1
|
Hoenle PO, Plowman NS, Matos-Maraví P, de Bello F, Bishop TR, Libra M, Idigel C, Rimandai M, Klimes P. Forest disturbance increases functional diversity but decreases phylogenetic diversity of an arboreal tropical ant community. J Anim Ecol 2024; 93:501-516. [PMID: 38409804 DOI: 10.1111/1365-2656.14060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2024]
Abstract
Tropical rainforest trees host a diverse arthropod fauna that can be characterised by their functional diversity (FD) and phylogenetic diversity (PD). Human disturbance degrades tropical forests, often coinciding with species invasion and altered assembly that leads to a decrease in FD and PD. Tree canopies are thought to be particularly vulnerable, but rarely investigated. Here, we studied the effects of forest disturbance on an ecologically important invertebrate group, the ants, in a lowland rainforest in New Guinea. We compared an early successional disturbed plot (secondary forest) to an old-growth plot (primary forest) by exhaustively sampling their ant communities in a total of 852 trees. We expected that for each tree community (1) disturbance would decrease FD and PD in tree-dwelling ants, mediated through species invasion. (2) Disturbance would decrease ant trait variation due to a more homogeneous environment. (3) The main drivers behind these changes would be different contributions of true tree-nesting species and visiting species. We calculated FD and PD based on a species-level phylogeny and 10 ecomorphological traits. Furthermore, we assessed by data exclusion the influence of species, which were not nesting in individual trees (visitors) or only nesting species (nesters), and of non-native species on FD and PD. Primary forests had higher ant species richness and PD than secondary forest. However, we consistently found increased FD in secondary forest. This pattern was robust even if we decoupled functional and phylogenetic signals, or if non-native ant species were excluded from the data. Visitors did not contribute strongly to FD, but they increased PD and their community weighted trait means often varied from nesters. Moreover, all community-weighted trait means changed after forest disturbance. Our finding of contradictory FD and PD patterns highlights the importance of integrative measures of diversity. Our results indicate that the tree community trait diversity is not negatively affected, but possibly even enhanced by disturbance. Therefore, the functional diversity of arboreal ants is relatively robust when compared between old-growth and young trees. However, further study with higher plot-replication is necessary to solidify and generalise our findings.
Collapse
Affiliation(s)
- Philipp O Hoenle
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Nichola S Plowman
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Pável Matos-Maraví
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Francesco de Bello
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Centro de Investigaciones sobre Desertificación (CSIC-UV-GV), Valencia, Spain
| | - Tom R Bishop
- School of Biosciences, Cardiff University, Cardiff, UK
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Martin Libra
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Cliffson Idigel
- New Guinea Binatang Research Center, Madang, Papua New Guinea
| | - Maling Rimandai
- New Guinea Binatang Research Center, Madang, Papua New Guinea
| | - Petr Klimes
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| |
Collapse
|
2
|
Demolin-Leite GL, Veloso RVS, Azevedo AM, Silva JL, Silva LF, Guanabens PFS, Gomes JB, Pereira WR, Silva RS, Zanuncio JC. Sucking insects and their predators on tree canopies of a monocultural stand of Caryocar brasiliense. BRAZ J BIOL 2024; 84:e253598. [DOI: 10.1590/1519-6984.253598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022] Open
Abstract
Abstract Caryocar brasiliense Camb. (Malpighiales: Caryocaraceae) trees are widely distributed throughout the Cerrado ecosystem. The fruits of C. brasiliense trees are used by humans for food and as the main income source in many communities. C. brasiliense conservation is seriously threatened due to habitat loss caused by the land-use change. Sucking insects constitute an important ecological driver that potentially impact C. brasiliense survival in degraded environments. In addition, insects sampling methodologies for application in studies related to the conservation of C. brasiliense are poorly developed. In this study, sucking insects (Hemiptera) and their predators were recorded in three vertical strata of Caryocar brasiliense canopies. The distribution of sucking species showed vertical stratification along the canopy structure of C. brasiliense. The basal part of the canopy had the highest numbers of sucking insects Aphis gossypii (Glover 1877) (Hemiptera: Aphididae) and Bemisia tabaci (Genn. 1889) (Hemiptera: Aleyrodidae), and their predators Chrysoperla sp. (Neuroptera: Chrysopidae), spiders (Araneae), and Zelus armillatus (Lep. & Servi., 1825) (Hemiptera: Reduviidae). Predators' distribution follows the resource availability and preferred C. brasiliense tree parts with a higher abundance of prey.
Collapse
Affiliation(s)
| | - R. V. S. Veloso
- Universidade Federal dos Vales do Jequitinhonha e Mucuri UFVJM, Brasil
| | | | - J. L. Silva
- Universidade Federal de Minas Gerais, Brasil
| | - L. F. Silva
- Universidade Federal de Minas Gerais, Brasil
| | | | - J. B. Gomes
- Universidade Federal de Minas Gerais, Brasil
| | | | - R. S. Silva
- Universidade Federal dos Vales do Jequitinhonha e Mucuri UFVJM, Brasil
| | | |
Collapse
|
3
|
Mayer VE, Voglmayr H, Blatrix R, Orivel J, Leroy C. Fungi as mutualistic partners in ant-plant interactions. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1213997. [PMID: 37850069 PMCID: PMC10577302 DOI: 10.3389/ffunb.2023.1213997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023]
Abstract
Associations between fungi and ants living in mutualistic relationship with plants ("plant-ants") have been known for a long time. However, only in recent years has the mutualistic nature, frequency, and geographical extent of associations between tropical arboreal ants with fungi of the ascomycete order Chaetothyriales and Capnodiales (belonging to the so-called "Black Fungi") become clear. Two groups of arboreal ants displaying different nesting strategies are associated with ascomycete fungi: carton-building ants that construct nest walls and galleries on stems, branches or below leaves which are overgrown by fungal hyphae, and plant-ants that make their nests inside living plants (myrmecophytes) in plant provided cavities (domatia) where ants cultivate fungi in small delimited "patches". In this review we summarize the current knowledge about these unsuspected plant-ant-fungus interactions. The data suggest, that at least some of these ant-associated fungi seem to have coevolved with ants over a long period of time and have developed specific adaptations to this lifestyle.
Collapse
Affiliation(s)
- Veronika E. Mayer
- Department of Botany and Biodiversity Research – Division of Structural and Functional Botany, University of Vienna, Wien, Austria
| | - Hermann Voglmayr
- Department of Botany and Biodiversity Research – Mycology Research Group, University of Vienna, Wien, Austria
| | - Rumsais Blatrix
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jérôme Orivel
- EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, France
| | - Céline Leroy
- EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, France
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| |
Collapse
|
4
|
Adams BJ, Gora EM, Donaldson-Matasci MC, Robinson EJH, Powell S. Competition and habitat availability interact to structure arboreal ant communities across scales of ecological organization. Proc Biol Sci 2023; 290:20231290. [PMID: 37752835 PMCID: PMC10523074 DOI: 10.1098/rspb.2023.1290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Understanding how resource limitation and biotic interactions interact across spatial scales is fundamental to explaining the structure of ecological communities. However, empirical studies addressing this issue are often hindered by logistical constraints, especially at local scales. Here, we use a highly tractable arboreal ant study system to explore the interactive effects of resource availability and competition on community structure across three local scales: an individual tree, the nest network created by each colony and the individual ant nest. On individual trees, the ant assemblages are primarily shaped by availability of dead wood, a critical nesting resource. The nest networks within a tree are constrained by the availability of nesting resources but also influenced by the co-occurring species. Within individual nests, the distribution of adult ants is only affected by distance to interspecific competitors. These findings demonstrate that resource limitation exerts the strongest effects on diversity at higher levels of local ecological organization, transitioning to a stronger effect of species interactions at finer scales. Collectively, these results highlight that the process exerting the strongest influence on community structure is highly dependent on the scale at which we examine the community, with shifts occurring even across fine-grained local scales.
Collapse
Affiliation(s)
- Benjamin J. Adams
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Evan M. Gora
- Smithsonian Tropical Research Institute, Balboa, Panama
- Cary Institute of Ecosystem Studies, Millbrook, NY, USA
| | | | | | - Scott Powell
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| |
Collapse
|
5
|
Almeida RPS, Teresa FB, Camarota F, Izzo TJ, Silva RR, Andrade-Silva J, de Arruda FV. The role of morphological traits in predicting the functional ecology of arboreal and ground ants in the Cerrado-Amazon transition. Oecologia 2023; 201:199-212. [PMID: 36520222 DOI: 10.1007/s00442-022-05304-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
There is often a vertical stratification of the vegetation in tropical forests, where each forest stratum has a unique set of environmental conditions, including marked differences in habitat heterogeneity, physical complexity, and microclimate. Additionally, many tropical forests are highly seasonal, and we need to consider the temporal variation in environmental conditions when assessing the functional aspects of their organisms. Here, we tested the hypothesis that vertical stratification and seasonality shape tropical ants' functional ecology and that there are differences in the functional trait diversity and composition between arboreal and ground-dwelling ant communities. We collected ants in the arboreal and ground strata in the rainy and dry seasons in six different areas, measuring seven morphological traits to characterize their functional ecology and diversity. Irrespective of the season, we found a distinct functional composition between arboreal and ground-dwelling ants and a higher functional richness on the ground. However, ground ants were more functionally redundant than arboreal ants. The differences in functional richness and redundancy between ant inhabiting strata and season could also be observed in the community-weighted mean traits: arboreal and ground ant traits can be distinguished in Weber's length, mandible length, eye length, and eye position on the head capsule. The differences in these functional traits are mainly related to the ants' feeding habits and the complexity of their foraging substrates. Overall, by providing the first systematic comparison of continuous traits between arboreal and ground-dwelling ants, our study opens new investigation paths, indicating important axes of functional diversification of tropical ants.
Collapse
Affiliation(s)
- Rony P S Almeida
- Laboratório de Morfologia e Ecologia Funcional de Formigas (AntMor), Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém, PA, Brazil
| | - Fabrício B Teresa
- Universidade Estadual de Goiás, Campus Central, Anápolis, GO, Brazil
| | - Flávio Camarota
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Thiago Junqueira Izzo
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Rogério R Silva
- Laboratório de Morfologia e Ecologia Funcional de Formigas (AntMor), Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém, PA, Brazil
| | - Joudellys Andrade-Silva
- Laboratório de Morfologia e Ecologia Funcional de Formigas (AntMor), Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém, PA, Brazil
| | - Filipe Viegas de Arruda
- Instituto de Pesquisa Ambiental da Amazônia (IPAM), Asa Norte Comércio Local Norte 211 BL B Sala 201-Asa Norte, Brasília, DF, 70863-520, Brazil
| |
Collapse
|
6
|
Ecosystem engineering in the arboreal realm: heterogeneity of wood-boring beetle cavities and their use by cavity-nesting ants. Oecologia 2021; 196:427-439. [PMID: 33970331 DOI: 10.1007/s00442-021-04934-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
Wood-boring beetle larvae act as ecosystem engineers by creating stem cavities that are used secondarily as nests by many arboreal ant species. Understanding the heterogeneity and distribution of available cavities and their use by ants is therefore key to understanding arboreal ant community assembly and diversity. Our goals were to quantify the abundance and diversity of beetle-produced cavity resources in a tropical canopy, reveal how ants use these resources, and determine which characteristics of the cavity resource contribute to ant use. We dissected branches from six common tree species in the Brazilian Cerrado savanna, measuring cavity characteristics and identifying the occupants. We sampled 2310 individual cavities, 576 of which were used as nests by 25 arboreal ant species. We found significant differences among tree species in the proportion of stem length bored by beetles, the number of cavities per stem length, average entrance-hole size, and the distribution of cavity volumes. The likelihood that a cavity was occupied was greater for cavities with larger entrance-hole sizes and larger volumes. In particular, there was a strong positive correlation between mean head diameters of ant species and the mean entrance-hole diameter of the cavities occupied by those ant species. Wood-boring beetles contribute to the structuring of the Cerrado ant community by differentially attacking the available tree species. In so doing, the beetles provide a wide range of entrance-hole sizes which ant species partition based on their body size, and large volume cavities that ants appear to prefer.
Collapse
|
7
|
The effects of high-severity fires on the arboreal ant community of a Neotropical savanna. Oecologia 2021; 196:951-961. [PMID: 33885980 DOI: 10.1007/s00442-021-04922-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Fire-suppression is of concern in fire-prone ecosystems because it can result in the loss of endemic species. Suppressing fires also causes a build-up of flammable biomass, increasing the risk of severe fires. Using a Before-After, Control-Impacted design, we assessed the consequences of high-severity fires on Neotropical savanna arboreal ant communities. Over a 9-year period, we sampled the ant fauna of the same trees before and after two severe fires that hit a savanna reserve in Brazil and the trees from an unburned savanna site that served as a temporal control. The ant community associated with the unburned trees was relatively stable, with no significant temporal variation in species richness and only a few species changing in abundance over time. In contrast, we found a strong decline in species richness and marked changes in species composition in the burned trees, with some species becoming more prevalent and many becoming rare or locally extinct. The dissimilarity in species richness and composition was significantly smaller between the two pre-fire surveys than between the pre- and post-fire surveys. Fire-induced changes were much more marked among species with strictly arboreal nesting habits, and therefore more susceptible to the direct effects of fire. The decline of some of the ecologically dominant arboreal ant species may be particularly important, as it opens substantial ecological space for cascading community-wide changes. In particular, severe fires appear to disrupt the typical vertical stratification between the arboreal and ground-dwelling faunas, which might lead to homogenization of the overall ant community.
Collapse
|
8
|
Priest GV, Camarota F, Vasconcelos HL, Powell S, Marquis RJ. Active modification of cavity nest‐entrances is a common strategy in arboreal ants. Biotropica 2021. [DOI: 10.1111/btp.12922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Galen V. Priest
- Department of Biology and the Whitney R. Harris World Ecology Center University of Missouri‐St. Louis St. Louis MO USA
| | - Flávio Camarota
- Department of Biological Sciences The George Washington University Washington DC USA
- Instituto de Biologia Universidade Federal de Uberlândia Uberlândia Brazil
- Instituto de Biologia Geral Universidade Federal de Viçosa Viçosa Brazil
| | | | - Scott Powell
- Department of Biological Sciences The George Washington University Washington DC USA
| | - Robert J. Marquis
- Department of Biology and the Whitney R. Harris World Ecology Center University of Missouri‐St. Louis St. Louis MO USA
| |
Collapse
|