1
|
Geng Y, Hisoriev H, Wang G, Ma X, Fan L, Mekhrovar O, Abdullo M, Li J, Li Y. Time-Lag of Seasonal Effects of Extreme Climate Events on Grassland Productivity Across an Altitudinal Gradient in Tajikistan. PLANTS (BASEL, SWITZERLAND) 2025; 14:1266. [PMID: 40284154 PMCID: PMC12030477 DOI: 10.3390/plants14081266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/06/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Mountain grassland ecosystems around the globe are highly sensitive to seasonal extreme climate events, which thus highlights the critical importance of understanding how such events have affected vegetation dynamics over recent decades. However, research on the time-lag of the effects of seasonal extreme climate events on vegetation has been sparse. This study focuses on Tajikistan, which is characterized by a typical alpine meadow-steppe ecosystem, as the research area. The net primary productivity (NPP) values of Tajikistan's grasslands from 2001 to 2022 were estimated using the Carnegie-Ames-Stanford Approach (CASA) model. In addition, 20 extreme climate indices (including 11 extreme temperature indices and 9 extreme precipitation indices) were calculated. The spatiotemporal distribution characteristics of the grassland NPP and these extreme climate indices were further analyzed. Using geographic detector methods, the impact factors of extreme climate indices on grassland NPP were identified along a gradient of different altitudinal bands in Tajikistan. Additionally, a time-lag analysis was conducted to reveal the lag time of the effects of extreme climate indices on grassland NPP across different elevation levels. The results revealed that grassland NPP in Tajikistan exhibited a slight upward trend of 0.01 gC/(m2·a) from 2001 to 2022. During this period, extreme temperature indices generally showed an increasing trend, while extreme precipitation indices displayed a declining trend. Notably, extreme precipitation indices had a significant impact on grassland NPP, with the interaction between Precipitation anomaly (PA) and Max Tmax (TXx) exerting the most pronounced influence on the spatial variation of grassland NPP (q = 0.53). Additionally, it was found that the effect of extreme climate events on grassland NPP had no time-lag at altitudes below 500 m. In contrast, in mid-altitude regions (1000-3000 m), the effect of PA on grassland NPP had a significant time-lag of two months (p < 0.05). Knowing the lag times until the effects of seasonal extreme climate events on grassland NPP will appear in Tajikistan provides valuable insight for those developing adaptive management and restoration strategies under current seasonal extreme climate conditions.
Collapse
Affiliation(s)
- Yixin Geng
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.G.); (G.W.); (X.M.); (L.F.); (O.M.)
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hikmat Hisoriev
- Institute of Botany, Plant Physiology and Genetics of Tajikistan Academy of Sciences, Dushanbe 734002, Tajikistan; (H.H.); (M.A.)
| | - Guangyu Wang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.G.); (G.W.); (X.M.); (L.F.); (O.M.)
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuexi Ma
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.G.); (G.W.); (X.M.); (L.F.); (O.M.)
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
| | - Lianlian Fan
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.G.); (G.W.); (X.M.); (L.F.); (O.M.)
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
| | - Okhonniyozov Mekhrovar
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.G.); (G.W.); (X.M.); (L.F.); (O.M.)
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
| | - Madaminov Abdullo
- Institute of Botany, Plant Physiology and Genetics of Tajikistan Academy of Sciences, Dushanbe 734002, Tajikistan; (H.H.); (M.A.)
| | - Jiangyue Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.G.); (G.W.); (X.M.); (L.F.); (O.M.)
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yaoming Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.G.); (G.W.); (X.M.); (L.F.); (O.M.)
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Schat L, Schubert M, Fjellheim S, Humphreys AM. Drought tolerance as an evolutionary precursor to frost and winter tolerance in grasses. Evolution 2025; 79:541-556. [PMID: 39826096 DOI: 10.1093/evolut/qpaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/02/2024] [Accepted: 01/17/2025] [Indexed: 01/20/2025]
Abstract
Accumulating evidence is suggesting more frequent tropical-to-temperate transitions than previously thought. This raises the possibility that biome transitions could be facilitated by precursor traits. A wealth of ecological, genetic, and physiological evidence suggests overlap between drought and frost stress responses, but the origin of this overlap, i.e., the evolution of these responses relative to each other, is poorly known. Here, we test whether adaptation to frost and/or severe winters in grasses (Poaceae) was facilitated by ancestral adaptation to drought. We used occurrence patterns across Köppen-Geiger climate zones to classify species as drought, frost, and/or winter tolerant, followed by comparative analyses. Ancestral state reconstructions revealed different evolutionary trajectories in different clades, suggesting both drought-first and frost-first scenarios. Explicit simultaneous modelling of drought and frost/winter tolerance provided some support for correlated evolution, but suggested higher rates of gain of frost/winter tolerance in drought-sensitive rather than drought-tolerant lineages. Overall, there is limited support across grasses as a whole that drought tolerance acted as an evolutionary precursor to frost or severe winter tolerance. Different scenarios in different clades is consistent with present-day grasses being either cold or drought specialists, possibly as a consequence of trade-offs between different stress tolerance responses.
Collapse
Affiliation(s)
- Laura Schat
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Marian Schubert
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Siri Fjellheim
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Aelys M Humphreys
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| |
Collapse
|
3
|
Qaderi MM, Evans CC, Spicer MD. Plant Nitrogen Assimilation: A Climate Change Perspective. PLANTS (BASEL, SWITZERLAND) 2025; 14:1025. [PMID: 40219093 PMCID: PMC11990535 DOI: 10.3390/plants14071025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
Of all the essential macronutrients necessary for plant growth and development, nitrogen is required in the greatest amounts. Nitrogen is a key component of important biomolecules like proteins and has high nutritive importance for humans and other animals. Climate change factors, such as increasing levels of carbon dioxide, increasing temperatures, and increasing watering regime, directly or indirectly influence plant nitrogen uptake and assimilation dynamics. The impacts of these stressors can directly threaten our primary source of nitrogen as obtained from the soil by plants. In this review, we discuss how climate change factors can influence nitrogen uptake and assimilation in cultivated plants. We examine the effects of these factors alone and in combination with species of both C3 and C4 plants. Elevated carbon dioxide, e[CO2], causes the dilution of nitrogen in tissues of non-leguminous C3 and C4 plants but can increase nitrogen in legumes. The impact of high-temperature (HT) stress varies depending on whether a species is leguminous or not. Water stress (WS) tends to result in a decrease in nitrogen assimilation. Under some, though not all, conditions, e[CO2] can have a buffering effect against the detrimental impacts of other climate change stressors, having an ameliorating effect on the adverse impacts of HT or WS. Together, HT and WS are seen to cause significant reductions in biomass production and nitrogen uptake in non-leguminous C3 and C4 crops. With a steadily rising population and rapidly changing climate, consideration must be given to the morphological and physiological effects that climate change will have on future crop health and nutritional quality of N.
Collapse
Affiliation(s)
- Mirwais M. Qaderi
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS B3M 2J6, Canada; (C.C.E.); (M.D.S.)
| | | | | |
Collapse
|
4
|
Stolsmo SP, Lindberg CL, Ween RE, Schat L, Preston JC, Humphreys AM, Fjellheim S. Evolution of drought and frost responses in cool season grasses (Pooideae): was drought tolerance a precursor to frost tolerance? JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6405-6422. [PMID: 39066622 PMCID: PMC11522984 DOI: 10.1093/jxb/erae316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
Frost tolerance has evolved many times independently across flowering plants. However, conservation of several frost tolerance mechanisms among distant relatives suggests that apparently independent entries into freezing climates may have been facilitated by repeated modification of existing traits ('precursor traits'). One possible precursor trait for freezing tolerance is drought tolerance, because palaeoclimatic data suggest plants were exposed to drought before frost and several studies have demonstrated shared physiological and genetic responses to drought and frost stress. Here, we combine ecophysiological experiments and comparative analyses to test the hypothesis that drought tolerance acted as a precursor to frost tolerance in cool-season grasses (Pooideae). Contrary to our predictions, we measured the highest levels of frost tolerance in species with the lowest ancestral drought tolerance, indicating that the two stress responses evolved independently in different lineages. We further show that drought tolerance is more evolutionarily labile than frost tolerance. This could limit our ability to reconstruct the order in which drought and frost responses evolved relative to each other. Further research is needed to determine whether our results are unique to Pooideae or general for flowering plants.
Collapse
Affiliation(s)
- Sylvia Pal Stolsmo
- Department of Plant Sciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | | | - Rebekka Eriksen Ween
- Department of Plant Sciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Laura Schat
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | - Aelys Muriel Humphreys
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Siri Fjellheim
- Department of Plant Sciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| |
Collapse
|
5
|
Cook AM, Rezende EL, Petrou K, Leigh A. Beyond a single temperature threshold: Applying a cumulative thermal stress framework to plant heat tolerance. Ecol Lett 2024; 27:e14416. [PMID: 38549256 DOI: 10.1111/ele.14416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Most plant thermal tolerance studies focus on single critical thresholds, which limit the capacity to generalise across studies and predict heat stress under natural conditions. In animals and microbes, thermal tolerance landscapes describe the more realistic, cumulative effects of temperature. We tested this in plants by measuring the decline in leaf photosynthetic efficiency (FV/FM) following a combination of temperatures and exposure times and then modelled these physiological indices alongside recorded environmental temperatures. We demonstrate that a general relationship between stressful temperatures and exposure durations can be effectively employed to quantify and compare heat tolerance within and across plant species and over time. Importantly, we show how FV/FM curves translate to plants under natural conditions, suggesting that environmental temperatures often impair photosynthetic function. Our findings provide more robust descriptors of heat tolerance in plants and suggest that heat tolerance in disparate groups of organisms can be studied with a single predictive framework.
Collapse
Affiliation(s)
- Alicia M Cook
- School of Life Sciences, University of Technology Sydney (UTS), Broadway, New South Wales, Australia
| | - Enrico L Rezende
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherina Petrou
- School of Life Sciences, University of Technology Sydney (UTS), Broadway, New South Wales, Australia
| | - Andy Leigh
- School of Life Sciences, University of Technology Sydney (UTS), Broadway, New South Wales, Australia
| |
Collapse
|