1
|
Urrea-Galeano LA, Santos-Gally R, Rivera-Duarte JD, Díaz Rojas A, Boege K. Plant species richness and phylogenetic diversity can favor the recovery of dung beetle communities in ecological restoration plots. Oecologia 2025; 207:29. [PMID: 39893289 PMCID: PMC11787278 DOI: 10.1007/s00442-025-05666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 12/05/2024] [Indexed: 02/04/2025]
Abstract
Plant communities with higher species richness and phylogenetic diversity can increase the diversity of herbivores and their enemies through trophic interactions. However, whether these two features of plant communities have the same positive influence on other guilds through non-trophic mechanisms requires further exploration. Dung beetles represent an ideal system for testing such impacts, as they do not have a specialized trophic interaction with plants and are sensitive to changes in vegetation structure and the associated microclimate. We used a dataset of dung beetles collected from forest sites, restoration plots, and cattle pastures to (a) determine whether the richness and phylogenetic diversity of plants within restoration plots influence the total biomass and the taxonomic, functional, and phylogenetic diversity of dung beetles; and (b) determine if the establishment of restoration plots allows to recover the abundance and diversity of dung beetle communities, relative to what is found in livestock pastures. In the restoration plots, the abundance of Scarabaeinae beetles and the total biomass, functional originality, and phylogenetic diversity of dung beetles were positively related to the number of plant species, but only the abundance of Scarabaeinae and total biomass of all dung beetles were positively related to the plant phylogenetic diversity. Finally, the restoration plots allowed a threefold increase in the total biomass of dung beetles relative to the biomass found in pastures. We discuss how restoration plots with high plant species richness and phylogenetic diversity can favor the recovery of dung beetle communities by potentially creating more niche opportunities.
Collapse
Affiliation(s)
| | - Rocío Santos-Gally
- CONAHCYT-Instituto de Ecología, Departamento de Ecología Evolutiva, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - José D Rivera-Duarte
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
- Laboratorio de Hidrobiología, Departamento de Ecología y Recursos Naturales, Escuela de Biología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, M.D.C. Francisco Morazán, Honduras
| | | | - Karina Boege
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico.
| |
Collapse
|
2
|
Vázquez-González C, Castagneyrol B, Muiruri EW, Barbaro L, Abdala-Roberts L, Barsoum N, Fründ J, Glynn C, Jactel H, McShea WJ, Mereu S, Mooney KA, Morillas L, Nock CA, Paquette A, Parker JD, Parker WC, Roales J, Scherer-Lorenzen M, Schuldt A, Verheyen K, Weih M, Yang B, Koricheva J. Tree diversity enhances predation by birds but not by arthropods across climate gradients. Ecol Lett 2024; 27:e14427. [PMID: 38698677 DOI: 10.1111/ele.14427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top-down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation. We recorded bird and arthropod predation attempts on plasticine caterpillars in monocultures and tree species mixtures. Both tree species richness and temperature increased predation by birds but not by arthropods. Furthermore, the effects of tree species richness on predation were consistent across the studied climatic gradient. Our findings provide evidence that tree diversity strengthens top-down control of insect herbivores by birds, underscoring the need to implement conservation strategies that safeguard tree diversity to sustain ecosystem services provided by natural enemies in forests.
Collapse
Affiliation(s)
- Carla Vázquez-González
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, USA
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (MBG-CSIC), Pontevedra, España
| | | | - Evalyne W Muiruri
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Luc Barbaro
- Dynafor, INRAE-INPT, University of Toulouse, Castanet-Tolosan, France
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Nadia Barsoum
- Forest Research, Alice Holt Lodge, Farnham, Surrey, UK
| | - Jochen Fründ
- Biometry and Environmental System Analysis, University of Freiburg, Freiburg, Germany
- Animal Network Ecology, Department of Biology, Universität Hamburg, Hamburg, Germany
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| | - Carolyn Glynn
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hervé Jactel
- BIOGECO, University of Bordeaux, INRAE, Bordeaux, France
| | - William J McShea
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute 1500 Remount Road, Front Royal, Virginia, USA
| | - Simone Mereu
- Institute of BioEconomy, National Research Council of Italy, Sassari, Italy
| | - Kailen A Mooney
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, USA
| | - Lourdes Morillas
- Department of Plant Biology and Ecology, University of Sevilla, C/ Professor García González s/n, Sevilla, Spain
| | - Charles A Nock
- College of Natural and Applied Sciences, Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Alain Paquette
- Center for Forest Research, Université du Québec à Montréal, Montréal, Canada
| | - John D Parker
- Smithsonian Environmental Research Center, Front Royal, Maryland, USA
| | - William C Parker
- Ontario Ministry of Natural Resources and Forestry, Sault Ste. Marie, Ontario, Canada
| | - Javier Roales
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra, Seville, Spain
| | | | - Andreas Schuldt
- Forest Nature Conservation, University of Göttingen, Göttingen, Germany
| | - Kris Verheyen
- Forest & Nature Lab, Department of Environment, Ghent University, Melle-Gontrode, Belgium
| | - Martin Weih
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bo Yang
- Jiangxi Key Laboratory of Plant Resources and Biodiversity, Jingdezhen University, Jingdezhen, China
| | - Julia Koricheva
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| |
Collapse
|
3
|
Vázquez-González C, Villa-Galaviz E, Reyes-Hernández M, Perez-Niño B, Quijano-Medina T, Parra-Tabla V, Mooney KA, Abdala-Roberts L. Temporal variation in tree diversity effects on birds and its implications for top-down control of insect herbivores in a tropical system. Oecologia 2024; 204:603-612. [PMID: 38393366 DOI: 10.1007/s00442-024-05514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 02/25/2024]
Abstract
Tree diversity promotes predator abundance and diversity, but evidence linking these effects to increased predation pressure on herbivores remains limited. In addition, tree diversity effects on predators can vary temporally as a function of environmental variation, or due to contrasting responses by different predator types. In a multi-year study, we assessed temporal variation in tree diversity effects on bird community abundance, diversity, and predation rates as a whole and by functional group based on feeding guild (omnivores vs. insectivores) and migratory status (migrant vs. resident). To this end, we conducted bird point counts in tree monocultures and polycultures and assessed attacks on clay caterpillars four times over a 2-year period in a tree diversity experiment in Yucatan, Mexico. Tree diversity effects on the bird community varied across surveys, with positive effects on bird abundance and diversity in most but not all surveys. Tree diversity had stronger and more consistent effects on omnivorous and resident birds than on insectivorous and migratory species. Tree diversity effects on attack rates also varied temporally but patterns did not align with variation in bird abundance or diversity. Thus, while we found support for predicted increases in bird abundance, diversity, and predation pressure with tree diversity, these responses exhibited substantial variation over time and the former two were uncoupled from patterns of predation pressure, as well as contingent on bird functional traits. These results underscore the need for long-term studies measuring responses by different predator functional groups to better understand tree diversity effects on top-down control.
Collapse
Affiliation(s)
- Carla Vázquez-González
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, CA, 92697, USA
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain
| | - Edith Villa-Galaviz
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, Mexico
| | - Martha Reyes-Hernández
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, Mexico
| | - Biiniza Perez-Niño
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, Mexico
| | - Teresa Quijano-Medina
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, Mexico
| | - Víctor Parra-Tabla
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, Mexico
| | - Kailen A Mooney
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, CA, 92697, USA
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, Mexico.
| |
Collapse
|
4
|
Wang MQ, Wen Z, Ke J, Chesters D, Li Y, Chen JT, Luo A, Shi X, Zhou QS, Liu XJ, Ma K, Bruelheide H, Schuldt A, Zhu CD. Tree communities and functional traits determine herbivore compositional turnover. Oecologia 2023; 203:205-218. [PMID: 37831151 DOI: 10.1007/s00442-023-05463-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
There are many factors known to drive species turnover, although the mechanisms by which these operate are less clear. Based on comprehensive datasets from the largest tree diversity experiment worldwide (BEF-China), we used shared herbivore species (zeta diversity) and multi-site generalized dissimilarity modelling to investigate the patterns and determinants of species turnover of Lepidoptera herbivores among study plots across a gradient in tree species richness. We found that zeta diversity declined sharply with an increasing number of study plots, with complete changes in caterpillar species composition observed even at the fine spatial scale of our study. Plant community characteristics rather than abiotic factors were found to play key roles in driving caterpillar compositional turnover, although these effects varied with an increasing number of study plots considered, due to the varying contributions of rare and common species to compositional turnover. Our study reveals details of the impact of phylogeny- and trait-mediated processes of trees on herbivore compositional turnover, which has implications for forest management and conservation and shows potential avenues for maintenance of heterogeneity in herbivore communities.
Collapse
Affiliation(s)
- Ming-Qiang Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 4 Renmin South Road, Wuhou District, Chengdu, 610041, China
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- Forest Nature Conservation, University of Göttingen, Buesgenweg 3, 37077, Göttingen, Germany
| | - Zhixin Wen
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Jinzhao Ke
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 4 Renmin South Road, Wuhou District, Chengdu, 610041, China
- College of Biological Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Douglas Chesters
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Yi Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Jing-Ting Chen
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- College of Biological Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Arong Luo
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Xiaoyu Shi
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Qing-Song Zhou
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Xiao-Juan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
- School of Resources and Environmental Sciences, University of Chinese Academy of Sciences, Beijing, 101314, China
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
| | - Andreas Schuldt
- Forest Nature Conservation, University of Göttingen, Buesgenweg 3, 37077, Göttingen, Germany.
| | - Chao-Dong Zhu
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
- College of Biological Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
5
|
Staab M, Pietsch S, Yan H, Blüthgen N, Cheng A, Li Y, Zhang N, Ma K, Liu X. Dear neighbor: Trees with extrafloral nectaries facilitate defense and growth of adjacent undefended trees. Ecology 2023; 104:e4057. [PMID: 37078562 DOI: 10.1002/ecy.4057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Plant diversity can increase productivity. One mechanism behind this biodiversity effect is facilitation, which is when one species increases the performance of another species. Plants with extrafloral nectaries (EFNs) establish defense mutualisms with ants. However, whether EFN plants facilitate defense of neighboring non-EFN plants is unknown. Synthesizing data on ants, herbivores, leaf damage, and defense traits from a forest biodiversity experiment, we show that trees growing adjacent to EFN trees had higher ant biomass and species richness and lower caterpillar biomass than conspecific controls without EFN-bearing neighbors. Concurrently, the composition of defense traits in non-EFN trees changed. Thus, when non-EFN trees benefit from lower herbivore loads as a result of ants spilling over from EFN tree neighbors, this may allow relatively reduced resource allocation to defense in the former, potentially explaining the higher growth of those trees. Via this mutualist-mediated facilitation, promoting EFN trees in tropical reforestation could foster carbon capture and multiple other ecosystem functions.
Collapse
Affiliation(s)
- Michael Staab
- Ecological Networks, Technical University Darmstadt, Darmstadt, Germany
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Stefanie Pietsch
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg im Breisgau, Germany
- Field Station Fabrikschleichach, University of Würzburg, Würzburg, Germany
| | - Haoru Yan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nico Blüthgen
- Ecological Networks, Technical University Darmstadt, Darmstadt, Germany
| | - Anpeng Cheng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Naili Zhang
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Zhejiang Qianjiangyuan Forest Biodiversity National Observation and Research Station, Beijing, China
| |
Collapse
|
6
|
Wang Y, Liu Z, Tang T, Li J. Analysis of the Relative Importance of Stand Structure and Site Conditions for the Productivity, Species Diversity, and Carbon Sequestration of Cunninghamia lanceolata and Phoebe bournei Mixed Forest. PLANTS (BASEL, SWITZERLAND) 2023; 12:1633. [PMID: 37111856 PMCID: PMC10142919 DOI: 10.3390/plants12081633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Forest stand structure (the characteristics and interrelationships of live trees) and site conditions (the physical and environmental characteristics of a specific location) have been linked to forest regeneration, nutrient cycling, wildlife habitat, and climate regulation. While the effects of stand structure (i.e., spatial and non-spatial) and site conditions on the single function of Cunninghamia lanceolata and Phoebe bournei (CLPB) mixed forest have been studied in previous studies, the relative importance of stand structure and site conditions in terms of productivity, species diversity, and carbon sequestration remains unresolved. In this study, a structural equation model (SEM) was adopted to analyze the relative importance of stand structure and site conditions for the forest productivity, species diversity, and carbon sequestration of CLPB mixed forest in Jindong Forestry in Hunan Province. Our research demonstrates that site conditions have a greater influence on forest functions than stand structure, and that non-spatial structures have a greater overall impact on forest functions than spatial structures. Specifically, the intensity of the influence of site conditions and non-spatial structure on functions is greatest for productivity, followed by carbon sequestration and species diversity. In contrast, the intensity of the influence of spatial structure on functions is greatest for carbon sequestration, followed by species diversity and productivity. These findings provide valuable insights for the management of CLPB mixed forest in Jindong Forestry and have significant reference value for the close-to-natural forest management (CTNFM) of pure Cunninghamia lanceolata forests.
Collapse
Affiliation(s)
- Yiru Wang
- Faculty of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
- Key Laboratory of State Forestry Administration on Forest Resources Management and Monitoring in Southern Area, Changsha 410004, China
- Research Centre of Forest Remote Sensing and Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhaohua Liu
- Faculty of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
- Key Laboratory of State Forestry Administration on Forest Resources Management and Monitoring in Southern Area, Changsha 410004, China
- Research Centre of Forest Remote Sensing and Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tao Tang
- Faculty of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
- Key Laboratory of State Forestry Administration on Forest Resources Management and Monitoring in Southern Area, Changsha 410004, China
- Research Centre of Forest Remote Sensing and Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiping Li
- Faculty of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
- Key Laboratory of State Forestry Administration on Forest Resources Management and Monitoring in Southern Area, Changsha 410004, China
- Research Centre of Forest Remote Sensing and Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
7
|
Anttonen P, Li Y, Chesters D, Davrinche A, Haider S, Bruelheide H, Chen JT, Wang MQ, Ma KP, Zhu CD, Schuldt A. Leaf Nutritional Content, Tree Richness, and Season Shape the Caterpillar Functional Trait Composition Hosted by Trees. INSECTS 2022; 13:1100. [PMID: 36555010 PMCID: PMC9785672 DOI: 10.3390/insects13121100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Nutritional content of host plants is expected to drive caterpillar species assemblages and their trait composition. These relationships are altered by tree richness-induced neighborhood variation and a seasonal decline in leaf quality. We tested how key functional traits related to the growth and defenses of the average caterpillar hosted by a tree species are shaped by nutritional host quality. We measured morphological traits and estimated plant community-level diet breadth based on occurrences from 1020 caterpillars representing 146 species in a subtropical tree diversity experiment from spring to autumn in one year. We focused on interspecific caterpillar trait variation by analyzing presence-only patterns of caterpillar species for each tree species. Our results show that tree richness positively affected caterpillar species-sharing among tree species, which resulted in lowered trait variation and led to higher caterpillar richness for each tree species. However, community-level diet breadth depended more on the nutritional content of host trees. Higher nutritional quality also supported species-poorer but more abundant communities of smaller and less well-defended caterpillars. This study demonstrates that the leaf nutritional quality of trees shapes caterpillar trait composition across diverse species assemblages at fine spatial scales in a way that can be predicted by ecological theory.
Collapse
Affiliation(s)
- Perttu Anttonen
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108 Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Yi Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Douglas Chesters
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andréa Davrinche
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108 Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Sylvia Haider
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108 Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108 Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Jing-Ting Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Biological Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Qiang Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ke-Ping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Biological Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Andreas Schuldt
- Department of Forest Nature Conservation, Georg-August-University Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
8
|
Quinto J, Díaz-Castelazo C, Rico-Gray V, Martínez-Falcón AP, Abdala-Roberts L, Parra-Tabla V. Short-Term Temporal Patterns in Herbivore Beetle Assemblages in Polyculture Neotropical Forest Plantations. NEOTROPICAL ENTOMOLOGY 2022; 51:199-211. [PMID: 34988944 DOI: 10.1007/s13744-021-00933-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Although insect herbivorous communities in tropical forests are known to exhibit strong seasonality, few studies have systematically assessed temporal patterns of variation in community structure and plant-herbivore interactions in early successional arboreal communities. We assessed seasonal and interannual variation of the diversity and composition of herbivorous beetles and the tree-herbivore network in a recently established polyculture forest plantation, during the dry and the rainy seasons of 2012 and of 2013. Species richness was similar between years, while the ecological diversity was higher in 2012. Comparing seasons, no differences were found in 2012, whereas in 2013, the species richness and ecological diversity were higher during the dry season. The species composition differed radically across years and seasons. Moreover, a quantitative nested pattern was consistently found across both temporal scales, more influenced by species densities. We found temporal changes in the species strength, whereas connectance and interaction evenness remained stable. Rapid temporal changes in the structural complexity of recently established polyculture plantations and the availability and quality of the trophic resources they offer may act as drivers of beetle diversity patterns, promoting rapid variation in herbivore composition and some interacting attributes. Nonetheless, network structure, connectance, and interaction evenness remained similar, suggesting that reorganizations in the distribution of species may determine the maintenance of the patterns of interaction. Further work assessing long-term temporal dynamics of herbivore beetle assemblages are needed to more robustly relate diversity and interaction patterns to biotic and abiotic factors and their implications in management programs.
Collapse
Affiliation(s)
- Javier Quinto
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán (UADY), Mérida, Yucatan, Mexico.
- Instituto de Investigación y Formación Agraria y Pesquera de Andalucía (IFAPA), Centro de Málaga (Churriana), Málaga, Spain.
| | | | - Víctor Rico-Gray
- Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Ana Paola Martínez-Falcón
- Laboratorio de Ecología de Comunidades, Centro de Investigaciones Biológicas, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de La Reforma, Hidalgo, Mexico
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán (UADY), Mérida, Yucatan, Mexico
| | - Víctor Parra-Tabla
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán (UADY), Mérida, Yucatan, Mexico
| |
Collapse
|
9
|
Novella-Fernandez R, Juste J, Ibañez C, Nogueras J, Osborne PE, Razgour O. The role of forest structure and composition in driving the distribution of bats in Mediterranean regions. Sci Rep 2022; 12:3224. [PMID: 35217783 PMCID: PMC8881505 DOI: 10.1038/s41598-022-07229-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/15/2022] [Indexed: 11/29/2022] Open
Abstract
Forests are key native habitats in temperate environments. While their structure and composition contribute to shaping local-scale community assembly, their role in driving larger-scale species distributions is understudied. We used detailed forest inventory data, an extensive dataset of occurrence records, and species distribution models integrated with a functional approach, to disentangle mechanistically how species-forest dependency processes drive the regional-scale distributions of nine forest specialist bats in a Mediterranean region in the south of Spain. The regional distribution patterns of forest bats were driven primarily by forest composition and structure rather than by climate. Bat roosting ecology was a key trait explaining the strength of the bat-forest dependency relationships. Tree roosting bats were strongly associated with mature and heterogeneous forest with large trees (diameters > 425 mm). Conversely, and contrary to what local-scale studies show, our results did not support that flight-related traits (wing loading and aspect ratio) drive species distributional patterns. Mediterranean forests are expected to be severely impacted by climate change. This study highlights the utility of disentangling species-environment relationships mechanistically and stresses the need to account for species-forest dependency relationships when assessing the vulnerability of forest specialists towards climate change.
Collapse
Affiliation(s)
- Roberto Novella-Fernandez
- School of Biological Sciences, University of Southampton, Southampton, UK. .,Terrestrial Ecology Research Group, Department for Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Javier Juste
- Estación Biológica de Doñana (CSIC), Sevilla, Spain.,CIBER of Epidemiology and Public Health, CIBERESP, Madrid, Spain
| | | | | | - Patrick E Osborne
- School of Geography and Environmental Science, University of Southampton, Southampton, UK
| | - Orly Razgour
- School of Biological Sciences, University of Southampton, Southampton, UK.,University of Exeter, Exeter, UK
| |
Collapse
|
10
|
Wang M, Yan C, Luo A, Li Y, Chesters D, Qiao H, Chen J, Zhou Q, Ma K, Bruelheide H, Schuldt A, Zhang Z, Zhu C. Phylogenetic relatedness, functional traits, and spatial scale determine herbivore co‐occurrence in a subtropical forest. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ming‐Qiang Wang
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences 1 Beichen West Road Chaoyang District, Beijing 100101 China
- College of Biological Sciences University of Chinese Academy of Sciences No. 19A Yuquan Road Shijingshan District, Beijing 100049 China
| | - Chuan Yan
- Institute of Innovation Ecology Lanzhou University Lanzhou Gansu 730013 China
| | - Arong Luo
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences 1 Beichen West Road Chaoyang District, Beijing 100101 China
| | - Yi Li
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences 1 Beichen West Road Chaoyang District, Beijing 100101 China
- College of Biological Sciences University of Chinese Academy of Sciences No. 19A Yuquan Road Shijingshan District, Beijing 100049 China
| | - Douglas Chesters
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences 1 Beichen West Road Chaoyang District, Beijing 100101 China
| | - Hui‐Jie Qiao
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences 1 Beichen West Road Chaoyang District, Beijing 100101 China
| | - Jing‐Ting Chen
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences 1 Beichen West Road Chaoyang District, Beijing 100101 China
- College of Biological Sciences University of Chinese Academy of Sciences No. 19A Yuquan Road Shijingshan District, Beijing 100049 China
| | - Qing‐Song Zhou
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences 1 Beichen West Road Chaoyang District, Beijing 100101 China
| | - Keping Ma
- Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle‐Wittenberg Am Kirchtor 1 Halle 06108 Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Puschstr. 4 Leipzig 04103 Germany
| | - Andreas Schuldt
- Forest Nature Conservation Georg‐August‐University Goettingen Buesgenweg 3 Goettingen 37077 Germany
| | - Zhibin Zhang
- College of Biological Sciences University of Chinese Academy of Sciences No. 19A Yuquan Road Shijingshan District, Beijing 100049 China
- State Key Laboratory of Integrated Pest Management Institute of Zoology Chinese Academy of Sciences 1 Beichen West Road Chaoyang District, Beijing 100101 China
- CAS Center for Excellence in Biotic Interactions University of Chinese Academy of Sciences Beijing 100049 China
| | - Chao‐Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences 1 Beichen West Road Chaoyang District, Beijing 100101 China
- College of Biological Sciences University of Chinese Academy of Sciences No. 19A Yuquan Road Shijingshan District, Beijing 100049 China
- State Key Laboratory of Integrated Pest Management Institute of Zoology Chinese Academy of Sciences 1 Beichen West Road Chaoyang District, Beijing 100101 China
| |
Collapse
|
11
|
Fornoff F, Staab M, Zhu CD, Klein AM. Multi-trophic communities re-establish with canopy cover and microclimate in a subtropical forest biodiversity experiment. Oecologia 2021; 196:289-301. [PMID: 33895883 PMCID: PMC8139880 DOI: 10.1007/s00442-021-04921-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 04/13/2021] [Indexed: 11/06/2022]
Abstract
Plant diversity affects multi-trophic communities, but in young regrowth forests, where forest insects are in the process of re-establishment, other biotic and also abiotic factors might be more important. We studied cavity-nesting bees, wasps and their natural enemies along an experimental tree diversity gradient in subtropical South-East China. We compared insect communities of experimental young forests with communities of established natural forests nearby the experiment and tested for direct and indirect effects of tree diversity, tree basal area (a proxy of tree biomass), canopy cover and microclimate on bee and wasp community composition, abundance and species richness. Finally, we tested if the trophic levels of bees, herbivore-hunting wasps, spider-hunting wasps and their natural enemies respond similarly. Forest bee and wasp community composition re-established towards communities of the natural forest with increasing tree biomass and canopy cover. These factors directly and indirectly, via microclimatic conditions, increased the abundance of bees, wasps and their natural enemies. While bee and wasp species richness increased with abundance and both were not related to tree diversity, abundance increased directly with canopy cover, mediated by tree biomass. Abundance of natural enemies increased with host (bee and wasp) abundance irrespective of their trophic position. In conclusion, although maximizing tree diversity is an important goal of reforestation and forest conservation, rapid closure of canopies is also important for re-establishing communities of forest bees, wasps and their natural enemies.
Collapse
Affiliation(s)
- Felix Fornoff
- Chair of Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacherstraße 4, 79106, Freiburg, Germany.
| | - Michael Staab
- Chair of Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacherstraße 4, 79106, Freiburg, Germany.,Ecological Networks, Technical University of Darmstadt, Schnittspahnstraße 3, 64287, Darmstadt, Germany
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China.,College of Biological Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Alexandra-Maria Klein
- Chair of Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacherstraße 4, 79106, Freiburg, Germany
| |
Collapse
|
12
|
Wang MQ, Li Y, Chesters D, Bruelheide H, Ma K, Guo PF, Zhou QS, Staab M, Zhu CD, Schuldt A. Host functional and phylogenetic composition rather than host diversity structure plant-herbivore networks. Mol Ecol 2020; 29:2747-2762. [PMID: 32564434 DOI: 10.1111/mec.15518] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/10/2020] [Indexed: 12/18/2022]
Abstract
Declining plant diversity alters ecological networks, such as plant-herbivore interactions. However, our knowledge of the potential mechanisms underlying effects of plant species loss on plant-herbivore network structure is still limited. We used DNA barcoding to identify herbivore-host plant associations along declining levels of tree diversity in a large-scale, subtropical biodiversity experiment. We tested for effects of tree species richness, host functional and phylogenetic diversity, and host functional (leaf trait) and phylogenetic composition on species, phylogenetic and network composition of herbivore communities. We found that phylogenetic host composition and related palatability/defence traits but not tree species richness significantly affected herbivore communities and interaction network complexity at both the species and community levels. Our study indicates that evolutionary dependencies and functional traits of host plants determine the composition of higher trophic levels and corresponding interaction networks in species-rich ecosystems. Our findings highlight that characteristics of the species lost have effects on ecosystem structure and functioning across trophic levels that cannot be predicted from mere reductions in species richness.
Collapse
Affiliation(s)
- Ming-Qiang Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Forest Nature Conservation, Georg-August-University Goettingen, Goettingen, Germany
| | - Yi Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Douglas Chesters
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Keping Ma
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Peng-Fei Guo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Qing-Song Zhou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Michael Staab
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Andreas Schuldt
- Forest Nature Conservation, Georg-August-University Goettingen, Goettingen, Germany
| |
Collapse
|
13
|
Linking Soil Fungal Generality to Tree Richness in Young Subtropical Chinese Forests. Microorganisms 2019; 7:microorganisms7110547. [PMID: 31717669 PMCID: PMC6921041 DOI: 10.3390/microorganisms7110547] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 11/17/2022] Open
Abstract
Soil fungi are a highly diverse group of microorganisms that provide many ecosystem services. The mechanisms of soil fungal community assembly must therefore be understood to reliably predict how global changes such as climate warming and biodiversity loss will affect ecosystem functioning. To this end, we assessed fungal communities in experimental subtropical forests by pyrosequencing of the internal transcribed spacer 2 (ITS2) region, and constructed tree-fungal bipartite networks based on the co-occurrence of fungal operational taxonomic units (OTUs) and tree species. The characteristics of the networks and the observed degree of fungal specialization were then analyzed in relation to the level of tree species diversity. Unexpectedly, plots containing two tree species had higher network connectance and fungal generality values than those with higher tree diversity. Most of the frequent fungal OTUs were saprotrophs. The degree of fungal specialization was highest in tree monocultures. Ectomycorrhizal fungi had higher specialization coefficients than saprotrophic, arbuscular mycorrhizal, and plant pathogenic fungi. High tree species diversity plots with 4 to 16 different tree species sustained the greatest number of fungal species, which is assumed to be beneficial for ecosystem services because it leads to more effective resource exploitation and greater resilience due to functional redundancy.
Collapse
|
14
|
Multiple plant diversity components drive consumer communities across ecosystems. Nat Commun 2019; 10:1460. [PMID: 30926809 PMCID: PMC6440984 DOI: 10.1038/s41467-019-09448-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/05/2019] [Indexed: 01/22/2023] Open
Abstract
Humans modify ecosystems and biodiversity worldwide, with negative consequences for ecosystem functioning. Promoting plant diversity is increasingly suggested as a mitigation strategy. However, our mechanistic understanding of how plant diversity affects the diversity of heterotrophic consumer communities remains limited. Here, we disentangle the relative importance of key components of plant diversity as drivers of herbivore, predator, and parasitoid species richness in experimental forests and grasslands. We find that plant species richness effects on consumer species richness are consistently positive and mediated by elevated structural and functional diversity of the plant communities. The importance of these diversity components differs across trophic levels and ecosystems, cautioning against ignoring the fundamental ecological complexity of biodiversity effects. Importantly, plant diversity effects on higher trophic-level species richness are in many cases mediated by modifications of consumer abundances. In light of recently reported drastic declines in insect abundances, our study identifies important pathways connecting plant diversity and consumer diversity across ecosystems. Here, Schuldt et al. collate data from two long-term grassland and forest biodiversity experiments to ask how plant diversity facets affect the diversity of higher trophic levels. The results show that positive effects of plant diversity on consumer diversity are mediated by plant structural and functional diversity, and vary across ecosystems and trophic levels.
Collapse
|
15
|
Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat Commun 2018; 9:2989. [PMID: 30065285 PMCID: PMC6068104 DOI: 10.1038/s41467-018-05421-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/06/2018] [Indexed: 12/15/2022] Open
Abstract
Human-induced biodiversity change impairs ecosystem functions crucial to human well-being. However, the consequences of this change for ecosystem multifunctionality are poorly understood beyond effects of plant species loss, particularly in regions with high biodiversity across trophic levels. Here we adopt a multitrophic perspective to analyze how biodiversity affects multifunctionality in biodiverse subtropical forests. We consider 22 independent measurements of nine ecosystem functions central to energy and nutrient flow across trophic levels. We find that individual functions and multifunctionality are more strongly affected by the diversity of heterotrophs promoting decomposition and nutrient cycling, and by plant functional-trait diversity and composition, than by tree species richness. Moreover, cascading effects of higher trophic-level diversity on functions originating from lower trophic-level processes highlight that multitrophic biodiversity is key to understanding drivers of multifunctionality. A broader perspective on biodiversity-multifunctionality relationships is crucial for sustainable ecosystem management in light of non-random species loss and intensified biotic disturbances under future environmental change. Biodiversity change can impact ecosystem functioning, though this is primarily studied at lower trophic levels. Here, Schuldt et al. find that biodiversity components other than tree species richness are particularly important, and higher trophic level diversity plays a role in multifunctionality.
Collapse
|
16
|
Schuldt A, Fornoff F, Bruelheide H, Klein AM, Staab M. Tree species richness attenuates the positive relationship between mutualistic ant-hemipteran interactions and leaf chewer herbivory. Proc Biol Sci 2018; 284:rspb.2017.1489. [PMID: 28878067 DOI: 10.1098/rspb.2017.1489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/28/2017] [Indexed: 12/27/2022] Open
Abstract
Interactions across trophic levels influence plant diversity effects on ecosystem functions, but the complexity of these interactions remains poorly explored. For example, the interplay between different interactions (e.g. mutualism, predation) might be an important moderator of biodiversity-ecosystem function relationships. We tested for relationships between trophobioses (facultative ant-hemipteran mutualism) and leaf chewer herbivory in a subtropical forest biodiversity experiment. We analysed trophobiosis and herbivory data of more than 10 000 trees along a tree species richness gradient. Against expectations, chewing damage was higher on trees with trophobioses. However, the net positive relationship between trophobioses and overall herbivory depended on tree species richness, being most pronounced at low richness. Our results point to indirect, positive effects of ant-tended sap suckers on leaf chewers, potentially by altering plant defences. Direct antagonistic relationships of trophobiotic ants and leaf-chewing herbivores-frequently reported to drive community-wide effects of trophobioses in other ecosystems-seemed less relevant. However, antagonistic interactions likely contributed to the attenuating effect of tree species richness, because trophobiotic ant and herbivore communities changed from monocultures to species-rich mixtures. Our findings, therefore, suggest that biodiversity loss might lead to complex changes in higher trophic level effects on ecosystem functions, mediated by both trophic and non-trophic interactions.
Collapse
Affiliation(s)
- Andreas Schuldt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany .,Institute of Biology/Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany
| | - Felix Fornoff
- University of Freiburg, Faculty of Environment and Natural Resources, Nature Conservation and Landscape Ecology, Tennenbacherstr. 4, 79106 Freiburg, Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.,Institute of Biology/Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany
| | - Alexandra-Maria Klein
- University of Freiburg, Faculty of Environment and Natural Resources, Nature Conservation and Landscape Ecology, Tennenbacherstr. 4, 79106 Freiburg, Germany
| | - Michael Staab
- University of Freiburg, Faculty of Environment and Natural Resources, Nature Conservation and Landscape Ecology, Tennenbacherstr. 4, 79106 Freiburg, Germany
| |
Collapse
|
17
|
Yang B, Li B, He Y, Zhang L, Bruelheide H, Schuldt A. Tree diversity has contrasting effects on predation rates by birds and arthropods on three broadleaved, subtropical tree species. Ecol Res 2017. [DOI: 10.1007/s11284-017-1531-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
O'Brien MJ, Brezzi M, Schuldt A, Zhang J, Ma K, Schmid B, Niklaus PA. Tree diversity drives diversity of arthropod herbivores, but successional stage mediates detritivores. Ecol Evol 2017; 7:8753-8760. [PMID: 29152174 PMCID: PMC5677472 DOI: 10.1002/ece3.3411] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 11/06/2022] Open
Abstract
The high tree diversity of subtropical forests is linked to the biodiversity of other trophic levels. Disentangling the effects of tree species richness and composition, forest age, and stand structure on higher trophic levels in a forest landscape is important for understanding the factors that promote biodiversity and ecosystem functioning. Using a plot network spanning gradients of tree diversity and secondary succession in subtropical forest, we tested the effects of tree community characteristics (species richness and composition) and forest succession (stand age) on arthropod community characteristics (morphotype diversity, abundance and composition) of four arthropod functional groups. We posit that these gradients differentially affect the arthropod functional groups, which mediates the diversity, composition, and abundance of arthropods in subtropical forests. We found that herbivore richness was positively related to tree species richness. Furthermore, the composition of herbivore communities was associated with tree species composition. In contrast, detritivore richness and composition was associated with stand age instead of tree diversity. Predator and pollinator richness and abundance were not strongly related to either gradient, although positive trends with tree species richness were found for predators. The weaker effect of tree diversity on predators suggests a cascading diversity effect from trees to herbivores to predators. Our results suggest that arthropod diversity in a subtropical forest reflects the net outcome of complex interactions among variables associated with tree diversity and stand age. Despite this complexity, there are clear linkages between the overall richness and composition of tree and arthropod communities, in particular herbivores, demonstrating that these trophic levels directly impact each other.
Collapse
Affiliation(s)
- Michael J. O'Brien
- Estación Experimental de Zonas ÁridasConsejo Superior de Investigaciones CientíficasAlmeríaSpain
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Matteo Brezzi
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Institute of Global HealthUniversity of GenevaGenevaSwitzerland
| | - Andreas Schuldt
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Jia‐Yong Zhang
- Institute of EcologyZhejiang Normal UniversityJinhuaZhejiang ProvinceChina
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Bernhard Schmid
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Pascal A. Niklaus
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
19
|
Schuldt A, Hönig L, Li Y, Fichtner A, Härdtle W, von Oheimb G, Welk E, Bruelheide H. Herbivore and pathogen effects on tree growth are additive, but mediated by tree diversity and plant traits. Ecol Evol 2017; 7:7462-7474. [PMID: 28944031 PMCID: PMC5606881 DOI: 10.1002/ece3.3292] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/03/2017] [Accepted: 07/09/2017] [Indexed: 01/06/2023] Open
Abstract
Herbivores and fungal pathogens are key drivers of plant community composition and functioning. The effects of herbivores and pathogens are mediated by the diversity and functional characteristics of their host plants. However, the combined effects of herbivory and pathogen damage, and their consequences for plant performance, have not yet been addressed in the context of biodiversity–ecosystem functioning research. We analyzed the relationships between herbivory, fungal pathogen damage and their effects on tree growth in a large‐scale forest‐biodiversity experiment. Moreover, we tested whether variation in leaf trait and climatic niche characteristics among tree species influenced these relationships. We found significant positive effects of herbivory on pathogen damage, and vice versa. These effects were attenuated by tree species richness—because herbivory increased and pathogen damage decreased with increasing richness—and were most pronounced for species with soft leaves and narrow climatic niches. However, herbivory and pathogens had contrasting, independent effects on tree growth, with pathogens decreasing and herbivory increasing growth. The positive herbivory effects indicate that trees might be able to (over‐)compensate for local damage at the level of the whole tree. Nevertheless, we found a dependence of these effects on richness, leaf traits and climatic niche characteristics of the tree species. This could mean that the ability for compensation is influenced by both biodiversity loss and tree species identity—including effects of larger‐scale climatic adaptations that have been rarely considered in this context. Our results suggest that herbivory and pathogens have additive but contrasting effects on tree growth. Considering effects of both herbivory and pathogens may thus help to better understand the net effects of damage on tree performance in communities differing in diversity. Moreover, our study shows how species richness and species characteristics (leaf traits and climatic niches) can modify tree growth responses to leaf damage under real‐world conditions.
Collapse
Affiliation(s)
- Andreas Schuldt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.,Institute of Biology/Geobotany and Botanical Garden Martin-Luther-University Halle-Wittenberg Halle Germany
| | - Lydia Hönig
- Institute of Biology/Geobotany and Botanical Garden Martin-Luther-University Halle-Wittenberg Halle Germany
| | - Ying Li
- Institute of Ecology Leuphana University Lüneburg Lüneburg Germany
| | - Andreas Fichtner
- Institute of Ecology Leuphana University Lüneburg Lüneburg Germany
| | - Werner Härdtle
- Institute of Ecology Leuphana University Lüneburg Lüneburg Germany
| | - Goddert von Oheimb
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.,Institute of General Ecology and Environmental Protection Technische Universität Dresden Tharandt Germany
| | - Erik Welk
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.,Institute of Biology/Geobotany and Botanical Garden Martin-Luther-University Halle-Wittenberg Halle Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.,Institute of Biology/Geobotany and Botanical Garden Martin-Luther-University Halle-Wittenberg Halle Germany
| |
Collapse
|