1
|
Gao Q, Jin N, Shen Z, Guo J, Lu H, Han S, Xiao W, Lu J, Lou Y. Both Jasmonic Acid- and Abscisic Acid-Mediated Signalling Pathways Regulate the Ovicidal Defence of Plants Against Phloem-Feeding Insects. PLANT, CELL & ENVIRONMENT 2025; 48:4475-4491. [PMID: 39996692 DOI: 10.1111/pce.15445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
Plants perceive signals associated with herbivore eggs and in response initiate ovicidal defence. However, which phytohormone pathways regulate this defence and which defensive compounds dominate it remains largely unknown. Here, we found that the hatching rate of eggs of white-backed planthopper (WBPH) Sogatella furcifera was significantly lower on a japonica rice variety P81 than an indica rice variety NB44. When infested by WBPH, P81 plants showed higher jasmonic acid (JA) and abscisic acid (ABA) responses than did NB44 plants; moreover, P81 plants produced the ovicidal compound benzyl benzoate and exhibited higher levels of some flavonoids, phenolamides, and volatiles than were found in NB44 plants. Impairing the ABA-signalling pathway, especially the JA-signalling pathway in P81 plants enhanced the survival of WBPH eggs. Decreasing levels of some flavonoids and phenolamides in P81 plants promoted WBPH egg survival. In vitro bioassays revealed that both naringenin and sakuranetin promote the ovicidal effect of benzyl benzoate on WBPH. The results demonstrate that JA- and ABA-signalling pathways jointly regulate the rice ovicidal defence against WBPH, and that benzyl benzoate, as well as some other compounds, such as naringenin and sakuranetin, contribute to the mortality of WBPH eggs.
Collapse
Affiliation(s)
- Qing Gao
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Nuo Jin
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhifan Shen
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jingran Guo
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Haiping Lu
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shanjie Han
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Wenhan Xiao
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jing Lu
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Wang Y, Gao R, Gu T, Li X, Wang M, Wang A, Qiu Y. Metabolomics and Transcriptomics Reveal the Role of the Terpene Biosynthetic Pathway in the Mechanism of Insect Resistance in Solanum habrochaites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6253-6269. [PMID: 39998954 DOI: 10.1021/acs.jafc.4c10397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Terpenes are a large variety of natural organic compounds that can enhance the resistance of plants to phytophagous insects through induction. In this study, differential expression genes and metabolites of Alice Craig (AC) and Solanum habrochaite (SH) were screened and analyzed by transcriptomics and metabolomics. The results show that terpene biosynthesis is one of the most crucial secondary metabolic pathways in plants. SH significantly accumulates more terpenes than AC by up regulating the expression of relevant genes. It is worth noting that virus-induced SlHDR silencing not only reduces the expression of downstream genes (SlTPS3, SlFPP, and SlGGPPS) in the terpene biosynthesis pathway, but also significantly affects the synthesis of related terpenoids, there by reducing the insect resistance of tomatoes. The results will be beneficial for understanding the synthesis mechanism of terpenoids in tomatoes and supply new genetic resources for the development of insect-resistant tomatoes.
Collapse
Affiliation(s)
- Yudan Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ruihua Gao
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Tingting Gu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xinzhi Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Meiliang Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Aoxue Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Youwen Qiu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Gandham K, Gautam M, George J, Reddy GVP, Kariyat R. Muffled olfactory and sensory cues from the reproductive stage soybean selectively reduce oviposition of a major polyphagous herbivore, fall armyworm (Spodoptera frugiperda). PEST MANAGEMENT SCIENCE 2024. [PMID: 39710863 DOI: 10.1002/ps.8600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/14/2024] [Accepted: 11/29/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND While the mother knows best/preference performance hypothesis has been well tested in natural ecosystems, how these ecological principles differ in agroecosystems is less explored. In this study, we investigated the ovipositional preference and offspring performance of fall armyworm (FAW) across vegetative and reproductive stages of soybean. RESULTS We examined trichomes, volatile organic compounds (VOCs) and assessed electroantennogram (EAG) measurements to understand how olfactory responses are affected by volatiles at different phenological stages during photoperiodism (photophase and scotophase). We found that gravid FAW preferred the vegetative compared to reproductive stage of soybean. Although VOC and EAG responses was not statistically different (P > 0.05) between photophase and scotophase, but vegetative stage exhibited significantly (P ≤ 0.05) higher emissions and responses than the reproductive stage during both photophase and scotophase. Additionally, reproductive stage had lower trichomes compared to the vegetative stage. Interestingly, no significant difference was observed in offspring performance between the vegetative and reproductive stages of soybean. This suggests that oviposition preference does not necessarily correlate with offspring performance, which was confirmed through offspring mass and mass gain studies. Olfactory and sensory cues from soybean at reproductive stage reduced oviposition by mother FAW. CONCLUSION Collectively, we show that while mother knows best may not fit FAW-Soybean interaction, muffled volatile emission in reproductive stages can have positive consequences for host success. The results from this study will enhance our understanding of FAW behavior across different phenological stages of host plants, that can be used to develop alternative and sustainable management strategies. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Krishnarao Gandham
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| | - Manish Gautam
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| | - Justin George
- USDA-ARS, Southern Insect Management Research Unit, Stoneville, MS, USA
| | - Gadi V P Reddy
- USDA-ARS, Southern Insect Management Research Unit, Stoneville, MS, USA
| | - Rupesh Kariyat
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
4
|
Liu J, Tallat M, Wang G, Li G, Zhang H, Wu X, Qiao H, Zhao X, Feng H. The Utility of Visual and Olfactory Maize Leaf Cues in Host Finding by Adult Spodoptera frugiperda (Lepidoptera: Noctuidae). PLANTS (BASEL, SWITZERLAND) 2024; 13:3300. [PMID: 39683094 DOI: 10.3390/plants13233300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
The fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) (FAW), is an invasive and destructive polyphagous pest that poses a significant threat to global agricultural production. The FAW mainly damages maize, with a particular preference for V3-V5 (third to fifth leaf collar) plant stages in northern China. How the FAW moth precisely locates maize plants in the V3-V5 stage at night remains unclear. The aims of this study were to evaluate the visual and olfactory cues used by the FAW to identify its host plant, maize, in order to select attractants with better trapping efficacy. Hyperspectral analysis of maize plants at different growth stages using the ASD Fieldspec 4 spectrometer was performed using mimics (moths or maize leaves sealed with transparent plastic sheets) and black cloth-covered plants for single visual and single olfactory attraction experiments. Gas chromatography-mass spectrometry (GC-MS) was used to analyze volatiles emitted from V3-V5 stage maize leaves. Volatile organic chemicals (VOCs) were screened using electroantennography (EAG) and Y-tube. Attractor efficacy was validated using mimics + VOCs. Results showed very little variance in the spectral reflectance curve of the maize at different growth stages. Fifteen VOCs were identified in the V3-V5 stage leaves of three different maize varieties, of which cis-3-hexenyl acetate and myrcene were found in relatively high concentrations in these maize varieties. The frequency of visits attracted by single visual stimuli was significantly lower than that attracted by single olfactory or olfactory + visual cues. The attractiveness of foliar cis-3-hexenyl acetate increased as its concentration decreased. The combination of mimics + cis-3-hexenyl acetate (1 ng/μL) increased host detection efficiency and stimulated mating behavior. These results indicate that the nocturnal insect FAW primarily uses olfactory cues for host identification, with visual cues serving as a complementary modality. The synergistic effect of olfactory and visual cues increases the efficiency of host recognition. We found that cis-3-hexenol acetate at a concentration from maize leaves is a reliable olfactory signal for the FAW. When using host plant VOCs as attractants to control adult FAWs, the role of visual cues must be considered.
Collapse
Affiliation(s)
- Jie Liu
- Henan Key Laboratory of Agricultural Pest Monitoring and Control, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, International Joint Research Laboratory for Crop Protection of Henan, No. 0 Entomological Radar Field Scientific Observation and Research Station of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Mariam Tallat
- Henan Key Laboratory of Agricultural Pest Monitoring and Control, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, International Joint Research Laboratory for Crop Protection of Henan, No. 0 Entomological Radar Field Scientific Observation and Research Station of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Gensong Wang
- Henan Key Laboratory of Agricultural Pest Monitoring and Control, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, International Joint Research Laboratory for Crop Protection of Henan, No. 0 Entomological Radar Field Scientific Observation and Research Station of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Guoping Li
- Henan Key Laboratory of Agricultural Pest Monitoring and Control, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, International Joint Research Laboratory for Crop Protection of Henan, No. 0 Entomological Radar Field Scientific Observation and Research Station of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Haowen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xujin Wu
- Institute of Quality and Safety for Agro-Products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hongbo Qiao
- College of Information and Management Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Xincheng Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Hongqiang Feng
- Henan Key Laboratory of Agricultural Pest Monitoring and Control, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, International Joint Research Laboratory for Crop Protection of Henan, No. 0 Entomological Radar Field Scientific Observation and Research Station of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| |
Collapse
|
5
|
Chen C, Lin Z, Du J, Huang J, Ling C, Chen J. Olfactory Selection Preferences of Pagiophloeus tsushimanus (Coleoptera: Curculionidae) Adults Toward Lauraceae Plants. Life (Basel) 2024; 14:1517. [PMID: 39598317 PMCID: PMC11595755 DOI: 10.3390/life14111517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Cinnamomum camphora is a broad-spectrum insect-repelling tree species because of its high content of terpenoids. However, it is curious that Pagiophloeus tsushimanus, a recently recorded wood-boring pest, has widely infested C. camphora plantations across various administrative districts in Shanghai. The larvae, being concealed within the trunk of C. camphora trees, exhibit characteristics such as hidden activity, strong destructiveness, and being difficult to control. While the primary host plant for P. tsushimanus is C. camphora, preliminary observations have shown that the pest can also complete its life cycle on Cinnamomum chekiangensis and Phoebe chekiangensis. To explore the host selection preference of this beetle, the present study aimed to investigate the olfactory selection behavior of P. tsushimanus adults towards C. camphora, C. chekiangensis, and P. chekiangensis. Results from choice and no-choice tests indicated that both male and female adults exhibited a feeding preference for C. camphora twigs, with females showing a preference for laying eggs on camphor tree twigs as well. Volatile compounds unique in camphor trees were significantly higher in relative content than those on the other two plants that were detected. The Y-shaped olfactometer experiments and electroantennography measurements results showed that male and female adults of P. tsushimanus had a positive chemotaxis towards volatiles released by C. camphora and a negative chemotaxis towards volatiles released by C. chekiangensis or P. chekiangensis. Overall, the findings suggest that both male and female adults have a selective preference for volatiles released by the camphor tree, and this provides a theoretical basis for monitoring and controlling the occurrence of this weevil pest.
Collapse
Affiliation(s)
- Cong Chen
- College of Life Sciences, Zhaoqing University, Zhaoqing 526061, China; (Z.L.); (J.D.); (J.H.); (C.L.); (J.C.)
| | | | | | | | | | | |
Collapse
|
6
|
Bassetti N, Caarls L, Bouwmeester K, Verbaarschot P, van Eijden E, Zwaan BJ, Bonnema G, Schranz ME, Fatouros NE. A butterfly egg-killing hypersensitive response in Brassica nigra is controlled by a single locus, PEK, containing a cluster of TIR-NBS-LRR receptor genes. PLANT, CELL & ENVIRONMENT 2024; 47:1009-1022. [PMID: 37961842 DOI: 10.1111/pce.14765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Knowledge of plant recognition of insects is largely limited to a few resistance (R) genes against sap-sucking insects. Hypersensitive response (HR) characterizes monogenic plant traits relying on R genes in several pathosystems. HR-like cell death can be triggered by eggs of cabbage white butterflies (Pieris spp.), pests of cabbage crops (Brassica spp.), reducing egg survival and representing an effective plant resistance trait before feeding damage occurs. Here, we performed genetic mapping of HR-like cell death induced by Pieris brassicae eggs in the black mustard Brassica nigra (B. nigra). We show that HR-like cell death segregates as a Mendelian trait and identified a single dominant locus on chromosome B3, named PEK (Pieris egg- killing). Eleven genes are located in an approximately 50 kb region, including a cluster of genes encoding intracellular TIR-NBS-LRR (TNL) receptor proteins. The PEK locus is highly polymorphic between the parental accessions of our mapping populations and among B. nigra reference genomes. Our study is the first one to identify a single locus potentially involved in HR-like cell death induced by insect eggs in B. nigra. Further fine-mapping, comparative genomics and validation of the PEK locus will shed light on the role of these TNL receptors in egg-killing HR.
Collapse
Affiliation(s)
- Niccolò Bassetti
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Lotte Caarls
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Klaas Bouwmeester
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Patrick Verbaarschot
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Ewan van Eijden
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Guusje Bonnema
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
7
|
Shi JH, Sun Z, Pickett JA, Hu XJ, Wang C, Liu L, Jin H, Abdelnabby H, Foba CN, Yang XQ, Chang XQ, Wang MQ. Unprecedented oviposition tactics avoid plant defences and reduce attack by parasitic wasps. PLANT, CELL & ENVIRONMENT 2024; 47:308-318. [PMID: 37807627 DOI: 10.1111/pce.14731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Female insects oviposit in sites suitable for the development of their offspring. The Oriental armyworm, Mythimna separata is a serious pest of various crops including wheat and prefers to oviposit on withered leaves rather than on fresh plant material, which is surprisingly different from other insects. Studies here showed that this oviposition tactic enables avoidance of wheat defence against eggs and emerged larvae. Intact plants responded to M. separata egg deposition by releasing oviposition-induced plant volatiles including acetophenone, tetradecene and pentadecane after 24 h. Acetophenone was identified as quantitatively accounting for the attraction of the egg parasitoid wasp (Trichogramma chilonis). Leaf jasmonic acid levels significantly increased after M. separata laid eggs, and primed the plant against emerging larvae. In addition, newly emerged M. separata larvae adopted a fast crawling behaviour and starvation tolerance compared with other noctuid larvae, which enhanced the survival of larvae on the withered leaves. The elucidation of this complex and surprising plant-insect interaction provides the first explanation for a herbivore laying eggs on withered leaves to avoid natural enemies and live-plant defence against emerging larvae.
Collapse
Affiliation(s)
- Jin-Hua Shi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ze Sun
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - John A Pickett
- School of Chemistry, Cardiff University, Cardiff, Wales, UK
| | - Xin-Jun Hu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chao Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Le Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huanan Jin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hazem Abdelnabby
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Plant Protection, Faculty of Agriculture, Benha University, Banha, Qalyubia, Egypt
| | - Caroline Ngichop Foba
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Agriculture, Environmental and Human Sciences, Cooperative Extension, Lincoln University, Jefferson City, Missouri, USA
| | - Xue-Qing Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiang-Qian Chang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Coolen S, Van Dijen M, Van Pelt JA, Van Loon JJA, Pieterse CMJ, Van Wees SCM. Genome-wide association study reveals WRKY42 as a novel plant transcription factor that influences oviposition preference of Pieris butterflies. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1690-1704. [PMID: 36560910 PMCID: PMC10010613 DOI: 10.1093/jxb/erac501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Insect herbivores are amongst the most destructive plant pests, damaging both naturally occurring and domesticated plants. As sessile organisms, plants make use of structural and chemical barriers to counteract herbivores. However, over 75% of herbivorous insect species are well adapted to their host's defenses and these specialists are generally difficult to ward off. By actively antagonizing the number of insect eggs deposited on plants, future damage by the herbivore's offspring can be limited. Therefore, it is important to understand which plant traits influence attractiveness for oviposition, especially for specialist insects that are well adapted to their host plants. In this study, we investigated the oviposition preference of Pieris butterflies (Lepidoptera: Pieridae) by offering them the choice between 350 different naturally occurring Arabidopsis accessions. Using a genome-wide association study of the oviposition data and subsequent fine mapping with full genome sequences of 164 accessions, we identified WRKY42 and AOC1 as candidate genes that are associated with the oviposition preference observed for Pieris butterflies. Host plant choice assays with Arabidopsis genotypes impaired in WRKY42 or AOC1 function confirmed a clear role for WRKY42 in oviposition preference of female Pieris butterflies, while for AOC1 the effect was mild. In contrast, WRKY42-impaired plants, which were preferred for oviposition by butterflies, negatively impacted offspring performance. These findings exemplify that plant genotype can have opposite effects on oviposition preference and caterpillar performance. This knowledge can be used for breeding trap crops or crops that are unattractive for oviposition by pest insects.
Collapse
Affiliation(s)
| | - Marcel Van Dijen
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Johan A Van Pelt
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Joop J A Van Loon
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| |
Collapse
|
9
|
Caarls L, Bassetti N, Verbaarschot P, Mumm R, van Loon JJA, Schranz ME, Fatouros NE. Hypersensitive-like response in Brassica plants is specifically induced by molecules from egg-associated secretions of cabbage white butterflies. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Plants perceive and respond to herbivore insect eggs. Upon egg deposition on leaves, a strong hypersensitive response (HR)-like cell death can be activated leading to egg desiccation and/or dropping. In Brassica spp., including many crops, the HR-like mechanism against eggs of cabbage white butterflies (Pieris spp.) is poorly understood. Using two Brassica species, the crop B. rapa and its wild relative B. nigra, we studied the cellular and molecular plant response to Pieris brassicae eggs and characterized potential insect egg-associated molecular patterns (EAMPs) inducing HR-like cell death. We found that eggs of P. brassicae induced typical hallmarks of early immune responses, such as callose deposition, production of reactive oxygen species and cell death in B. nigra and B. rapa leaf tissue, also in plants that did not express HR-like cell death. However, elevated levels of ethylene production and upregulation of salicylic acid-responsive genes were only detected in a B. nigra accession expressing HR-like cell death. Eggs and egg wash from P. brassicae contains compounds that induced such responses, but the eggs of the generalist moth Mamestra brassicae did not. Furthermore, wash made from hatched Pieris eggs, egg glue, and accessory reproductive glands (ARG) that produce this glue, induced HR-like cell death, whereas washes from unfertilized eggs dissected from the ovaries or removal of the glue from eggs resulted in no or a reduced response. This suggests that there is one or multiple egg associated molecular pattern (EAMP) located in the egg glue a that teresponse in B. nigra is specific to Pieris species. Lastly, our results indicate that the EAMP is neither lipidic nor proteinaceous. Our study expands the knowledge on the mechanism of Brassica-Pieris-egg interaction and is a step closer toward identification of EAMPs in Pieris egg glue and corresponding receptor(s) in Brassica.
Collapse
|
10
|
Khallaf MA, Sadek MM, Anderson P. Predator efficacy and attraction to herbivore-induced volatiles determine insect pest selection of inferior host plant. iScience 2023; 26:106077. [PMID: 36818286 PMCID: PMC9929603 DOI: 10.1016/j.isci.2023.106077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/27/2022] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Unlike mammals, most invertebrates provide no direct parental care for their progeny, which makes a well-selected oviposition site crucial. However, little is known about the female evaluation of opportunities and threats during host selection. Leveraging the wide range of host plants used by the polyphagous pest, Spodoptera littoralis, we investigate oviposition choice between two plants of different nutritional quality. Females prefer to lay their eggs on the host plant, which has inferior larval development and more natural enemies but provides lower predation rates. On the superior host plant, a major predator shows more successful search behavior and is more attracted to herbivore-induced volatiles. Our findings show that predator efficacy and odor-guided attraction, rather than predator abundance, determine enemy free space. We postulate that predators' behaviors contribute to the weak correlation between preference and performance during host plant selection in S. littoralis and in polyphagous insects in general.
Collapse
Affiliation(s)
- Mohammed A. Khallaf
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden,Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut, Egypt,Corresponding author
| | - Medhat M. Sadek
- Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut, Egypt,Corresponding author
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden,Corresponding author
| |
Collapse
|
11
|
Weeraddana CDS, Evenden ML. Oviposition by a Specialist Herbivore Increases Susceptibility of Canola to Herbivory by a Generalist Herbivore. ENVIRONMENTAL ENTOMOLOGY 2022; 51:605-612. [PMID: 35485203 DOI: 10.1093/ee/nvac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Oviposition by specialist herbivores can alter the suitability of the host plant to subsequent infestation by other herbivores. In this study, we tested the effect of previous oviposition on canola, Brassica napus L., by a Brassica specialist, the diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae), on subsequent herbivory by the generalist feeder, the bertha armyworm (BAW), Mamestra configurata Walker (Lepidoptera: Noctuidae). The effect of DBM oviposition on subsequent BAW oviposition and larval feeding was tested in no-choice and choice experiments. Oviposition of BAW was not altered by DBM eggs on canola plants, however, BAW had increased larval feeding on plants with DBM eggs. These results suggest that oviposition by a specialist herbivore increased the susceptibility of the host plant to generalist herbivory. In a preliminary experiment, salicylic acid, jasmonic acid, and its conjugates were not altered by DBM oviposition on canola, however, further experimentation is needed to determine if oviposition affects expression of plant defense pathways and other plant traits.
Collapse
Affiliation(s)
- Chaminda De Silva Weeraddana
- University of Alberta, Department of Biological Sciences, Edmonton, AB, Canada
- Department of Entomology, Winnipeg, MB, Canada
| | - Maya L Evenden
- University of Alberta, Department of Biological Sciences, Edmonton, AB, Canada
| |
Collapse
|
12
|
Shu R, Uy L, Wong ACN. Nutritional phenotype underlines the performance trade-offs of Drosophila suzukii on different fruit diets. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100026. [PMID: 36003272 PMCID: PMC9387456 DOI: 10.1016/j.cris.2021.100026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/20/2022]
Abstract
Drosophila suzukii exhibits contrasting performance trade-offs when confined to fruit diets of different protein-to-sugar ratios. These trade-offs can only be established when we examined performance parameters in both larvae and adults. The diet-specific nutritional phenotype readily explains the performance trade-offs.
Animals confined to different dietary conditions often exhibit distinct, sometimes contrasting, nutritional phenotypes and performance outcomes. This is especially true for many oviparous insects whose developmental diets can vary depending on the mother's egg-laying site selection. Much research on the relationship between preference and performance in insects has focused on larval success, which overlooks the complexities of dietary effects on diverse performance parameters across life stages and potential trade-offs between those parameters. Furthermore, the connection between diet-induced nutritional phenotype and performance trade-offs is not well understood. Here, using Drosophila suzukii, we quantify multiple performance indices of larvae and adults reared on five host fruits of different protein-to-sugar ratios (P:S) which have previously been shown to differ in attractiveness to fly foraging and oviposition. Our results demonstrate robust diet-specific performance trade-offs, with fly fecundity, larval development time, pupal size, and adult weight superior in flies reared on the high P:S raspberry diet, in contrast to the low P:S grape diet; but the reverse was found in terms of adult starvation resistance. Notably, the contrasting performance trade-offs are readily explained by the fly nutritional phenotype, reflected in the protein and energy (glucose and lipid) contents of flies reared on the two fruits. Together, our results provide experimental evidence for metabolic plasticity of D. suzukii reared on different fruits and the possibility of using adult nutritional phenotype as a marker for diet and performance outcomes.
Collapse
Affiliation(s)
- Runhang Shu
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Laurice Uy
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Adam Chun-Nin Wong
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Corresponding author, Adam C.N. Wong, 1881 Natural Area Drive, Steinmetz Hall, Gainesville, Fl 32611-0620, Phone: 352-273-3977
| |
Collapse
|
13
|
Rosa E, Saastamoinen M. Warm-night temperature alters paternal allocation strategy in a North temperate-zone butterfly. Ecol Evol 2021; 11:16514-16523. [PMID: 34938453 PMCID: PMC8668742 DOI: 10.1002/ece3.8120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/10/2021] [Accepted: 08/31/2021] [Indexed: 11/12/2022] Open
Abstract
Warming temperatures are greatly impacting wild organisms across the globe. Some of the negative impacts of climate change can be mitigated behaviorally, for example, by changes in habitat and oviposition site choice. Temperatures are reportedly warming faster at night than during the day, yet studies assessing the impacts of increasing night temperature are rare. We used the Finnish Glanville fritillary butterfly (Melitaea cinxia) as study species and exposed adult butterflies of both sexes to warmer night conditions. Under a seminatural outdoor enclosure, we assessed whether females base their oviposition choices primarily on habitat site characteristics (open, suggestive of dry meadows, versus covered by a coarse canopy, suggestive of pastures) or on plant condition (dry vs. lush), and if their choice is altered by the thermal conditions experienced at night. As exposure to warmer environmental conditions is expected to increase resting metabolic rate and potentially reduce life expectancy, we further assessed the fitness implications of warm-night temperatures. We found that females prefer open sites for oviposition and that females do not switch their oviposition strategy based on the thermal conditions they experienced at night prior to the reproductive event. Exposure to warm nights did not influence female lifespan, but the egg hatching success of their offspring was reduced. In addition, we found that males exposed to warm nights sired larger clutches with higher hatching rate. As warm-night exposure reduced male lifespan, this may imply a switch in male resource allocation strategy toward increased offspring quality. The present work adds on to the complex implications of climate warming and highlights the importance of the often-neglected role of males in shaping offspring performance.
Collapse
Affiliation(s)
- Elena Rosa
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | - Marjo Saastamoinen
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
14
|
Duan MY, Zhu H, Wang H, Guo SY, Li H, Jiang LL, Li XT, Xie G, Ren BZ. Effects of water deficiency on preference and performance of an insect herbivore Ostrinia furnacalis. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:595-604. [PMID: 33998414 DOI: 10.1017/s0007485321000407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With further climate change still expected, it is predicted to increase the frequency with plants will be water stressed, which subsequently influences phytophagous insects, particularly Lepidoptera with limited mobility of larvae. Previous studies have indicated that oviposition preference and offspring performance of Lepidoptera insects are sensitive to drought separately. However, the integration of their two properties is not always seen. Here, we evaluated changes in oviposition selection and offspring fitness of a Lepidoptera insect under three water-stressed treatments using a model agroecosystem consisting of maize Zea mays, and Asian corn borer Ostrinia furnacalis. Results found that female O. furnacalis preferred to laying their eggs on well-watered maize, and then their offspring tended to survive better, attained bigger larvae mass, and developed more pupae and adults on the preferred maize. Oviposition selection of O. furnacalis positively correlated with height and leaf traits of maize, and offspring fitness positively related with water content and phytochemical traits of hosts. Overall, these results suggest that oviposition choice performed by O. furnacalis reflects the maximization of offspring fitness, supporting preference-performance hypothesis. This finding further highlights that the importance of simultaneous evaluation of performance and performance for water driving forces should be involved, in order to accurately predict population size of O. furnacalis under altered precipitation pattern.
Collapse
Affiliation(s)
- M Y Duan
- School of Life Sciences/Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - H Zhu
- School of Life Sciences/Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - H Wang
- School of Life Sciences/Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - S Y Guo
- School of Life Sciences/Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
| | - H Li
- School of Life Sciences/Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
| | - L L Jiang
- School of Life Sciences/Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
| | - X T Li
- School of Life Sciences/Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
| | - G Xie
- School of Life Sciences/Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
| | - B Z Ren
- School of Life Sciences/Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| |
Collapse
|
15
|
Roy N. Synergism in Host Selection Behavior of Three Generalist Insects Towards Leaf Cuticular Wax of Sesame Cultivars. NEOTROPICAL ENTOMOLOGY 2021; 50:812-827. [PMID: 34232494 DOI: 10.1007/s13744-021-00892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Leaf cuticular wax plays important role in host selection, oviposition, and feeding of phytophagous insects. Thus, the role of cuticular wax of sesame (Sesamum indicum) cultivars (Savitri and Nirmala) in host selection of 3 generalist pests (Spilosoma obliqua Walker, Helicoverpa armigera Hübner, and Spodoptera litura Fabricius) was investigated under laboratory conditions. The GC-MS and GC-FID analyses of leaf surface waxes of both cultivars indicated the presence of 14 n-alkanes from n-C9 to n-C44 and 12 free fatty acids (FFAs) from C9:0 to C20:0. The most predominant n-alkane and FFA of the cultivars were n-C26 (94.3 ± 7.27 μg leaf-1) and C18:1 (110.8 ± 10.07 μg leaf-1), respectively present in Savitri cultivar. The generalists used visual (color and shape), olfactory (odorous n-alkanes and FFAs), tactile (surface ultra-structure), and gustatory (cuticular wax) cues in a synergistic manner for their host selection through attraction (adults and larvae) followed by oviposition (adults) and feeding (larvae) on studied cultivars (Savitri > Nirmala). Their olfactory responses were maximum towards 2 leaf equivalent amount, whereas oviposition and feeding preference were maximum towards 4 leaf equivalent amount of the combined synthetic (4 n-alkanes (n-C16, n-C22, n-C24, n-C26) + 3 FFAs (C12:0, C14:0, C18:1)) mixture-treated intact leaf of cultivar Savitri. This finding can suggest that the synthetic blend (4 n-alkanes + 3 FFAs) in leaf equivalent amount (396.6 ± 4.13 μg leaf-1) or more from cultivar Savitri can be used as lures to develop baited trap. In addition, the cultivar Nirmala can be used as a resistant cultivar in the ecological pest management (EPM) framework of these target pest species.
Collapse
Affiliation(s)
- Nayan Roy
- Ecology Research Unit, Dept. of Zoology, M.U.C. Women's College, Burdwan, West Bengal, India.
| |
Collapse
|
16
|
Afentoulis DG, Cusumano A, Greenberg LO, Caarls L, Fatouros NE. Attraction of Trichogramma Wasps to Butterfly Oviposition-Induced Plant Volatiles Depends on Brassica Species, Wasp Strain and Leaf Necrosis. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.703134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Within the Brassicaceae, wild as well as crop species are challenged by specialist herbivores including cabbage white butterflies (Pieris spp.). The wild crucifer Brassica nigra responds to oviposition by Pieris butterflies by the synergistic expression of two egg-killing traits. Genotypes that express a hypersensitive response (HR)-like necrosis (direct egg-killing) also emit oviposition-induced plant volatiles (OIPVs) attracting Trichogramma egg parasitoids (indirect egg-killing). This so-called double defense line can result in high butterfly egg mortalities. It remains unknown whether this strategy is unique to B. nigra or more common in Brassica species. To test this, we examined the response of different Trichogramma evanescens lines to OIPVs emitted by B. nigra and three close relatives (Brassica napus, Brassica rapa, and Brassica oleracea). Furthermore, we evaluated whether HR-like necrosis played a role in the attraction toward plant volatiles. Our results show a specificity in wasp attraction to different plant species. Three out of four plant species attracted a specific T. evanescens strain, including the crops B. rapa and B. napus. Parasitoid attraction was positively affected by presence of HR-like necrosis in one plant species. Our findings imply that, despite being a true generalist in terms of host range, T. evanescens shows intraspecific variation during host searching, which should be taken into account when selecting parasitoid lines for biocontrol of certain crops. Finally, we conclude that also crop plants within the Brassicaceae family possess egg-killing traits and can exert the double-defense line which may enable effective selection of egg-killing defense traits by cabbage breeders.
Collapse
|
17
|
Liu Z, Wang H, Xie J, Lv J, Zhang G, Hu L, Luo S, Li L, Yu J. The Roles of Cruciferae Glucosinolates in Disease and Pest Resistance. PLANTS 2021; 10:plants10061097. [PMID: 34070720 PMCID: PMC8229868 DOI: 10.3390/plants10061097] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
With the expansion of the area under Cruciferae vegetable cultivation, and an increase in the incidence of natural threats such as pests and diseases globally, Cruciferae vegetable losses caused by pathogens, insects, and pests are on the rise. As one of the key metabolites produced by Cruciferae vegetables, glucosinolate (GLS) is not only an indicator of their quality but also controls infestation by numerous fungi, bacteria, aphids, and worms. Today, the safe and pollution-free production of vegetables is advocated globally, and environmentally friendly pest and disease control strategies, such as biological control, to minimize the adverse impacts of pathogen and insect pest stress on Cruciferae vegetables, have attracted the attention of researchers. This review explores the mechanisms via which GLS acts as a defensive substance, participates in responses to biotic stress, and enhances plant tolerance to the various stress factors. According to the current research status, future research directions are also proposed.
Collapse
Affiliation(s)
- Zeci Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Huiping Wang
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Jianming Xie
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Jian Lv
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Guobin Zhang
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Linli Hu
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Shilei Luo
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Lushan Li
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua 617000, China
| | - Jihua Yu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
- Correspondence: ; Tel.: +86-931-763-2188
| |
Collapse
|
18
|
Griese E, Caarls L, Bassetti N, Mohammadin S, Verbaarschot P, Bukovinszkine’Kiss G, Poelman EH, Gols R, Schranz ME, Fatouros NE. Insect egg-killing: a new front on the evolutionary arms-race between brassicaceous plants and pierid butterflies. THE NEW PHYTOLOGIST 2021; 230:341-353. [PMID: 33305360 PMCID: PMC7986918 DOI: 10.1111/nph.17145] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/04/2020] [Indexed: 05/03/2023]
Abstract
Evolutionary arms-races between plants and insect herbivores have long been proposed to generate key innovations such as plant toxins and detoxification mechanisms that can drive diversification of the interacting species. A novel front-line of plant defence is the killing of herbivorous insect eggs. We test whether an egg-killing plant trait has an evolutionary basis in such a plant-insect arms-race. Within the crucifer family (Brassicaceae), some species express a hypersensitive response (HR)-like necrosis underneath butterfly eggs (Pieridae) that leads to eggs desiccating or falling off the plant. We studied the phylogenetic distribution of this trait, its egg-killing effect on and elicitation by butterflies, by screening 31 Brassicales species, and nine Pieridae species. We show a clade-specific induction of strong, egg-killing HR-like necrosis mainly in species of the Brassiceae tribe including Brassica crops and close relatives. The necrosis is strongly elicited by pierid butterflies that are specialists of crucifers. Furthermore, HR-like necrosis is linked to PR1 defence gene expression, accumulation of reactive oxygen species and cell death, eventually leading to egg-killing. Our findings suggest that the plants' egg-killing trait is a new front on the evolutionary arms-race between Brassicaceae and pierid butterflies beyond the well-studied plant toxins that have evolved against their caterpillars.
Collapse
Affiliation(s)
- Eddie Griese
- Biosystematics GroupWageningen UniversityWageningen6700 AAthe Netherlands
- Laboratory of EntomologyWageningen UniversityWageningen6700 AAthe Netherlands
| | - Lotte Caarls
- Biosystematics GroupWageningen UniversityWageningen6700 AAthe Netherlands
- Present address:
Plant BreedingWageningen University and ResearchWageningen6700 AJthe Netherlands
| | - Niccolò Bassetti
- Biosystematics GroupWageningen UniversityWageningen6700 AAthe Netherlands
| | - Setareh Mohammadin
- Biosystematics GroupWageningen UniversityWageningen6700 AAthe Netherlands
| | | | - Gabriella Bukovinszkine’Kiss
- Biosystematics GroupWageningen UniversityWageningen6700 AAthe Netherlands
- Laboratory of GeneticsWageningen UniversityWageningen6700 AAthe Netherlands
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen UniversityWageningen6700 AAthe Netherlands
| | - Rieta Gols
- Laboratory of EntomologyWageningen UniversityWageningen6700 AAthe Netherlands
| | - M. Eric Schranz
- Biosystematics GroupWageningen UniversityWageningen6700 AAthe Netherlands
| | - Nina E. Fatouros
- Biosystematics GroupWageningen UniversityWageningen6700 AAthe Netherlands
| |
Collapse
|
19
|
Groux R, Stahl E, Gouhier-Darimont C, Kerdaffrec E, Jimenez-Sandoval P, Santiago J, Reymond P. Arabidopsis natural variation in insect egg-induced cell death reveals a role for LECTIN RECEPTOR KINASE-I.1. PLANT PHYSIOLOGY 2021; 185:240-255. [PMID: 33631806 PMCID: PMC8133593 DOI: 10.1093/plphys/kiaa022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/30/2020] [Indexed: 05/02/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), a hypersensitive-like response (HR-like response) is triggered underneath the eggs of the large white butterfly Pieris brassicae (P. brassicae), and this response is dependent on salicylic acid (SA) accumulation and signaling. Previous reports indicate that the clade I L-type LECTIN RECEPTOR KINASE-I.8 (LecRK-I.8) is involved in early steps of egg recognition. A genome-wide association study was used to better characterize the genetic structure of the HR-like response and discover loci that contribute to this response. We report here the identification of LecRK-I.1, a close homolog of LecRK-I.8, and show that two main haplotypes that explain part of the variation in HR-like response segregate among natural Arabidopsis accessions. Besides, signatures of balancing selection at this locus suggest that it may be ecologically important. Disruption of LecRK-I.1 results in decreased HR-like response and SA signaling, indicating that this protein is important for the observed responses. Furthermore, we provide evidence that LecRK-I.1 functions in the same signaling pathway as LecRK-I.8. Altogether, our results show that the response to eggs of P. brassicae is controlled by multiple LecRKs.
Collapse
Affiliation(s)
- Raphaël Groux
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Elia Stahl
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | - Envel Kerdaffrec
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Pedro Jimenez-Sandoval
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Julia Santiago
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
- Author for communication:
| |
Collapse
|
20
|
Fernandes GW, de Almeida JS, Rodrigues-Menelau MFV, Arantes-Garcia L, Novais S. The bigger the better? Vigour of the exotic host plant Calotropis procera (Apocynaceae) affects herbivory. NEOTROPICAL BIOLOGY AND CONSERVATION 2020. [DOI: 10.3897/neotropical.15.e55148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Plant Vigour Hypothesis states that herbivores preferentially feed on the most vigorous plants within a plant population and/or the most vigorous modules within a plant. The goal of this study was to evaluate how shoot size (as an indication of module vigour) affects leaf herbivory in the host plant Calotropis procera, an exotic xerophyte perennial milkweed shrub. We predicted that the proportion of leaf area removed by insect herbivores would be positively related to shoot size. Eight patches were selected containing a varied number of C. procera individuals (5, 8, 29, 31, 55, 79, 116, and 172 individuals/patch) in the Brazilian seasonally dry vegetation (Caatinga), of which five individuals were randomly selected for further analysis. From each individual, three to six shoots were randomly selected, measured and had their leaves collected, for a total of approximately 200 leaves per patch. At the regional scale, the proportion of leaf area removed was positively affected by shoot size. In addition, this pattern was also found for the majority of the studied patches (29, 31, 55, 116, and 172 individuals/patch). Among the insect herbivores associated with C. procera, larvae of Danaus spp. (Lepidoptera: Nymphalidae) were commonly observed feeding on all patches. These herbivores present a specialized behaviour to circumvent the presence of latex in the host leaves. Although more vigorous plant modules should be better defended compared with the less vigorous modules, Danaus species were able to bypass host defences, and feed on healthy, rapidly growing and vigorous plant modules of C. procera, hence causing more damage to these modules.
Collapse
|
21
|
Paniagua Voirol LR, Valsamakis G, Lortzing V, Weinhold A, Johnston PR, Fatouros NE, Kunze R, Hilker M. Plant responses to insect eggs are not induced by egg-associated microbes, but by a secretion attached to the eggs. PLANT, CELL & ENVIRONMENT 2020; 43:1815-1826. [PMID: 32096568 DOI: 10.1111/pce.13746] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/16/2019] [Accepted: 02/15/2020] [Indexed: 05/11/2023]
Abstract
Plants can enhance their defence against herbivorous insects by responding to insect egg depositions preceding larval feeding. The similarity of plant responses to insect eggs with those to phytopathogens gave rise to the hypothesis that egg-associated microbes might act as elicitors. We tested this hypothesis by investigating first if elimination of microbes in the butterfly Pieris brassicae changes the responses of Brassica nigra and Arabidopsis thaliana to eggs and larvae of this insect species. An antibiotic treatment of butterflies mitigated the plant transcriptional response to the eggs and the egg-mediated enhancement of the plant's defence against larvae. However, application of cultivated microbial isolates from the eggs onto Arabidopsis thaliana did not enhance the plant's anti-herbivore defence. Instead, application of an egg-associated glandular secretion, which is attaching the eggs to the leaves, elicited the enhancing effect on the plant's defence against larvae. However, this effect was only achieved when the secretion was applied in similar quantities as released by control butterflies, but not when applied in the reduced quantity as released by antibiotic-treated butterflies. We conclude that glandular secretions rather than egg-associated microbes act in a dose-dependent manner as elicitor of the egg-mediated enhancement of the plant's defence against insect larvae.
Collapse
Affiliation(s)
- Luis R Paniagua Voirol
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| | - Georgios Valsamakis
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| | - Vivien Lortzing
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| | - Arne Weinhold
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| | - Paul R Johnston
- Institute of Biology, Evolutionary Biology, Freie Universität Berlin, Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University, Wageningen, The Netherlands
| | - Reinhard Kunze
- Institute of Biology, Applied Genetics, Freie Universität Berlin, Berlin, Germany
| | - Monika Hilker
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|