1
|
Park JS, Post E. Seasonal timing on a cyclical Earth: Towards a theoretical framework for the evolution of phenology. PLoS Biol 2022; 20:e3001952. [PMID: 36574457 PMCID: PMC9829184 DOI: 10.1371/journal.pbio.3001952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/09/2023] [Indexed: 12/29/2022] Open
Abstract
Phenology refers to the seasonal timing patterns commonly exhibited by life on Earth, from blooming flowers to breeding birds to human agriculture. Climate change is altering abiotic seasonality (e.g., longer summers) and in turn, phenological patterns contained within. However, how phenology should evolve is still an unsolved problem. This problem lies at the crux of predicting future phenological changes that will likely have substantial ecosystem consequences, and more fundamentally, of understanding an undeniably global phenomenon. Most studies have associated proximate environmental variables with phenological responses in case-specific ways, making it difficult to contextualize observations within a general evolutionary framework. We outline the complex but universal ways in which seasonal timing maps onto evolutionary fitness. We borrow lessons from life history theory and evolutionary demography that have benefited from a first principles-based theoretical scaffold. Lastly, we identify key questions for theorists and empiricists to help advance our general understanding of phenology.
Collapse
Affiliation(s)
- John S. Park
- Department of Biology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Eric Post
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
2
|
Shuster SM, Keith AR, Whitham TG. Simulating selection and evolution at the community level using common garden data. Ecol Evol 2022; 12:e8696. [PMID: 35342594 PMCID: PMC8928883 DOI: 10.1002/ece3.8696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 11/09/2022] Open
Abstract
A key issue in evolutionary biology is whether selection acting at levels higher than the individual can cause evolutionary change. If it can, then conceptual and empirical studies must consider how selection operates at multiple levels of biological organization. Here, we test the hypothesis that estimates of broad-sense community heritability, H C 2 , can be used to predict the evolutionary response by community-level phenotypes when community-level selection is imposed. Using an approach informed by classic quantitative genetics, we made three predictions. First, when we imposed community-level selection, we expected a significant change in the average phenotype of arthropod communities associated with individual tree genotypes [we imposed selection by favoring high and low NMDS (nonmetric multidimensional scaling) scores that reflected differences in arthropod species richness, abundance and composition]. Second, we expected H C 2 to predict the magnitude of the community-level response. Third, we expected no significant change in average NMDS scores with community-level selection imposed at random. We tested these hypotheses using three years of common garden data for 102 species comprising the arthropod communities, associated with nine clonally replicated Populus angustifolia genotypes. Each of our predictions were met. We conclude that estimates of H C 2 account for the resemblance among communities sharing common ancestry, the persistence of community composition over time, and the outcome of selection when it occurs at the community level. Our results provide a means for exploring how this process leads to large-scale community evolutionary change, and they identify the circumstances in which selection may routinely act at the community level.
Collapse
Affiliation(s)
- Stephen M. Shuster
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Arthur R. Keith
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Thomas G. Whitham
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| |
Collapse
|
3
|
Nguyen VAT, Vural DC. Theoretical guidelines for editing ecological communities. J Theor Biol 2021; 534:110945. [PMID: 34717935 DOI: 10.1016/j.jtbi.2021.110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022]
Abstract
Having control over species abundances and community resilience is of great interest for experimental, agricultural, industrial and conservation purposes. Here, we theoretically explore the possibility of manipulating ecological communities by modifying pairwise interactions. Specifically, we establish which interaction values should be modified, and by how much, in order to alter the composition or resilience of a community towards a favorable direction. While doing so, we also take into account the experimental difficulties in making such modifications by including in our optimization process, a cost parameter, which penalizes large modifications. In addition to prescribing what changes should be made to interspecies interactions given some modification cost, our approach also serves to establish the limits of community control, i.e. how well can one approach an ecological goal at best, even when not constrained by cost.
Collapse
Affiliation(s)
- Vu A T Nguyen
- University of Notre Dame, South Bend, IN, United States
| | | |
Collapse
|
4
|
Interactions between ants and non-myrmecochorous diaspores in a West African montane landscape. JOURNAL OF TROPICAL ECOLOGY 2021. [DOI: 10.1017/s0266467420000231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractMyrmecochory, the dispersal of seeds with lipid-rich appendages by ants, is a significant ant–plant interaction. Less well understood is the potential for ant dispersal of non-myrmecochorous seeds. Here we investigate ant–diaspore interactions in a West African montane habitat. We combine observation with depot experiments to determine ant species that move diaspores and distance moved across a forest-edge-grassland gradient. We recorded seed cleaning by ants using a bird/mammal dispersed Paullinia pinnata to determine whether seed cleaning improved plant fitness. We found that two out of a total of 17 ant species (Pheidole sp. 1 and Myrmicaria opaciventris) interacted with 10 species of non-myrmecochorous diaspores across nine plant families. Diaspores were from large canopy trees, understorey trees and vines. Both ant species interacted with small (≤0.24 g) and large (≥0.24 g) diaspores. Ants individually moved small diaspores up to 1.2 m and worked together to clean larger ones. Our experiments with P. pinnata showed that ants removed the pulp of 70% of fruit over 5 days. Cleaned seeds germinated significantly faster and produced seedlings with significantly longer shoot length and higher fresh weight than seedlings from intact seeds. Together our results suggest that ant dispersal may be less significant than seed cleaning in Afromontane forests. However, given the decline in vertebrate frugivores across Africa, a small dispersal advantage may become increasingly important to plant fitness.
Collapse
|
5
|
Whitham TG, Allan GJ, Cooper HF, Shuster SM. Intraspecific Genetic Variation and Species Interactions Contribute to Community Evolution. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-123655] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evolution has been viewed as occurring primarily through selection among individuals. We present a framework based on multilevel selection for evaluating evolutionary change from individuals to communities, with supporting empirical evidence. Essential to this evaluation is the role that interspecific indirect genetic effects play in shaping community organization, in generating variation among community phenotypes, and in creating community heritability. If communities vary in phenotype, and those phenotypes are heritable and subject to selection at multiple levels, then a community view of evolution must be merged with mainstream evolutionary theory. Rapid environmental change during the Anthropocene will require a better understanding of these evolutionary processes, especially selection acting at the community level, which has the potential to eliminate whole communities while favoring others.
Collapse
Affiliation(s)
- Thomas G. Whitham
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | - Gerard J. Allan
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | - Hillary F. Cooper
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | - Stephen M. Shuster
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| |
Collapse
|
6
|
Wooley SC, Smith DS, Lonsdorf EV, Brown SC, Whitham TG, Shuster SM, Lindroth RL. Local adaptation and rapid evolution of aphids in response to genetic interactions with their cottonwood hosts. Ecol Evol 2020; 10:10532-10542. [PMID: 33072278 PMCID: PMC7548174 DOI: 10.1002/ece3.6709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 01/04/2023] Open
Abstract
Several studies have demonstrated the ecological consequences of genetic variation within a single plant species. For example, these studies show that individual plant genotypes support unique composition of the plants' associated arthropod community. By contrast, fewer studies have explored how plant genetic variation may influence evolutionary dynamics in the plant's associated species. Here, we examine how aphids respond evolutionarily to genetic variation in their host plant. We conducted two experiments to examine local adaptation and rapid evolution of the free‐feeding aphid Chaitophorus populicola across genetic variants of its host plant, Populus angustifolia. To test for local adaptation, we collected tree cuttings and aphid colonies from three sites along an elevation/climate gradient and conducted a reciprocal transplant experiment. In general, home aphids (aphids transplanted onto trees from the same site) produced 1.7–3.4 times as many offspring as foreign aphids (aphids transplanted onto trees from different sites). To test for rapid evolution, we used 4 clonally replicated aphid genotypes and transplanted each onto 5 clonally replicated P. angustifolia genotypes. Each tree genotype started with the same aphid genotype composition. After 21 days (~two aphid generations), aphid genotype composition changed (i.e., aphids evolved) and some tree genotypes supported unique evolutionary trajectories of aphids. These results suggest that plant evolution in response to human perturbation, such as climate change and invasive species, will also result in evolutionary responses in strongly interacting species that could cascade to affect whole communities.
Collapse
Affiliation(s)
- Stuart C. Wooley
- Department of Entomology University of Wisconsin‐Madison Madison Wisconsin USA
- Department of Biological Sciences California State University Turlock California USA
| | - David Solance Smith
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona USA
- Biology Department California State University San Bernardino San Bernardino California USA
| | - Eric V. Lonsdorf
- Alexander Center for Population Biology Conservation and Science Lincoln Park Zoo Chicago Illinois USA
- Urban Wildlife Institute Conservation and Science Lincoln Park Zoo Chicago Illinois USA
| | - Sarah C. Brown
- Department of Entomology University of Wisconsin‐Madison Madison Wisconsin USA
| | - Thomas G. Whitham
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona USA
- Center for Adaptable Western Landscapes Northern Arizona University Flagstaff Arizona USA
| | - Stephen M. Shuster
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona USA
| | - Richard L. Lindroth
- Department of Entomology University of Wisconsin‐Madison Madison Wisconsin USA
| |
Collapse
|
7
|
Olliff‐Yang RL, Ackerly DD. Topographic heterogeneity lengthens the duration of pollinator resources. Ecol Evol 2020; 10:9301-9312. [PMID: 32953062 PMCID: PMC7487246 DOI: 10.1002/ece3.6617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 11/23/2022] Open
Abstract
The availability of sufficient and diverse resources across time is important for maintenance of biodiversity and ecosystem functioning. In this study, we examine the potential for variation in environmental conditions across topographic gradients to extend floral resource timing. Flowering time on a landscape may vary across topography due to differences in abiotic factors, species turnover, or genotypic differences. However, the extent to which this variation in phenology affects overall flowering duration on a landscape, and the components of diversity that influence flowering duration, are unexplored. We investigate whether differences in flowering time due to topography yield an overall extension in duration of flowering resources in a northern California grassland. We recorded flowering time of pollinator resource species across four successive spring growing seasons (2015-2018) on paired north and south aspects. Flowering time differences were evaluated both at the community level and within species present on both paired aspects. The role of plasticity was examined in an experimental case study using genotypes of Lasthenia gracilis. We found that aspect is a strong determinant of phenology, with earlier flowering on warmer south-facing slopes. Aspect differences resulted in complementarity in timing of flowering resources across sites, as aspects that started flowering earlier also ended earlier. Complementarity between north and south aspects served to extend the flowering time of pollinator resources by an average of 4-8 days (8%-15%), depending on the year. This extension can be attributed to both within-species responses to aspect differences and species turnover. Flowering of L. gracilis genotypes was distinct across aspects, demonstrating that plasticity can drive the extension of flowering duration. Our findings indicate that heterogeneous topography can extend overall flowering time of pollinator resources, which may support pollinator biodiversity. Extension was most pronounced at the community level, which incorporates species turnover as well as plastic and genotypic differences within species.
Collapse
Affiliation(s)
| | - David D. Ackerly
- Integrative BiologyUC BerkeleyBerkeleyCAUSA
- Environmental Science, Policy, and ManagementUC BerkeleyBerkeleyCAUSA
| |
Collapse
|
8
|
Olliff‐Yang RL, Gardali T, Ackerly DD. Mismatch managed? Phenological phase extension as a strategy to manage phenological asynchrony in plant–animal mutualisms. Restor Ecol 2020. [DOI: 10.1111/rec.13130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Rachael L. Olliff‐Yang
- Integrative Biology UC Berkeley 3040 Valley Life Sciences Building #3140 Berkeley CA 94720 U.S.A
| | - Thomas Gardali
- Point Blue Conservation Science 3820 Cypress Drive, Suite #11 Petaluma CA 94954 U.S.A
| | - David D. Ackerly
- Integrative Biology UC Berkeley 3040 Valley Life Sciences Building #3140 Berkeley CA 94720 U.S.A
- Environmental Science, Policy, and Management UC Berkeley Berkeley CA 94720 U.S.A
| |
Collapse
|
9
|
McCormick ML, Aslan CE, Chaudhry TA, Potter KA. Benefits and limitations of isolated floral patches in a pollinator restoration project in Arizona. Restor Ecol 2019. [DOI: 10.1111/rec.12995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Molly L. McCormick
- Landscape Conservation InitiativeNorthern Arizona University Flagstaff AZ 86005 U.S.A
| | - Clare E. Aslan
- Landscape Conservation InitiativeNorthern Arizona University Flagstaff AZ 86005 U.S.A
| | | | - Kristen A. Potter
- Landscape Conservation InitiativeNorthern Arizona University Flagstaff AZ 86005 U.S.A
| |
Collapse
|
10
|
Keith AR, Bailey JK, Lau MK, Whitham TG. Genetics-based interactions of foundation species affect community diversity, stability and network structure. Proc Biol Sci 2018; 284:rspb.2016.2703. [PMID: 28490623 DOI: 10.1098/rspb.2016.2703] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/05/2017] [Indexed: 11/12/2022] Open
Abstract
We examined the hypothesis that genetics-based interactions between strongly interacting foundation species, the tree Populus angustifolia and the aphid Pemphigus betae, affect arthropod community diversity, stability and species interaction networks of which little is known. In a 2-year experimental manipulation of the tree and its aphid herbivore four major findings emerged: (i) the interactions of these two species determined the composition of an arthropod community of 139 species; (ii) both tree genotype and aphid presence significantly predicted community diversity; (iii) the presence of aphids on genetically susceptible trees increased the stability of arthropod communities across years; and (iv) the experimental removal of aphids affected community network structure (network degree, modularity and tree genotype contribution to modularity). These findings demonstrate that the interactions of foundation species are genetically based, which in turn significantly contributes to community diversity, stability and species interaction networks. These experiments provide an important step in understanding the evolution of Darwin's 'entangled bank', a metaphor that characterizes the complexity and interconnectedness of communities in the wild.
Collapse
Affiliation(s)
- Arthur R Keith
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Joseph K Bailey
- Department of Ecology and Evolutionary Biology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Matthew K Lau
- Harvard University, Harvard Forest, 324 North Main Street, Petersham, MA 01366, USA
| | - Thomas G Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA .,Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|