1
|
Larrea-Meza S, Campos B, I. Brown D. Facultative planktotrophy in larvae of the purple mussel Perumytilus purpuratus. INVERTEBR REPROD DEV 2021. [DOI: 10.1080/07924259.2021.1998238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sebastián Larrea-Meza
- Escuela de Biología Marina, Facultad de Ciencias del Mar y de Recursos Naturales, Universidad de Valparaíso, Viña Del Mar, Chile
| | - Bernardita Campos
- Escuela de Biología Marina, Facultad de Ciencias del Mar y de Recursos Naturales, Universidad de Valparaíso, Viña Del Mar, Chile
| | - Donald I. Brown
- Laboratorio de Biología de la Reproducción y del Desarrollo, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
2
|
Jaques A, Sánchez E, Orellana N, Enrione J, Acevedo CA. Modelling the growth of in-vitro meat on microstructured edible films. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
3
|
|
4
|
Weber C, Freimark D, Pörtner R, Pino-Grace P, Pohl S, Wallrapp C, Geigle P, Czermak P. Expansion of Human Mesenchymal Stem Cells in a Fixed-Bed Bioreactor System Based on Non-Porous Glass Carrier – Part B: Modeling and Scale-up of the System. Int J Artif Organs 2018. [DOI: 10.1177/039139881003301103] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human mesenchymal stem cells (hMSC) are a promising cell source for the manufacturing of cell therapy or tissue-engineered implants. In part A of this publication a fixed-bed bioreactor system based on non-porous borosilicate glass spheres and procedures for the automated expansion of hMSC with high yield and vitality was introduced. Part B of this study deals with the modeling of the process in order to transfer the bioreactor system from the laboratory to the production scale. Relevant model parameters were obtained by fitting them to the experimental data of hMSC-TERT cultivations in scales up to 300 cm3. Scale-up calculations were carried out exemplarily for a target cell number of twenty billion cells.
Collapse
Affiliation(s)
- Christian Weber
- Institute of Biopharmaceutical Technology, University of Applied Sciences Giessen-Friedberg, Giessen - Germany
| | - Denise Freimark
- Institute of Biopharmaceutical Technology, University of Applied Sciences Giessen-Friedberg, Giessen - Germany
| | - Ralf Pörtner
- Institute of Bioprocess and Biosystems Engineering, University of Technology, Hamburg - Germany
| | - Pablo Pino-Grace
- Institute of Biopharmaceutical Technology, University of Applied Sciences Giessen-Friedberg, Giessen - Germany
| | - Sebastian Pohl
- Institute of Biopharmaceutical Technology, University of Applied Sciences Giessen-Friedberg, Giessen - Germany
| | | | | | - Peter Czermak
- Institute of Biopharmaceutical Technology, University of Applied Sciences Giessen-Friedberg, Giessen - Germany
- Department of Chemical Engineering, Kansas State University, Manhattan, KS - USA
| |
Collapse
|
5
|
Enrione J, Blaker JJ, Brown DI, Weinstein-Oppenheimer CR, Pepczynska M, Olguín Y, Sánchez E, Acevedo CA. Edible Scaffolds Based on Non-Mammalian Biopolymers for Myoblast Growth. MATERIALS 2017; 10:ma10121404. [PMID: 29292759 PMCID: PMC5744339 DOI: 10.3390/ma10121404] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/03/2017] [Accepted: 12/05/2017] [Indexed: 01/06/2023]
Abstract
In vitro meat has recently emerged as a new concept in food biotechnology. Methods to produce in vitro meat generally involve the growth of muscle cells that are cultured on scaffolds using bioreactors. Suitable scaffold design and manufacture are critical to downstream culture and meat production. Most current scaffolds are based on mammalian-derived biomaterials, the use of which is counter to the desire to obviate mammal slaughter in artificial meat production. Consequently, most of the knowledge is related to the design and control of scaffold properties based on these mammalian-sourced materials. To address this, four different scaffold materials were formulated using non-mammalian sources, namely, salmon gelatin, alginate, and additives including gelling agents and plasticizers. The scaffolds were produced using a freeze-drying process, and the physical, mechanical, and biological properties of the scaffolds were evaluated. The most promising scaffolds were produced from salmon gelatin, alginate, agarose, and glycerol, which exhibited relatively large pore sizes (~200 μm diameter) and biocompatibility, permitting myoblast cell adhesion (~40%) and growth (~24 h duplication time). The biodegradation profiles of the scaffolds were followed, and were observed to be less than 25% after 4 weeks. The scaffolds enabled suitable myogenic response, with high cell proliferation, viability, and adequate cell distribution throughout. This system composed of non-mammalian edible scaffold material and muscle-cells is promising for the production of in vitro meat.
Collapse
Affiliation(s)
- Javier Enrione
- Biopolymer Research and Engineering Lab (BiopREL), Universidad de los Andes, Avenida Monseñor Alvaro del Portillo 12455, Las Condes, Santiago 7550000, Chile.
| | - Jonny J Blaker
- Bio-Active Materials Group, School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK.
| | - Donald I Brown
- Laboratorio de Biología de la Reproducción y del Desarrollo, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Valparaíso 2340000, Chile.
| | - Caroline R Weinstein-Oppenheimer
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Avenida Gran Bretaña 1093, Valparaíso 2340000, Chile.
| | - Marzena Pepczynska
- Biopolymer Research and Engineering Lab (BiopREL), Universidad de los Andes, Avenida Monseñor Alvaro del Portillo 12455, Las Condes, Santiago 7550000, Chile.
| | - Yusser Olguín
- Center for Integrative Medicine and Innovative Science (CIMIS), Universidad Andrés Bello, Echaurren 183, Santiago 8320000, Chile.
| | - Elizabeth Sánchez
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
| | - Cristian A Acevedo
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
| |
Collapse
|
6
|
Suszynski TM, Avgoustiniatos ES, Papas KK. Oxygenation of the Intraportally Transplanted Pancreatic Islet. J Diabetes Res 2016; 2016:7625947. [PMID: 27872862 PMCID: PMC5107248 DOI: 10.1155/2016/7625947] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 04/27/2016] [Indexed: 12/04/2022] Open
Abstract
Intraportal islet transplantation (IT) is not widely utilized as a treatment for type 1 diabetes. Oxygenation of the intraportally transplanted islet has not been studied extensively. We present a diffusion-reaction model that predicts the presence of an anoxic core and a larger partly functional core within intraportally transplanted islets. Four variables were studied: islet diameter, islet fractional viability, external oxygen partial pressure (P) (in surrounding portal blood), and presence or absence of a thrombus on the islet surface. Results indicate that an islet with average size and fractional viability exhibits an anoxic volume fraction (AVF) of 14% and a function loss of 72% at a low external P. Thrombus formation increased AVF to 30% and function loss to 92%, suggesting that the effect of thrombosis may be substantial. External P and islet diameter accounted for the greatest overall impact on AVF and loss of function. At our institutions, large human alloislets (>200 μm diameter) account for ~20% of total islet number but ~70% of total islet volume; since most of the total transplanted islet volume is accounted for by large islets, most of the intraportal islet cells are likely to be anoxic and not fully functional.
Collapse
Affiliation(s)
| | | | - Klearchos K. Papas
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Cellular Transplantation, Department of Surgery, University of Arizona, Tucson, AZ 85724, USA
- *Klearchos K. Papas:
| |
Collapse
|
7
|
Improvement of biomaterials used in tissue engineering by an ageing treatment. Bioprocess Biosyst Eng 2014; 38:777-85. [DOI: 10.1007/s00449-014-1319-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 10/26/2014] [Indexed: 11/25/2022]
|
8
|
Andersen T, Markussen C, Dornish M, Heier-Baardson H, Melvik JE, Alsberg E, Christensen BE. In situ gelation for cell immobilization and culture in alginate foam scaffolds. Tissue Eng Part A 2013; 20:600-10. [PMID: 24125496 DOI: 10.1089/ten.tea.2013.0223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Essential cellular functions are often lost under culture in traditional two-dimensional (2D) systems. Therefore, biologically more realistic three-dimensional (3D) cell culture systems are needed that provide mechanical and biochemical cues which may otherwise be unavailable in 2D. For the present study, an alginate-based hydrogel system was used in which cells in an alginate solution were seeded onto dried alginate foams. A uniform distribution of NIH:3T3 and NHIK 3025 cells entrapped within the foam was achieved by in situ gelation induced by calcium ions integrated in the foam. The seeding efficiency of the cells was about 100% for cells added in a seeding solution containing 0.1-1.0% alginate compared with 18% when seeded without alginate. The NHIK 3025 cells were allowed to proliferate and form multi-cellular structures inside the transparent gel that were later vital stained and evaluated by confocal microscopy. Gels were de-gelled at different time points to isolate the multi-cellular structures and to determine the spheroid growth rate. It was also demonstrated that the mechanical properties of the gel could largely be varied through selection of type and concentration of the applied alginate and by immersing the already gelled disks in solutions providing additional gel-forming ions. Cells can efficiently be incorporated into the gel, and single cells and multi-cellular structures that may be formed inside can be retrieved without influencing cell viability or contaminating the sample with enzymes. The data show that the current system may overcome some limitations of current 3D scaffolds such as cell retrieval and in situ cell staining and imaging.
Collapse
|
9
|
Giulitti S, Magrofuoco E, Prevedello L, Elvassore N. Optimal periodic perfusion strategy for robust long-term microfluidic cell culture. LAB ON A CHIP 2013; 13:4430-41. [PMID: 24064704 DOI: 10.1039/c3lc50643f] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Long-term cell culture in microfluidic devices is an essential prerequisite for "on a chip" biological and physiological based studies. We investigated how medium delivery, from continuous to periodic perfusion, affects long-term cell cultures in a microfluidic platform. Computational simulations suggested that different delivery strategies result in different temporal profiles of accumulation and washing out of endogenous (EnF) and exogenous (ExF) factors, respectively. Thus, cultures exposed to the same overall amount of medium with different temporal profiles were analysed in terms of homogeneity, cell morphology and phenotype. Murine and human cell lines (C2C12 and HFF) and mouse embryonic stem cells (mESC) were cultured in microfluidic channels. An ad hoc experimental setup was developed to perform continuous and periodic medium delivery into the chip, tuning the flow rate, the perfusion time, and the interval of perfusion while using the same amount of medium volume. Periodic medium delivery with a short perfusion pulse ensured cell homogeneity compared to standard cell culture. Conversely, a continuous flow resulted in cell heterogeneity, with abnormal morphology and vesiculation. Only dramatic and unfeasible increasing of perfused medium volume in the continuous configuration could rescue normal cell behaviour. Consistent results were obtained for C2C12 and HFF. In order to extend these results to highly sensitive cells, mESC were cultured for 6 days in the microfluidic channels. Our analysis demonstrates that a periodic medium delivery with fast pulses (with a frequency of 4 times per day) resulted in a homogeneous cell culture in terms of cell viability, colony morphology and maintenance of pluripotency markers. According to experimental observations, the computational model provided a rational description of the perfusion strategies and of how they deeply shape the cell microenvironment in microfluidic cell cultures. These results provide new insight to define optimal strategies for homogeneous and robust long-term cell culture in microfluidic systems, an essential prerequisite for lab on chip cell-based applications.
Collapse
Affiliation(s)
- Stefano Giulitti
- Department of Industrial Engineering, Università degli Studi di Padova, Via Marzolo 9, I-35131, Padova, Italy.
| | | | | | | |
Collapse
|
10
|
Improvement of human skin cell growth by radiation-induced modifications of a Ge/Ch/Ha scaffold. Bioprocess Biosyst Eng 2012; 36:317-24. [PMID: 22802044 DOI: 10.1007/s00449-012-0786-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/01/2012] [Indexed: 12/18/2022]
Abstract
Gelatin-/chitosan-/hyaluronan-based biomaterials are used in tissue engineering as cell scaffolds. Three gamma radiation doses (1, 10 and 25 kGy) were applied to scaffolds for sterilization. Microstructural changes of the irradiated polymers were evaluated by using scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). A dose of 25 kGy produced a rough microstructure with a reduction of the porosity (from 99 to 96 %) and pore size (from 160 to 123 μm). Radiation also modified the glass transition temperature between 31.2 and 42.1 °C (1 and 25 kGy respectively). Human skin cells cultivated on scaffolds irradiated with 10 and 25 kGy proliferated at 48 h and secreted transforming growth factor β3 (TGF-β3). Doses of 0 kGy (non-irradiated) or 1 kGy did not stimulate TGF-β3 secretion or cell proliferation. The specific growth rate and lactate production increased proportionally to radiation dose. The use of an appropriate radiation dose improves the cell scaffold properties of biomaterials.
Collapse
|
11
|
Magrofuoco E, Elvassore N, Doyle FJ. Theoretical analysis of insulin-dependent glucose uptake heterogeneity in 3D bioreactor cell culture. Biotechnol Prog 2012; 28:833-45. [DOI: 10.1002/btpr.1539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 02/27/2012] [Indexed: 11/08/2022]
|
12
|
Gorodetsky R, Levdansky L, Gaberman E, Gurevitch O, Lubzens E, McBride WH. Fibrin microbeads loaded with mesenchymal cells support their long-term survival while sealed at room temperature. Tissue Eng Part C Methods 2011; 17:745-55. [PMID: 21410311 DOI: 10.1089/ten.tec.2010.0644] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Efficient transfer of progenitor cells without affecting their survival is a key factor in any practical cell therapy. Fibrin microbeads (FMB) were developed as hard biodegradable cell carriers. The FMB could efficiently isolate mesenchymal stem cells (MSCs) from different sources and support the expansion of matrix-dependent cell types in a three-dimensional culture in slow rotation. The cells on FMB could also undergo induced differentiation for their eventual implantation to enhance tissue regeneration. FMB loaded with isolated human MSC (hMSC) were sealed in tubes topped up with medium. Almost full cell survival was recorded when the sealed cells were maintained in room temperature for up to 10 days, followed by a recovery period of 24 hrs at optimal conditions. Assay of cells recovery after such long room temperature storage showed ∼80%-100% survival of the cells on FMB, with only a marginal survival of cells that were kept in suspension without FMB in the same conditions. The hMSC that survived storage at room temperature preserved their profile of mesenchymal cell surface markers, their rate of proliferation, and their differentiation potential. The cell protective effect was not dependent on the presence of serum in the storage medium. It was clearly shown that over-expression of hypoxia induced factor-1α in hMSC with time, which may have protected the sealed cells on FMB at room temperature storage, was not necessarily related to extreme hypoxic stress. Foreskin normal fibroblasts on FMB sealed at room temperature were similarly protected, but with no elevation of their hypoxia-induced factor-1α expression. The results also show that FMB, unlike other commercially available cell carriers, could be used for delivery and shipping of progenitor cells at room temperature for extended time intervals. This could be highly useful for cell transfer for therapeutic application and for simplified cell transfer between different research centers.
Collapse
Affiliation(s)
- Raphael Gorodetsky
- Biotechnology and Radiobiology Labs, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
13
|
Weber C, Freimark D, Pörtner R, Pino-Grace P, Pohl S, Wallrapp C, Geigle P, Czermak P. Expansion of human mesenchymal stem cells in a fixed-bed bioreactor system based on non-porous glass carrier--part A: inoculation, cultivation, and cell harvest procedures. Int J Artif Organs 2011; 33:512-25. [PMID: 20872346 DOI: 10.1177/039139881003300802] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2010] [Indexed: 11/16/2022]
Abstract
Human mesenchymal stem cells (hMSC) are a promising cell source for several applications of regenerative medicine. The cells employed are either autologous or allogenic; by using stem cell lines in particular, allogenic cells enable the production of therapeutic cell implants or tissue engineered implants in stock. For these purposes, the generally small initial cell number has to be increased; this requires the use of bioreactors, which offer controlled expansion of the hMSC under GMP-conform conditions. In this study, divided into part A and B, a fixed bed bioreactor system based on non-porous borosilicate glass spheres for the expansion of hMSC, demonstrated with the model cell line hMSC-TERT, is introduced. The system offers convenient automation of the inoculation, cultivation, and harvesting procedures. Furthermore, the bioreactor has a simple design which favors its manufacturing as a disposable unit. Part A is focused on the inoculation, cultivation, and harvesting procedures. Cultivations were performed in lab scales up to a bed volume of 300 cm³. The study showed that the fixed bed system, based on 2-mm borosilicate glass spheres, as well as the inoculation, cultivation, and harvesting procedures are suitable for the expansion of hMSC with high yield and vitality.
Collapse
Affiliation(s)
- Christian Weber
- Institute of Biopharmaceutical Technology, University of Applied Sciences Giessen-Friedberg, Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Nassar R, Wu X, Paun M, Dai W, Palmer J. A MATHEMATICAL MODEL CHARACTERIZING THE DIFFUSION PROPERTIES OF MICROCAPSULES. CHEM ENG COMMUN 2010. [DOI: 10.1080/00986445.2010.493109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Acevedo CA, Somoza RA, Weinstein-Oppenheimer C, Brown DI, Young ME. Growth factor production from fibrin-encapsulated human keratinocytes. Biotechnol Lett 2010; 32:1011-7. [PMID: 20349112 DOI: 10.1007/s10529-010-0245-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 03/09/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
Abstract
Fibrin has been used extensively in cell encapsulation because it has important biological properties. Keratinocyte encapsulation in fibrin is a widely used technique in skin tissue engineering. The production of growth factors (EGF, TGF-beta1 and PDGF-BB) was evaluated when keratinocytes are encapsulated in fibrin. Secretions of TGF-beta1 and PDGF-BB increased more than five times compared to monolayer cultures. Encapsulated cells secreted about 80% active form of TGF-beta1 (monolayer cells only secreted inactive form). An enhanced secretion of TGF-beta1 and PDGF-BB was found in encapsulated cells, showing that fibrin capsules are favourable for the production of these growth factors.
Collapse
Affiliation(s)
- Cristian A Acevedo
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
| | | | | | | | | |
Collapse
|
16
|
A BOD monitoring disposable reactor with alginate-entrapped bacteria. Bioprocess Biosyst Eng 2010; 33:961-70. [DOI: 10.1007/s00449-010-0420-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 03/07/2010] [Indexed: 11/30/2022]
|
17
|
Weber C, Pohl S, Poertner R, Pino-Grace P, Freimark D, Wallrapp C, Geigle P, Czermak P. Production process for stem cell based therapeutic implants: expansion of the production cell line and cultivation of encapsulated cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 123:143-62. [PMID: 20091287 DOI: 10.1007/10_2009_25] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cell based therapy promises the treatment of many diseases like diabetes mellitus, Parkinson disease or stroke. Microencapsulation of the cells protects them against host-vs-graft reactions and thus enables the usage of allogenic cell lines for the manufacturing of cell therapeutic implants. The production process of such implants consists mainly of the three steps expansion of the cells, encapsulation of the cells, and cultivation of the encapsulated cells in order to increase their vitality and thus quality. This chapter deals with the development of fixed-bed bioreactor-based cultivation procedures used in the first and third step of production. The bioreactor system for the expansion of the stem cell line (hMSC-TERT) is based on non-porous glass spheres, which support cell growth and harvesting with high yield and vitality. The cultivation process for the spherical cell based implants leads to an increase of vitality and additionally enables the application of a medium-based differentiation protocol.
Collapse
Affiliation(s)
- C Weber
- Institute of Biopharmaceutical Technology, University of Applied Sciences Giessen-Friedberg, Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Flaibani M, Magrofuoco E, Elvassore N. Computational Modeling of Cell Growth Heterogeneity in a Perfused 3D Scaffold. Ind Eng Chem Res 2009. [DOI: 10.1021/ie900418g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marina Flaibani
- Department of Chemical Engineering Principles and Practice, Università degli Studi di Padova, Via Marzolo, 9, I-35131 Padua, Italy
| | - Enrico Magrofuoco
- Department of Chemical Engineering Principles and Practice, Università degli Studi di Padova, Via Marzolo, 9, I-35131 Padua, Italy
| | - Nicola Elvassore
- Department of Chemical Engineering Principles and Practice, Università degli Studi di Padova, Via Marzolo, 9, I-35131 Padua, Italy
| |
Collapse
|