1
|
Moreira X, Martín-Cacheda L, Quiroga G, Lago-Núñez B, Röder G, Abdala-Roberts L. Testing the joint effects of arbuscular mycorrhizal fungi and ants on insect herbivory on potato plants. PLANTA 2024; 260:66. [PMID: 39080142 PMCID: PMC11289011 DOI: 10.1007/s00425-024-04492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
MAIN CONCLUSION Ants, but not mycorrhizae, significantly affected insect leaf-chewing herbivory on potato plants. However, there was no evidence of mutualistic interactive effects on herbivory. Plants associate with both aboveground and belowground mutualists, two prominent examples being ants and arbuscular mycorrhizal fungi (AMF), respectively. While both of these mutualisms have been extensively studied, joint manipulations testing their independent and interactive (non-additive) effects on plants are rare. To address this gap, we conducted a joint test of ant and AMF effects on herbivory by leaf-chewing insects attacking potato (Solanum tuberosum) plants, and further measured plant traits likely mediating mutualist effects on herbivory. In a field experiment, we factorially manipulated the presence of AMF (two levels: control and mycorrhization) and ants (two levels: exclusion and presence) and quantified the concentration of leaf phenolic compounds acting as direct defenses, as well as plant volatile organic compound (VOC) emissions potentially mediating direct (e.g., herbivore repellents) or indirect (e.g., ant attractants) defense. Moreover, we measured ant abundance and performed a dual-choice greenhouse experiment testing for effects of VOC blends (mimicking those emitted by control vs. AMF-inoculated plants) on ant attraction as a mechanism for indirect defense. Ant presence significantly reduced herbivory whereas mycorrhization had no detectable influence on herbivory and mutualist effects operated independently. Plant trait measurements indicated that mycorrhization had no effect on leaf phenolics but significantly increased VOC emissions. However, mycorrhization did not affect ant abundance and there was no evidence of AMF effects on herbivory operating via ant-mediated defense. Consistently, the dual-choice assay showed no effect of AMF-induced volatile blends on ant attraction. Together, these results suggest that herbivory on potato plants responds mainly to top-down (ant-mediated) rather than bottom-up (AMF-mediated) control, an asymmetry in effects which could have precluded mutualist non-additive effects on herbivory. Further research on this, as well as other plant systems, is needed to examine the ecological contexts under which mutualist interactive effects are more or less likely to emerge and their impacts on plant fitness and associated communities.
Collapse
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain.
| | - Lucía Martín-Cacheda
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain
| | - Gabriela Quiroga
- Centro de Investigaciones Agrarias de Mabegondo (CIAM), Apartado de Correos 10, 15080 A, Coruña, Spain
| | - Beatriz Lago-Núñez
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain
| | - Gregory Röder
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, México
| |
Collapse
|
2
|
Kosmopoulos JC, Batstone-Doyle RT, Heath KD. Co-inoculation with novel nodule-inhabiting bacteria reduces the benefits of legume-rhizobium symbiosis. Can J Microbiol 2024; 70:275-288. [PMID: 38507780 DOI: 10.1139/cjm-2023-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The ecologically and economically vital symbiosis between nitrogen-fixing rhizobia and leguminous plants is often thought of as a bi-partite interaction, yet studies increasingly show the prevalence of non-rhizobial endophytes (NREs) that occupy nodules alongside rhizobia. Yet, what impact these NREs have on plant or rhizobium fitness remains unclear. Here, we investigated four NRE strains found to naturally co-occupy nodules of the legume Medicago truncatula alongside Sinorhizobium meliloti in native soils. Our objectives were to (1) examine the direct and indirect effects of NREs on M. truncatula and S. meliloti fitness, and (2) determine whether NREs can re-colonize root and nodule tissues upon reinoculation. We identified one NRE strain (522) as a novel Paenibacillus species, another strain (717A) as a novel Bacillus species, and the other two (702A and 733B) as novel Pseudomonas species. Additionally, we found that two NREs (Bacillus 717A and Pseudomonas 733B) reduced the fitness benefits obtained from symbiosis for both partners, while the other two (522, 702A) had little effect. Lastly, we found that NREs were able to co-infect host tissues alongside S. meliloti. This study demonstrates that variation of NREs present in natural populations must be considered to better understand legume-rhizobium dynamics in soil communities.
Collapse
Affiliation(s)
- James C Kosmopoulos
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, WI, USA
| | - Rebecca T Batstone-Doyle
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Katy D Heath
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
3
|
Magnoli SM, Keller KR, Lau JA. Mutualisms in a warming world: How increased temperatures affect the outcomes of multi-mutualist interactions. Ecology 2023; 104:e3955. [PMID: 36509698 DOI: 10.1002/ecy.3955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/27/2022] [Indexed: 12/15/2022]
Abstract
In nature, plant species simultaneously interact with many different mutualistic partners. These mutualists may influence one another through direct interference or indirectly by competing for shared reward resources or through alteration of plant traits. Together, these mutualists also may combine to affect plant hosts in ways that may not be predictable based on pairwise interactions. Given that the outcome of mutualistic interactions often depends on environmental conditions, multi-mutualist effects on one another, and their plant hosts may be affected by global changes. Here, we grew focal plants under simulated global warming conditions and manipulated the presence of partner mutualists to test how warming affects the outcome of interactions between focal plants and their partners (nitrogen-fixing rhizobia, ant defenders, and pollinators) and interactions among these partner mutualists. We find that warming alters the fitness benefits plants receive from rhizobium resource mutualists but not ant mutualists and that warming altered plant investment in all mutualists. We also find that mutualist partners interact, often by altering the availability of plant-produced rewards that facilitate interactions with other partners. Our work illustrates that global changes may affect some but not all mutualisms, often asymmetrically (e.g., affecting investment in the mutualist partner but not plant host benefits) and also highlights the ubiquity of interactions between the multiple mutualists associating with a shared host.
Collapse
Affiliation(s)
- Susan M Magnoli
- Kansas Biological Survey, University of Kansas, Lawrence, Kansas, USA
| | - Kane R Keller
- Department of Biology, California State University Bakersfield, Bakersfield, California, USA
| | - Jennifer A Lau
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
4
|
Lau JA, Hammond MD, Schmidt JE, Weese DJ, Yang WH, Heath KD. Contemporary evolution rivals the effects of rhizobium presence on community and ecosystem properties in experimental mesocosms. Oecologia 2022; 200:133-143. [PMID: 36125524 DOI: 10.1007/s00442-022-05253-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022]
Abstract
Because genotypes within a species commonly differ in traits that influence other species, whole communities, or even ecosystem functions, evolutionary change within one key species may affect the community and ecosystem processes. Here we use experimental mesocosms to test how the evolution of reduced cooperation in rhizobium mutualists in response to 20 years of nitrogen fertilization compares to the effects of rhizobium presence on soil nitrogen availability and plant community composition and diversity. The evolution of reduced rhizobium cooperation caused reductions in soil nitrogen, biological nitrogen fixation, and leaf nitrogen concentrations that were as strong as, or even stronger than, experimental rhizobium inoculation (presence/absence) treatments. Effects of both rhizobium evolution and rhizobium inoculation on legume dominance, plant community composition, and plant species diversity were often smaller in magnitude, but suggest that rhizobium evolution can alter the relative abundance of plant functional groups. Our findings indicate that the consequences of rapid microbial evolution for ecosystems and communities can rival the effects resulting from the presence or abundance of keystone mutualists.
Collapse
Affiliation(s)
- Jennifer A Lau
- Kellogg Biological Station & Department of Plant Biology, Michigan State University, 3700 E. Gull Lake Dr., Hickory Corners, MI, 49060, USA.
- Department of Biology & the Environmental Resilience Institute, Indiana University, 1001 E 3rd St., Bloomington, IN, 47401, USA.
| | - Mark D Hammond
- Kellogg Biological Station & Department of Plant Biology, Michigan State University, 3700 E. Gull Lake Dr., Hickory Corners, MI, 49060, USA
| | - Jennifer E Schmidt
- Kellogg Biological Station & Department of Plant Biology, Michigan State University, 3700 E. Gull Lake Dr., Hickory Corners, MI, 49060, USA
- Department of Plant Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Dylan J Weese
- Kellogg Biological Station & Department of Plant Biology, Michigan State University, 3700 E. Gull Lake Dr., Hickory Corners, MI, 49060, USA
| | - Wendy H Yang
- Department of Plant Biology, University of Illinois, 505 South Goodwin Ave, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, 1206 W. Gregory Dr., Urbana, IL, 61801, USA
- Department of Geology, University of Illinois, 1301 West Green St, Urbana, IL, 61801, USA
| | - Katy D Heath
- Department of Plant Biology, University of Illinois, 505 South Goodwin Ave, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, 1206 W. Gregory Dr., Urbana, IL, 61801, USA
| |
Collapse
|
5
|
Afkhami ME, Friesen ML, Stinchcombe JR. Multiple Mutualism Effects generate synergistic selection and strengthen fitness alignment in the interaction between legumes, rhizobia and mycorrhizal fungi. Ecol Lett 2021; 24:1824-1834. [PMID: 34110064 DOI: 10.1111/ele.13814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/02/2021] [Indexed: 01/05/2023]
Abstract
Nearly all organisms participate in multiple mutualisms, and complementarity within these complex interactions can result in synergistic fitness effects. However, it remains largely untested how multiple mutualisms impact eco-evolutionary dynamics in interacting species. We tested how multiple microbial mutualists-N-fixing bacteria and mycorrrhizal fungi-affected selection and heritability of traits in their shared host plant (Medicago truncatula), as well as fitness alignment between partners. Our results demonstrate for the first time that multiple mutualisms synergistically affect the selection and heritability of host traits and enhance fitness alignment between mutualists. Specifically, we found interaction with multiple microbial symbionts doubled the strength of natural selection on a plant architectural trait, resulted in 2- to 3-fold higher heritability of plant reproductive success, and more than doubled fitness alignment between N-fixing bacteria and plants. These findings show synergism generated by multiple mutualisms extends to key components of microevolutionary change, emphasising the importance of multiple mutualism effects on evolutionary trajectories.
Collapse
Affiliation(s)
| | - Maren L Friesen
- Department of Plant Pathology, Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|