution in determining fisheries yield and sustainability.
Collapse
Affiliation(s)
- Zachary T Wood
- School of Biology and Ecology, University of Maine, Orono, ME, USA. .,Ecology and Environmental Sciences Program, University of Maine, Orono, ME, USA.
| | - Eric P Palkovacs
- Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Michael T Kinnison
- School of Biology and Ecology, University of Maine, Orono, ME, USA.,Ecology and Environmental Sciences Program, University of Maine, Orono, ME, USA
| |
Collapse
|
13
|
Guardiola M, Stefanescu C, Rodà F, Pino J. Do asynchronies in extinction debt affect the structure of trophic networks? A case study of antagonistic butterfly larvae-plant networks. OIKOS 2017. [DOI: 10.1111/oik.04536] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Moisès Guardiola
- CREAF, ES-08193 Cerdanyola del Vallès; Spain
- Dept of Animal and Plant Biology and Ecology; Univ. Autònoma de Barcelona; Bellaterra Spain
| | - Constantí Stefanescu
- CREAF, ES-08193 Cerdanyola del Vallès; Spain
- Butterfly Monitoring Scheme, Museu de Ciències Naturals de Granollers; Granollers Spain
| | - Ferran Rodà
- CREAF, ES-08193 Cerdanyola del Vallès; Spain
- Dept of Animal and Plant Biology and Ecology; Univ. Autònoma de Barcelona; Bellaterra Spain
| | - Joan Pino
- CREAF, ES-08193 Cerdanyola del Vallès; Spain
- Dept of Animal and Plant Biology and Ecology; Univ. Autònoma de Barcelona; Bellaterra Spain
| |
Collapse
|
14
|
Liao J, Chen J, Ying Z, Hiebeler DE, Nijs I. An extended patch-dynamic framework for food chains in fragmented landscapes. Sci Rep 2016; 6:33100. [PMID: 27608823 PMCID: PMC5016810 DOI: 10.1038/srep33100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/19/2016] [Indexed: 12/03/2022] Open
Abstract
Habitat destruction, a key determinant of species loss, can be characterized by two components, patch loss and patch fragmentation, where the former refers to the reduction in patch availability, and the latter to the division of the remaining patches. Classical metacommunity models have recently explored how food web dynamics respond to patch loss, but the effects of patch fragmentation have largely been overlooked. Here we develop an extended patch-dynamic model that tracks the patch occupancy of the various trophic links subject to colonization-extinction-predation dynamics by incorporating species dispersal with patch connectivity. We found that, in a simple food chain, species at higher trophic level become extinct sooner with increasing patch loss and fragmentation due to the constraint in resource availability, confirming the trophic rank hypothesis. Yet, effects of fragmentation on species occupancy are largely determined by patch loss, with maximal fragmentation effects occurring at intermediate patch loss. Compared to the spatially explicit simulations that we also performed, the current model with pair approximation generates similar community patterns especially in spatially clustered landscapes. Overall, our extended framework can be applied to model more complex food webs in fragmented landscapes, broadening the scope of existing metacommunity theory.
Collapse
Affiliation(s)
- Jinbao Liao
- Ministry of Education’s Key Laboratory of Poyang Lake Wetland and Watershed Research, Jiangxi Normal University, Ziyang Road 99, 330022 Nanchang, China
| | - Jiehong Chen
- Ministry of Education’s Key Laboratory of Poyang Lake Wetland and Watershed Research, Jiangxi Normal University, Ziyang Road 99, 330022 Nanchang, China
| | - Zhixia Ying
- College of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330029, China
| | - David E. Hiebeler
- Department of Mathematics and Statistics, University of Maine, 333 Neville Hall, Orono, ME 04469, USA
| | - Ivan Nijs
- Centre of Excellence Plant and Vegetation Ecology, University of Antwerp (Campus Drie Eiken), Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
15
|
Grainger TN, Gilbert B. Dispersal and diversity in experimental metacommunities: linking theory and practice. OIKOS 2016. [DOI: 10.1111/oik.03018] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tess Nahanni Grainger
- Dept of Ecology and Evolutionary Biology; Univ. of Toronto; 25 Willcocks Street Toronto ON, M5S 3B2 Canada
| | - Benjamin Gilbert
- Dept of Ecology and Evolutionary Biology; Univ. of Toronto; 25 Willcocks Street Toronto ON, M5S 3B2 Canada
| |
Collapse
|
16
|
Thormar J, Hasler-Sheetal H, Baden S, Boström C, Clausen KK, Krause-Jensen D, Olesen B, Rasmussen JR, Svensson CJ, Holmer M. Eelgrass (Zostera marina) Food Web Structure in Different Environmental Settings. PLoS One 2016; 11:e0146479. [PMID: 26752412 PMCID: PMC4708997 DOI: 10.1371/journal.pone.0146479] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 12/17/2015] [Indexed: 11/18/2022] Open
Abstract
This study compares the structure of eelgrass (Zostera marina L.) meadows and associated food webs in two eelgrass habitats in Denmark, differing in exposure, connection to the open sea, nutrient enrichment and water transparency. Meadow structure strongly reflected the environmental conditions in each habitat. The eutrophicated, protected site had higher biomass of filamentous algae, lower eelgrass biomass and shoot density, longer and narrower leaves, and higher above to below ground biomass ratio compared to the less nutrient-enriched and more exposed site. The faunal community composition and food web structure also differed markedly between sites with the eutrophicated, enclosed site having higher biomass of consumers and less complex food web. These relationships resulted in a column shaped biomass distribution of the consumers at the eutrophicated site whereas the less nutrient-rich site showed a pyramidal biomass distribution of consumers coupled with a more diverse consumer community. The differences in meadow and food web structure of the two seagrass habitats, suggest how physical setting may shape ecosystem response and resilience to anthropogenic pressure. We encourage larger, replicated studies to further disentangle the effects of different environmental variables on seagrass food web structure.
Collapse
Affiliation(s)
- Jonas Thormar
- Department of Biosciences, University of Oslo, Oslo, Norway
- * E-mail:
| | - Harald Hasler-Sheetal
- Department of Biology, University of Southern Denmark, Odense, Denmark
- Nordic Center for Earth Evolution (NordCEE), University of Southern Denmark, Odense, Denmark
| | - Susanne Baden
- Department of Biology and Environmental Sciences, University of Gothenburg, Fiskebäckskil, Sweden
| | - Christoffer Boström
- Department of Biosciences, Environmental and Marine Biology, Åbo Akademi University, Åbo, Finland
| | | | | | - Birgit Olesen
- Department of Bioscience, Aarhus University, Aarhus C, Denmark
| | | | - Carl Johan Svensson
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Marianne Holmer
- Department of Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|