1
|
Hennessy AB, Anderson RM, Mitchell N, Mooney KA, Singer MS. Parasitoid avoidance of intraguild predation drives enemy complementarity in a multi-trophic ecological network. Ecology 2025; 106:e4483. [PMID: 39838836 DOI: 10.1002/ecy.4483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 07/22/2024] [Accepted: 09/17/2024] [Indexed: 01/23/2025]
Abstract
How consumer diversity determines consumption efficiency is a central issue in ecology. In the context of predation and biological control, this relationship concerns predator diversity and predation efficiency. Reduced predation efficiency can result from different predator taxa eating each other in addition to their common prey (interference due to intraguild predation). By contrast, multiple predator taxa with overlapping but complementary feeding niches can generate increased predation efficiency on their common prey (enemy complementarity). When viewed strictly from an ecological perspective, intraguild predation and enemy complementarity are opposing forces. However, from an evolutionary ecology perspective, predators facing strong intraguild predation may evolve traits that reduce their predation risk, possibly leading to niche complementarity between enemies; thus, selection from intraguild predation may lead to enemy complementarity rather than opposing it. As specialized predators that live in or on their hosts, parasitoids are subjected to intraguild predation from generalist predators that consume the parasitoids' hosts. The degree to which parasitoid-predator interactions are ruled by interference versus enemy complementarity has been debated. Here, we address this issue with field experiments in a forest community consisting of multiple species of trees, herbivorous caterpillars, parasitoids, ants, and birds. Our experiments and analyses found no interference effects, but revealed clear evidence for complementarity between parasitoids and birds (not ants). Parasitism rates by hymenopterans and dipterans were negatively associated with bird predation risk, and the variation in the strength of this negative association suggests that this enemy complementarity was due to parasitoid avoidance of intraguild predation. We further argue that avoidance of intraguild predation by parasitoids and other arthropod predators may explain enigmatic patterns in vertebrate-arthropod-plant food webs in a variety of terrestrial ecosystems.
Collapse
Affiliation(s)
- Andrew B Hennessy
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| | - Riley M Anderson
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| | - Nora Mitchell
- Department of Biology, University of Wisconsin, Eau Claire, Wisconsin, USA
| | - Kailen A Mooney
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Michael S Singer
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| |
Collapse
|
2
|
Hill GM, Trager MD, Lucky A, Daniels JC. Protective Benefits of Tending Ants to a Critically Endangered Butterfly. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:9. [PMID: 36508354 PMCID: PMC9744248 DOI: 10.1093/jisesa/ieac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 06/17/2023]
Abstract
Ants provide protection to various organisms via myrmecophilous relationships. Most notably, ants and several butterfly species are involved in mainly mutualistic interactions. Previous field studies have shown that butterfly larval survival is increased in the presence of tending ants, suggesting that ants are providing protection against insect predation or parasitism. Here, we conducted a series of timed observational trials under laboratory conditions to assess larval survival and ant protection from insect predators for a myrmecophilous lycaenid butterfly. We focused on a critically endangered butterfly, the Miami blue (Cyclargus thomasi bethunebakeri) (Comstock and Huntington) (Lepidoptera: Lycaenidae), and its most common ant associate, the Florida carpenter ant (Camponotus floridanus) (Buckley) (Hymenoptera: Formicidae), to test this assumption of ant protection. We found that ants provide significant protection to Miami blue larvae, with later instar larvae receiving a higher level of protection due to differences in tending frequencies. These results will aid in informing conservation management and future organism reintroductions for this endangered butterfly.
Collapse
Affiliation(s)
| | - Matthew D Trager
- US Forest Service, 325 John Knox Road, STE F-100, Tallahassee, FL 32303, USA
| | - Andrea Lucky
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611-0620, USA
| | - Jaret C Daniels
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611-0620, USA
- Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Villamil N, Boege K, Stone GN. Defensive mutualists affect outcross pollen transfer and male fitness in their host plant. OIKOS 2022. [DOI: 10.1111/oik.08788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Nora Villamil
- Inst. of Evolutionary Biology, Univ. of Edinburgh, Ashworth Laboratories, The King's Buildings Edinburgh UK
- Dept of Ecology and Evolution, Univ. de Lausanne Biophore Lausanne Switzerland
| | - Karina Boege
- Inst. de Ecología, Univ. Nacional Autónoma de México, Ciudad Universitaria Ciudad De México México
| | - Graham N. Stone
- Inst. of Evolutionary Biology, Univ. of Edinburgh, Ashworth Laboratories, The King's Buildings Edinburgh UK
| |
Collapse
|
4
|
Vanbergen AJ, Boissieres C, Gray A, Chapman DS. Habitat loss, predation pressure and episodic heat-shocks interact to impact arthropods and photosynthetic functioning of microecosystems. Proc Biol Sci 2021; 288:20210032. [PMID: 33823665 PMCID: PMC8059533 DOI: 10.1098/rspb.2021.0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/16/2021] [Indexed: 01/22/2023] Open
Abstract
Ecosystems face multiple, potentially interacting, anthropogenic pressures that can modify biodiversity and ecosystem functioning. Using a bryophyte-microarthropod microecosystem we tested the combined effects of habitat loss, episodic heat-shocks and an introduced non-native apex predator on ecosystem function (chlorophyll fluorescence as an indicator of photosystem II function) and microarthropod communities (abundance and body size). The photosynthetic function was degraded by the sequence of heat-shock episodes, but unaffected by microecosystem patch size or top-down pressure from the introduced predator. In small microecosystem patches without the non-native predator, Acari abundance decreased with heat-shock frequency, while Collembola abundance increased. These trends disappeared in larger microecosystem patches or when predators were introduced, although Acari abundance was lower in large patches that underwent heat-shocks and were exposed to the predator. Mean assemblage body length (Collembola) was reduced independently in small microecosystem patches and with greater heat-shock frequency. Our experimental simulation of episodic heatwaves, habitat loss and non-native predation pressure in microecosystems produced evidence of individual and potentially synergistic and antagonistic effects on ecosystem function and microarthropod communities. Such complex outcomes of interactions between multiple stressors need to be considered when assessing anthropogenic risks for biota and ecosystem functioning.
Collapse
Affiliation(s)
- Adam J. Vanbergen
- Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
- UK Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
| | - Claire Boissieres
- L'Ecole Nationale Supérieure Agronomique de Toulouse (ENSAT), Avenue de l'Agrobiopole, BP 32607, Auzeville-Tolosane 31326, Castanet-Tolosan, France
| | - Alan Gray
- UK Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
| | - Daniel S. Chapman
- UK Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
5
|
Pearse IS, LoPresti E, Schaeffer RN, Wetzel WC, Mooney KA, Ali JG, Ode PJ, Eubanks MD, Bronstein JL, Weber MG. Generalising indirect defence and resistance of plants. Ecol Lett 2020; 23:1137-1152. [DOI: 10.1111/ele.13512] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/16/2019] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Ian S. Pearse
- U.S. Geological Survey Fort Collins Science Center 2150 Centre Ave #C Ft Collins CO 80526 USA
| | - Eric LoPresti
- Department of Plant Biology Evolutionary Biology & Behavior Program Michigan State University East Lansing MI USA
| | | | - William C. Wetzel
- Department of Entomology and Ecology Evolutionary Biology & Behavior Program Michigan State University East Lansing MI USA
| | - Kailen A. Mooney
- Ecology & Evolutionary Biology University of California Irvine, CA USA
| | - Jared G. Ali
- Department of Entomology Penn State University State College PA USA
| | - Paul J. Ode
- Graduate Degree Program in Ecology Department of Bioagricultural Science and Pest Management Colorado State University Fort Collins CO 80523 USA
| | - Micky D. Eubanks
- Department of Entomology Texas A&M University College Station TX USA
| | - Judith L. Bronstein
- Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ 85721 USA
| | - Marjorie G. Weber
- Department of Plant Biology Evolutionary Biology & Behavior Program Michigan State University East Lansing MI USA
| |
Collapse
|
6
|
Tsang TPN, Guénard B, Bonebrake TC. Omnivorous ants are less carnivorous and more protein-limited in exotic plantations. J Anim Ecol 2020; 89:1941-1951. [PMID: 32379899 DOI: 10.1111/1365-2656.13249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 04/27/2020] [Indexed: 11/28/2022]
Abstract
Diets of species are crucial in determining how they influence food webs and community structures, and how their populations are regulated by different bottom-up processes. Omnivores are able to adjust their diet flexibly according to environmental conditions, such that their impacts on food webs and communities, and the macronutrients constraining their population, can be plastic. In particular, omnivore diets are known to be influenced by prey availability, which exhibits high spatial and temporal variation. To examine the plasticity of diet and macronutrient limitation in omnivores, we compared trophic positions, macronutrient preferences and food exploitation rates of omnivorous ants in invertebrate-rich (secondary forests) and invertebrate-poor (Lophostemon confertus plantations) habitats. We hypothesized that omnivorous ants would have lower trophic positions, enhanced protein limitation and reduced food exploitation rates in L. confertus plantations relative to secondary forests. We performed cafeteria experiments to examine changes in macronutrient limitation and food exploitation rates. We also sampled ants and conducted stable isotope analyses to investigate dietary shifts between these habitats. We found that conspecific ants were less carnivorous and had higher preferences for protein-rich food in L. confertus plantations compared to secondary forests. However, ant assemblages did not exhibit increased preferences for protein-rich food in L. confertus plantations. At the species-level, food exploitation rates varied idiosyncratically between habitats. At the assemblage-level, food exploitation rates were reduced in L. confertus plantations. Our results reveal that plantation establishments alter the diet and foraging behaviour of omnivorous ants. Such changes suggest that omnivorous ants in plantations will have reduced top-down impacts on prey communities but also see an increased importance of protein as a bottom-up force in constraining omnivore population sizes.
Collapse
Affiliation(s)
- Toby P N Tsang
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Benoit Guénard
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Timothy C Bonebrake
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
7
|
Xu C, Su J, Qu X, Zhou A. Ant-mealybug mutualism modulates the performance of co-occurring herbivores. Sci Rep 2019; 9:13004. [PMID: 31506506 PMCID: PMC6737150 DOI: 10.1038/s41598-019-49334-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 08/23/2019] [Indexed: 11/09/2022] Open
Abstract
Mutualism between ants and honeydew producing hemipterans has been extensively studied. However, little is known on how ant-hemipteran mutualism impacts the co-occurring herbivores, which in turn affect the mutual relationship in ecosystems. Herein, we investigated the effect of ant-mealybug mutualism on the oviposition preference and spatial distribution of cotton leaf roller Sylepta derogata, a polyphagous herbivore, and in Apantetes derogatae performance, a larvae parasitoid of S. derogata. Leaf rollers constructed shelters for mealybugs to prevent them from enemy attack and preferred to lay eggs on plants with ant-mealybug mutualism. Egg abundance on mutualism-present plants was higher than on mutualism-absent plants. Leaf roller parasitoid A. derogatae showed higher parasitism on mutualism-absent plants. No obvious change in leaf roller egg abundance was observed when A. derogatae was excluded, suggesting that the parasitic pressure can also regulate the oviposition behavior of S. derogate. Apantetes derogatae showed higher aggressiveness in parasitizing leaf roller larvae at the absence of the mutualism. There was a definite correlation between leaf roller egg abundance and the number of patrolling ants on plants. Without ant-mealybug mutualism, S. derogata eggs showed a significantly aggregated distribution pattern, but a uniform distribution pattern was observed when the mutualism was present. Ant workers showed a consistently uniform distribution on plants. The results reveal a novel mediation effect of ant-mealybug association on the composition and structure of food webs in cotton field, which may contribute to a better understanding of the cascading effects of ant-hemipteran mutualism on other niche-related species in ecosystem.
Collapse
Affiliation(s)
- Chong Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia Su
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaobin Qu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aiming Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Clark RE, Gutierrez Illan J, Comerford MS, Singer MS. Keystone mutualism influences forest tree growth at a landscape scale. Ecol Lett 2019; 22:1599-1607. [DOI: 10.1111/ele.13352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/04/2019] [Accepted: 06/29/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Robert Emerson Clark
- Department of Biology Wesleyan University Middletown CT USA
- Department of Entomology Washington State University Pullman WA USA
| | | | - Mattheau S. Comerford
- Department of Biology Wesleyan University Middletown CT USA
- Department of Biosciences Rice University Houston TX USA
| | | |
Collapse
|