1
|
Traustason B, Cheeks M, Dikicioglu D. Computer-Aided Strategies for Determining the Amino Acid Composition of Medium for Chinese Hamster Ovary Cell-Based Biomanufacturing Platforms. Int J Mol Sci 2019; 20:E5464. [PMID: 31684012 PMCID: PMC6862603 DOI: 10.3390/ijms20215464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 01/07/2023] Open
Abstract
Chinese hamster ovary (CHO) cells are used for the production of the majority of biopharmaceutical drugs, and thus have remained the standard industry host for the past three decades. The amino acid composition of the medium plays a key role in commercial scale biologics manufacturing, as amino acids constitute the building blocks of both endogenous and heterologous proteins, are involved in metabolic and non-metabolic pathways, and can act as main sources of nitrogen and carbon under certain conditions. As biomanufactured proteins become increasingly complex, the adoption of model-based approaches become ever more popular in complementing the challenging task of medium development. The extensively studied amino acid metabolism is exceptionally suitable for such model-driven analyses, and although still limited in practice, the development of these strategies is gaining attention, particularly in this domain. This paper provides a review of recent efforts. We first provide an overview of the widely adopted practice, and move on to describe the model-driven approaches employed for the improvement and optimization of the external amino acid supply in light of cellular amino acid demand. We conclude by proposing the likely prevalent direction the field is heading towards, providing a critical evaluation of the current state and the future challenges and considerations.
Collapse
Affiliation(s)
- Bergthor Traustason
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK.
| | - Matthew Cheeks
- Cell Sciences, Biopharmaceutical Development, AstraZeneca, Cambridge CB21 6GH, UK.
| | - Duygu Dikicioglu
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK.
| |
Collapse
|
2
|
Sartori R, Leme J, Caricati CP, Tonso A, Núñez EGF. MODEL COMPARISON TO DESCRIBE BHK-21 CELL GROWTH AND METABOLISM IN STIRRED TANK BIOREACTORS OPERATED IN BATCH MODE. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1590/0104-6632.20180352s20160592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Roger Sartori
- Universidade Estadual Paulista “Júlio de Mesquita Filho”, Brazil
| | | | | | | | - Eutimio Gustavo Fernández Núñez
- Universidade Estadual Paulista “Júlio de Mesquita Filho”, Brazil; Instituto Butantan, Brazil; Universidade Federal do ABC, Brazil
| |
Collapse
|
3
|
Weber C, Freimark D, Pörtner R, Pino-Grace P, Pohl S, Wallrapp C, Geigle P, Czermak P. Expansion of Human Mesenchymal Stem Cells in a Fixed-Bed Bioreactor System Based on Non-Porous Glass Carrier – Part B: Modeling and Scale-up of the System. Int J Artif Organs 2018. [DOI: 10.1177/039139881003301103] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human mesenchymal stem cells (hMSC) are a promising cell source for the manufacturing of cell therapy or tissue-engineered implants. In part A of this publication a fixed-bed bioreactor system based on non-porous borosilicate glass spheres and procedures for the automated expansion of hMSC with high yield and vitality was introduced. Part B of this study deals with the modeling of the process in order to transfer the bioreactor system from the laboratory to the production scale. Relevant model parameters were obtained by fitting them to the experimental data of hMSC-TERT cultivations in scales up to 300 cm3. Scale-up calculations were carried out exemplarily for a target cell number of twenty billion cells.
Collapse
Affiliation(s)
- Christian Weber
- Institute of Biopharmaceutical Technology, University of Applied Sciences Giessen-Friedberg, Giessen - Germany
| | - Denise Freimark
- Institute of Biopharmaceutical Technology, University of Applied Sciences Giessen-Friedberg, Giessen - Germany
| | - Ralf Pörtner
- Institute of Bioprocess and Biosystems Engineering, University of Technology, Hamburg - Germany
| | - Pablo Pino-Grace
- Institute of Biopharmaceutical Technology, University of Applied Sciences Giessen-Friedberg, Giessen - Germany
| | - Sebastian Pohl
- Institute of Biopharmaceutical Technology, University of Applied Sciences Giessen-Friedberg, Giessen - Germany
| | | | | | - Peter Czermak
- Institute of Biopharmaceutical Technology, University of Applied Sciences Giessen-Friedberg, Giessen - Germany
- Department of Chemical Engineering, Kansas State University, Manhattan, KS - USA
| |
Collapse
|
4
|
Şcoban AG, Maria G. Model-based optimization of the feeding policy of a fluidized bed bioreactor for mercury uptake by immobilized Pseudomonas putidacells. ASIA-PAC J CHEM ENG 2016. [DOI: 10.1002/apj.2003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andreea Georgiana Şcoban
- Department of Chemical and Biochemical Engineering; University Politehnica of Bucharest; Bucharest Romania
| | - Gheorghe Maria
- Department of Chemical and Biochemical Engineering; University Politehnica of Bucharest; Bucharest Romania
| |
Collapse
|
5
|
Model-based estimation of optimal dissolved oxygen profile in Agrobacterium sp. fed-batch fermentation for improvement of curdlan production under nitrogen-limited condition. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Ben Yahia B, Malphettes L, Heinzle E. Macroscopic modeling of mammalian cell growth and metabolism. Appl Microbiol Biotechnol 2015; 99:7009-24. [PMID: 26198881 PMCID: PMC4536272 DOI: 10.1007/s00253-015-6743-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/28/2015] [Accepted: 05/30/2015] [Indexed: 12/24/2022]
Abstract
We review major modeling strategies and methods to understand and simulate the macroscopic behavior of mammalian cells. These strategies comprise two important steps: the first step is to identify stoichiometric relationships for the cultured cells connecting the extracellular inputs and outputs. In a second step, macroscopic kinetic models are introduced. These relationships together with bioreactor and metabolite balances provide a complete description of a system in the form of a set of differential equations. These can be used for the simulation of cell culture performance and further for optimization of production.
Collapse
Affiliation(s)
- Bassem Ben Yahia
- />Biochemical Engineering Institute, Saarland University, Campus A1.5, D-66123 Saarbruecken, Germany
- />Upstream Process Sciences Biotech Sciences, UCB Pharma S.A., Avenue de l’Industrie, B-1420, Braine l’Alleud, Belgium
| | - Laetitia Malphettes
- />Upstream Process Sciences Biotech Sciences, UCB Pharma S.A., Avenue de l’Industrie, B-1420, Braine l’Alleud, Belgium
| | - Elmar Heinzle
- />Biochemical Engineering Institute, Saarland University, Campus A1.5, D-66123 Saarbruecken, Germany
| |
Collapse
|
7
|
Craven S, Whelan J. Process Analytical Technology and Quality-by-Design for Animal Cell Culture. CELL ENGINEERING 2015. [DOI: 10.1007/978-3-319-10320-4_21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Luna M, Martínez E. A Bayesian Approach to Run-to-Run Optimization of Animal Cell Bioreactors Using Probabilistic Tendency Models. Ind Eng Chem Res 2014. [DOI: 10.1021/ie500453e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martin Luna
- INGAR (CONICET-UTN), Avellaneda 3657, Santa Fe S3002 GJC, Argentina
| | - Ernesto Martínez
- INGAR (CONICET-UTN), Avellaneda 3657, Santa Fe S3002 GJC, Argentina
| |
Collapse
|
9
|
Metabolic pathway analysis and reduction for mammalian cell cultures—Towards macroscopic modeling. Chem Eng Sci 2013. [DOI: 10.1016/j.ces.2013.07.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Craven S, Shirsat N, Whelan J, Glennon B. Process model comparison and transferability across bioreactor scales and modes of operation for a mammalian cell bioprocess. Biotechnol Prog 2012; 29:186-96. [PMID: 23143896 DOI: 10.1002/btpr.1664] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/28/2012] [Indexed: 11/08/2022]
Abstract
A Monod kinetic model, logistic equation model, and statistical regression model were developed for a Chinese hamster ovary cell bioprocess operated under three different modes of operation (batch, bolus fed-batch, and continuous fed-batch) and grown on two different bioreactor scales (3 L bench-top and 15 L pilot-scale). The Monod kinetic model was developed for all modes of operation under study and predicted cell density, glucose glutamine, lactate, and ammonia concentrations well for the bioprocess. However, it was computationally demanding due to the large number of parameters necessary to produce a good model fit. The transferability of the Monod kinetic model structure and parameter set across bioreactor scales and modes of operation was investigated and a parameter sensitivity analysis performed. The experimentally determined parameters had the greatest influence on model performance. They changed with scale and mode of operation, but were easily calculated. The remaining parameters, which were fitted using a differential evolutionary algorithm, were not as crucial. Logistic equation and statistical regression models were investigated as alternatives to the Monod kinetic model. They were less computationally intensive to develop due to the absence of a large parameter set. However, modeling of the nutrient and metabolite concentrations proved to be troublesome due to the logistic equation model structure and the inability of both models to incorporate a feed. The complexity, computational load, and effort required for model development has to be balanced with the necessary level of model sophistication when choosing which model type to develop for a particular application.
Collapse
Affiliation(s)
- Stephen Craven
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
11
|
Weber C, Freimark D, Pörtner R, Pino-Grace P, Pohl S, Wallrapp C, Geigle P, Czermak P. Expansion of human mesenchymal stem cells in a fixed-bed bioreactor system based on non-porous glass carrier--part A: inoculation, cultivation, and cell harvest procedures. Int J Artif Organs 2011; 33:512-25. [PMID: 20872346 DOI: 10.1177/039139881003300802] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2010] [Indexed: 11/16/2022]
Abstract
Human mesenchymal stem cells (hMSC) are a promising cell source for several applications of regenerative medicine. The cells employed are either autologous or allogenic; by using stem cell lines in particular, allogenic cells enable the production of therapeutic cell implants or tissue engineered implants in stock. For these purposes, the generally small initial cell number has to be increased; this requires the use of bioreactors, which offer controlled expansion of the hMSC under GMP-conform conditions. In this study, divided into part A and B, a fixed bed bioreactor system based on non-porous borosilicate glass spheres for the expansion of hMSC, demonstrated with the model cell line hMSC-TERT, is introduced. The system offers convenient automation of the inoculation, cultivation, and harvesting procedures. Furthermore, the bioreactor has a simple design which favors its manufacturing as a disposable unit. Part A is focused on the inoculation, cultivation, and harvesting procedures. Cultivations were performed in lab scales up to a bed volume of 300 cm³. The study showed that the fixed bed system, based on 2-mm borosilicate glass spheres, as well as the inoculation, cultivation, and harvesting procedures are suitable for the expansion of hMSC with high yield and vitality.
Collapse
Affiliation(s)
- Christian Weber
- Institute of Biopharmaceutical Technology, University of Applied Sciences Giessen-Friedberg, Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Peleg M, Corradini MG, Normand MD. Isothermal and non-isothermal kinetic models of chemical processes in foods governed by competing mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:7377-7386. [PMID: 19637869 DOI: 10.1021/jf9012423] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A process or reaction that peaks at high temperatures but not at low ones indicates competition between synthesis and degradation. A proposed phenomenological model composed of a decay factor superimposed on a growth term can describe both. Temperature elevation shortens the two subprocesses' characteristic times and increases their rates. The degradation's characteristic time relative to the experiment's determines whether a peak is observed. All of the parameters determine the peak's height and shape as can be seen in two interactive Wolfram demonstrations on the Web. Detailed knowledge of the underlying mechanisms is unnecessary for the model's construction, and uniqueness is not a prerequisite either. However, different expressions might be needed for ongoing processes and ones initially undetectable. The model's applicability is demonstrated with published results on very different reactions in foods. In principle, it can be converted into a dynamic rate equation for simulating a process's evolution under non-isothermal conditions.
Collapse
Affiliation(s)
- Micha Peleg
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | | | |
Collapse
|