1
|
Harter LN, Stahlschmidt ZR. Softening and Cross-Susceptibility: Exposure to Heat and Desiccation Reduces Future Stress Tolerance in an Insect. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025. [PMID: 40364582 DOI: 10.1002/jez.2928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/16/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
The frequency and duration of environmental stressors, such as heat waves and drought, will continue to grow due to ongoing climate change, thereby increasing the likelihood that organisms will experience stressors consecutively. Exposure to one stressor can improve or impair future tolerance to the same stressor (i.e., hardening or softening, respectively), or enhance or reduce future tolerance to a different stressor (i.e., cross-protection or cross-susceptibility, respectively). Understanding whether stress improves or impairs animals' abilities to withstand future stressors is critical for determining the physiological sensitivity of animals to ongoing climate change. Here, we used a factorial design with the variable field cricket (Gryllus lineaticeps) to evaluate whether prior heat or desiccation stress influenced subsequent heat or dessication tolerance. Given the potential energetic costs of hardening and cross-protection, we further examined whether resource (food) acquisition promoted hardening and cross-susceptibility. Prior heat exposure reduced future heat tolerance (i.e., softening), and prior exposure to both heat and desiccation reduced future desiccation tolerance (i.e., softening and cross-susceptibility), potentially due to terminal reproductive investment. Further, resource acquisition (amount of body mass gained) did not influence stress tolerance because individuals that acquired more resources were not more likely to exhibit benefits (rather than costs) to their future stress tolerance. In sum, our results suggest the increasing frequency of climate-related stressors may pose a significant physiological risk to some animals.
Collapse
Affiliation(s)
- L N Harter
- University of the Pacific, Stockton, California, USA
| | | |
Collapse
|
2
|
Crino OL, Wild KH, Friesen CR, Leibold D, Laven N, Peardon AY, Recio P, Salin K, Noble DWA. From eggs to adulthood: sustained effects of early developmental temperature and corticosterone exposure on physiology and body size in an Australian lizard. J Exp Biol 2024; 227:jeb249234. [PMID: 39665281 DOI: 10.1242/jeb.249234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/02/2024] [Indexed: 12/13/2024]
Abstract
Developing animals are increasingly exposed to elevated temperatures as global temperatures rise as a result of climate change. Vertebrates can be affected by elevated temperatures during development directly, and indirectly through maternal effects (e.g. exposure to prenatal glucocorticoid hormones). Past studies have examined how elevated temperatures and glucocorticoid exposure during development independently affect vertebrates. However, exposure to elevated temperatures and prenatal corticosterone could have interactive effects on developing animals that affect physiology and life-history traits across life. We tested interactions between incubation temperature and prenatal corticosterone exposure in the delicate skink (Lampropholis delicata). We treated eggs with high or low doses of corticosterone and incubated eggs at 23°C (cool) or 28°C (warm). We measured the effects of these treatments on development time, body size and survival from hatching to adulthood and on adult hormone levels and mitochondrial respiration. We found no evidence for interactive effects of incubation temperature and prenatal corticosterone exposure on phenotype. However, incubation temperature and corticosterone treatment each independently decreased body size at hatching and these effects were sustained into the juvenile period and adulthood. Lizards exposed to low doses of corticosterone during development had elevated levels of baseline corticosterone as adults. Additionally, lizards incubated at cool temperatures had higher levels of baseline corticosterone and more efficient mitochondria as adults compared with lizards incubated at warm temperatures. Our results show that developmental conditions can have sustained effects on morphological and physiological traits in oviparous lizards but suggest that incubation temperature and prenatal corticosterone do not have interactive effects.
Collapse
Affiliation(s)
- Ondi L Crino
- College of Science and Engineering, Flinders University, Bedford Park, SA 5001, Australia
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Kristoffer H Wild
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- School of BioSciences , The University of Melbourne, Parkville, VIC 3010, Australia
| | - Christopher R Friesen
- School of Earth, Atmospheric and Life Sciences , University of Wollongong, Wollongong, NSW 2522, Australia
| | - Dalton Leibold
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Naomi Laven
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Amelia Y Peardon
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Pablo Recio
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Karine Salin
- Ifremer, Laboratory of Environmental Marine Sciences, University Brest, CNRS, IRD, 29280 Plouzané, France
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
3
|
McCaw BA, Leonard AM, Lancaster LT. Nonlinear transcriptomic responses to compounded environmental changes across temperature and resources in a pest beetle, Callosobruchus maculatus (Coleoptera: Chrysomelidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:11. [PMID: 39670892 PMCID: PMC11638975 DOI: 10.1093/jisesa/ieae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 12/14/2024]
Abstract
Many species are experiencing drastic and multidimensional changes to their environment due to anthropogenic events. These multidimensional changes may act nonadditively on physiological and life history responses, and thus may not be predicted by responses to single dimensional environmental changes. Therefore, work is needed to understand species' responses to multiple aspects of change. We used whole-transcriptomic RNA-Sequencing and life history assays to uncover responses to singly-applied shifts in resource or temperature environmental dimensions, in comparison to combined, multidimensional change, in the crop pest seed beetle, Callosobruchus maculatus. We found that multidimensional change caused larger fecundity, developmental period and offspring viability life history changes than predicted by additive effects of 1-dimensional changes. In addition, there was little overlap between genes differentially expressed under multidimensional treatment versus under altered resource or temperature conditions alone. Moreover, 115 genes exhibited significant resource × temperature interaction effects on expression, including those involved in energy metabolism, detoxification, and enhanced formation of cuticle structural components. We conclude that single dimensional changes alone cannot determine life history and transcriptomic responses to multidimensional environmental change. These results highlight the importance of studying multidimensional environmental change for understanding the molecular and phenotypic responses that may allow organisms including insects to rapidly adapt simultaneously to multiple aspects of environmental change.
Collapse
Affiliation(s)
- Beth A McCaw
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Aoife M Leonard
- Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | | |
Collapse
|
4
|
Bonfoey AM, Chen J, Stahlschmidt ZR. Stress tolerance is influenced by artificial light at night during development and life-history strategy. J Exp Biol 2023; 226:286276. [PMID: 36606751 DOI: 10.1242/jeb.245195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023]
Abstract
Artificial light at night (ALAN) is increasingly prevalent worldwide, but life-history strategy may mitigate the costs of ALAN for animals. Yet, interactions among ALAN, life-history strategy and tolerance to climate-related stressors are unknown. We determined if developmental ALAN exposure (1) affects development, (2) affects adult phenotype, including heat and desiccation tolerance, and (3) affects and/or interacts with life-history strategy. We used the variable field cricket (Gryllus lineaticeps) because its geographic range is increasingly exposed to ALAN, heat, and drought conditions, and it exhibits different life-history strategies (flight-capability versus flight-incapability). ALAN affected adult phenotype, with positive effects on body mass (and size) and female reproductive investment, and a negative effect on heat tolerance. Life-history strategy also affected stress tolerance; flight-incapable females had greater heat tolerance and their desiccation tolerance was improved by ALAN exposure. Key features of environmental change (i.e. exposure to ALAN, heat and drought) may favor some life-history strategies over others.
Collapse
Affiliation(s)
- Alyssa M Bonfoey
- Department of Biological Sciences, University of the Pacific, 3601 Pacific Avenue, Stockton, CA, 95211, USA
| | - Jessica Chen
- Department of Biological Sciences, University of the Pacific, 3601 Pacific Avenue, Stockton, CA, 95211, USA
| | - Zachary R Stahlschmidt
- Department of Biological Sciences, University of the Pacific, 3601 Pacific Avenue, Stockton, CA, 95211, USA
| |
Collapse
|
5
|
Stahlschmidt ZR, Whitlock J, Vo C, Evalen P, D B. Pesticides in a warmer world: Effects of glyphosate and warming across insect life stages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119508. [PMID: 35605834 DOI: 10.1016/j.envpol.2022.119508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/02/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate (GLY) is a broad-spectrum herbicide that is the most commonly applied pesticide in terrestrial ecosystems in the U.S. and, potentially, worldwide. However, the combined effects of warming associated with climate change and exposure to GLY and GLY-based formulations (GBFs) on terrestrial animals are poorly understood. Animals progress through several life stages (e.g., embryonic, larval, and juvenile stages) that may exhibit different sensitivities to stressors. Therefore, we factorially manipulated temperature and GLY/GBF exposure in the variable field cricket (Gryllus lineaticeps) during two life stages-nymphal development and adulthood-and examined key animal traits, such as developmental rate, body size, food consumption, reproductive investment, and lifespan. A thermal environment simulating future climate warming obligated several costs to fitness-related traits. For example, warming experienced during nymphal development reduced survival, adult body mass and size, and investment into flight capacity and reproduction. Warming experienced by adults reduced lifespan and growth rate. Alternatively, the effects of GBF exposure were more subtle, often context-dependent (e.g., effects were only detected in one sex or temperature regime), and were stronger during adult exposure relative to exposure during development. There was evidence of additive costs of warming and GBF exposure to rates of feeding and growth in adults. Yet, the negative effect of GBF exposure to adult lifespan did not occur in warming conditions, suggesting that ongoing climate change may obscure some of the costs of GBFs to non-target organisms. The effects of GLY alone (i.e., in the absence of proprietary surfactants found in commercial formulations) were non-existent. Animals will be increasingly exposed to warming and GBFs, and our results indicate that GBF exposure and warming can entail additive costs for an animal taxon (insects) that plays critical roles in terrestrial ecosystems.
Collapse
Affiliation(s)
| | - J Whitlock
- University of the Pacific, Stockton, CA, 95211, USA
| | - C Vo
- University of the Pacific, Stockton, CA, 95211, USA
| | - P Evalen
- University of the Pacific, Stockton, CA, 95211, USA
| | - Bui D
- University of the Pacific, Stockton, CA, 95211, USA
| |
Collapse
|
6
|
Reproduction of a field cricket under high-intensity artificial light at night and a simulated heat wave. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Whalen MR, Chang KJ, Jones AB, Rivera G, Worthington AM. Fluctuating Asymmetry in the Polymorphic Sand Cricket ( Gryllus firmus): Are More Functionally Important Structures Always More Symmetric? INSECTS 2022; 13:insects13070640. [PMID: 35886816 PMCID: PMC9319220 DOI: 10.3390/insects13070640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary Asymmetry in bilateral structures occurs when animals experience perturbations during development. This fluctuating asymmetry (FA) may serve as a reliable indicator of the functional importance of a structure. For example, locomotor structures often display lower levels of FA than other paired structures, highlighting that selection can maintain symmetry in traits important for survival or reproduction. Species that have multiple distinct morphs with unique behaviors and morphologies represent an attractive model for studying the relationship between symmetry and function. The sand field cricket (Gryllus firmus) has two separate morphs that allow us to directly test whether individuals maintain higher levels of symmetry in the structures most vital for maximizing fitness based on their specific life strategy. Longwing (LW) individuals can fly but postpone reproduction until after a dispersal event, whereas shortwing (SW) individuals cannot fly but begin reproducing in early adulthood. We quantified FA across a suite of key morphological structures indicative of investment in growth, reproduction, and flight capability for males and females across the morphs. Although we did not find significant differences in FA across traits, as predicted, locomotor compensation strategies may reduce selective pressures on symmetry or developmental patterns may limit the optimization between trait form and function. Abstract Fluctuating asymmetry (FA) may serve as a reliable indicator of the functional importance of structures within an organism. Primary locomotor structures often display lower levels of FA than other paired structures, highlighting that selection can maintain symmetry in fitness-enhancing traits. Polyphenic species represent an attractive model for studying the fine-scale relationship between trait form and function, because multiple morphs exhibit unique life history adaptations that rely on different traits to maximize fitness. Here, we investigated whether individuals of the wing polyphenic sand field cricket (Gryllus firmus) maintain higher levels of symmetry in the bilateral structures most vital for maximizing fitness based on their specific life history strategy. We quantified FA and directional asymmetry (DA) across a suite of key morphological structures indicative of investment in somatic growth, reproduction, and flight capability for males and females across the flight-capable longwing (LW) and flight-incapable shortwing (SW) morphs. Although we did not find significant differences in FA across traits, hindwings lacked DA that was found in all other structures. We predicted that functionally important traits should maintain a higher level of symmetry; however, locomotor compensation strategies may reduce the selective pressures on symmetry or developmental constraints may limit the optimization between trait form and function.
Collapse
|