1
|
Mahale M, Samson R, Dharne M, Kodam K. Harnessing the potential of Achromobacter sp. M1 to remediate heavy metals from wastewater: Genomic insights and environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136125. [PMID: 39405691 DOI: 10.1016/j.jhazmat.2024.136125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/28/2024] [Accepted: 10/08/2024] [Indexed: 12/01/2024]
Abstract
Lead, mercury, and cadmium are classified as toxic under the toxic Substances' Priority List by CDC-ATSDR (Center for Disease Control-Agency for Toxic Substances and Disease Registry). This toxic trio is capable of disrupting the one-health harmony due to its human, animal, and environmental hazards. The present study aimed in removing the toxic trio within 24 h using a novel Achromobacter sp. M1. Atomic absorption spectroscopic evaluation for removal efficiency of Pb, Hg, and Cd by M1 was 68.8 ± 0.9 %, 82.7 ± 1.9 %, and 94.9 ± 1.2 %, respectively, within 24 h. Lab-scale evaluation of strain M1 with wastewater showed the removal of the toxic trio together with the reduction in TSS from 140 to 118 ppm, BOD from 100 to 58 ppm, and COD from 381 to 222 ppm. Furthermore, strain M1 was capable of mitigating heavy metal stress and promoting plant growth, evidenced through chlorophyll, malondialdehyde, and proline estimation, together with the production of indole acetic acid (23.84 µg/mL), siderophore (85 %), and solubilization of silica (39.66 µg/mL). Whole genome sequencing revealed an ANI of 89 %, indicating a novel species of Achromobacter genus. A total of 23 putative genes for Cd, Hg, and Pb resistance were identified through genome mining.
Collapse
Affiliation(s)
- Mithil Mahale
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Rachel Samson
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 41108, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mahesh Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 41108, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Kisan Kodam
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
2
|
Tsujino S, Masuda R, Shimizu Y, Azuma Y, Kanada Y, Fujiwara T. Phylogenetic diversity, distribution, and gene structure of the pyruvic oxime dioxygenase involved in heterotrophic nitrification. Antonie Van Leeuwenhoek 2023; 116:1037-1055. [PMID: 37596503 DOI: 10.1007/s10482-023-01862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023]
Abstract
Some heterotrophic microorganisms carry out nitrification to produce nitrite and nitrate from pyruvic oxime. Pyruvic oxime dioxygenase (POD) is an enzyme that catalyzes the degradation of pyruvic oxime to pyruvate and nitrite from the heterotrophic nitrifying bacterium Alcaligenes faecalis. Sequence similarity searches revealed the presence of genes encoding proteins homologous to A. faecalis POD in bacteria of the phyla Proteobacteria and Actinobacteria and in fungi of the phylum Ascomycota, and their gene products were confirmed to have POD activity in recombinant experiments. Phylogenetic analysis further classified these POD homologs into three groups. Group 1 POD is mainly found in heterotrophic nitrifying Betaproteobacteria and fungi, and is assumed to be involved in heterotrophic nitrification. It is not clear whether group 2 POD, found mainly in species of the Gammaproteobacteria and Actinobacteria, and group 3 POD, found simultaneously with group 1 POD, are involved in heterotrophic nitrification. The genes of bacterial group 1 POD comprised a single transcription unit with the genes related to the metabolism of aromatic compounds, and many of the genes group 2 POD consisted of a single transcription unit with the gene encoding the protein homologous to 4-hydroxy-tetrahydrodipicolinate synthase (DapA). LysR- or Cro/CI-type regulatory genes were present adjacent to or in the vicinity of these POD gene clusters. POD may be involved not only in nitrification, but also in certain metabolic processes whose functions are currently unknown, in coordination with members of gene clusters.
Collapse
Affiliation(s)
- Shuhei Tsujino
- Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka, 422-8529, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Ryota Masuda
- Department of Biological Sciences, Faculty of Science, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yoshiyuki Shimizu
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yuichi Azuma
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yutaro Kanada
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Taketomo Fujiwara
- Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka, 422-8529, Japan.
- Department of Biological Sciences, Faculty of Science, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka, 422-8529, Japan.
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
3
|
Tran Thi Viet N, Vu DC, Duong TH. Effect of Hydraulic retention time on performance of anaerobic membrane bioreactor treating slaughterhouse wastewater. ENVIRONMENTAL RESEARCH 2023; 233:116522. [PMID: 37392825 DOI: 10.1016/j.envres.2023.116522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Slaughterhouse wastewater is a major environmental concern in many Vietnamese cities due to its high organic content and unpleasant odor. This study aimed to evaluate performance of a submerged flat sheet Anaerobic membrane bioreactor (AnMBR) system at different hydraulic retention time (HRT, 8-48 h) treating wastewater from a slaughterhouse in Hanoi City (Vietnam) at ambient temperature. The wastewater characteristics were as follows: chemical oxygen demand (COD) of 910 ± 171 mg/L; suspended solids (SS) of 273 ± 139 mg/L; and total nitrogen (T-N) of 115 ± 31 mg/L. The AnMBR system achieved high removal efficiencies for SS (99%) and COD (>90%) at an optimum HRT of 24 h. The biomethane yield reached 0.29 NL CH4/g CODinf. Importantly, the system maintained stable operation without flux decay and membrane fouling. HRT longer than 24 h could offer the better effluent quality without an increase in transmembrane pressure (TMP); however, it led to a lower methane production rate. Shorter HRT of 8-12 h caused a high TMP over -10 kPa, posing a risk for membrane fouling and biomass loss during cleaning, thus resulting in a low methane production. Our results suggest that AnMBR can be a reliable technology for wastewater treatment, reuse and energy recover from slaughterhouse wastewater in Vietnam and other similar climate countries.
Collapse
Affiliation(s)
- Nga Tran Thi Viet
- Faculty of Environmental Engineering, Hanoi University of Civil Engineering, 55 Giai Phong Road, Hai Ba Trung, Hanoi, Viet Nam.
| | - Duc Canh Vu
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Thu Hang Duong
- Faculty of Environmental Engineering, Hanoi University of Civil Engineering, 55 Giai Phong Road, Hai Ba Trung, Hanoi, Viet Nam.
| |
Collapse
|
4
|
Chen L, Chen L, Pan D, Lin H, Ren Y, Zhang J, Zhou B, Lin J, Lin J. Heterotrophic nitrification and related functional gene expression characteristics of Alcaligenes faecalis SDU20 with the potential use in swine wastewater treatment. Bioprocess Biosyst Eng 2021; 44:2035-2050. [PMID: 33978835 DOI: 10.1007/s00449-021-02581-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/30/2021] [Indexed: 11/24/2022]
Abstract
A new heterotrophic nitrifying bacterium was isolated from the compost of swine manure and rice husk and identified as Alcaligenes faecalis SDU20. Strain SDU20 had heterotrophic nitrification potential and could remove 99.7% of the initial NH4+-N. Nitrogen balance analysis revealed that 15.9 and 12.3% of the NH4+-N were converted into biological nitrogen and nitrate nitrogen, respectively. The remaining 71.44% could be converted into N2 or N2O. Single-factor experiments showed that the optimal conditions for ammonium removal were the carbon source of sodium succinate, C/N ratio 10, initial pH 8.0, and temperature 30 °C. Nitrification genes were determined to be upregulated when sodium succinate was used as the carbon source analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Strain SDU20 could tolerate 4% salinity and show resistance to some heavy metal ions. Strain SDU20 removed 72.6% high concentrated NH4+-N of 2000 mg/L within 216 h. In a batch experiment, the highest NH4+-N removal efficiency of 98.7% and COD removal efficiency of 93.7% were obtained in the treatment of unsterilized swine wastewater. Strain SDU20 is promising in high-ammonium wastewater treatment.
Collapse
Affiliation(s)
- Lifei Chen
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, 266237, People's Republic of China
| | - Linxu Chen
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, 266237, People's Republic of China
| | - Deng Pan
- Shandong Engineering Laboratory of Treatment and Resource Utilization of Waste From Planting and Breeding Industry, Shandong Yian Bioengineering Co., Ltd, Jinan, 250014, People's Republic of China
| | - Huibin Lin
- Shandong Academy of Chinese Medicine, Jinan, 250014, People's Republic of China
| | - Yilin Ren
- Qingdao Longding Biotech Co., Ltd, Qingdao, 266109, People's Republic of China
| | - Juan Zhang
- Shandong Institute for Product Quality Inspection, Jinan, 250102, People's Republic of China
| | - Bo Zhou
- College of Life Sciences, Shandong Agricultural University, Taian, 271018, People's Republic of China
| | - Jianqun Lin
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Jianqiang Lin
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
5
|
Zhang Y, Wang X, Wang W, Sun Z, Li J. Investigation of growth kinetics and partial denitrification performance in strain Acinetobacter johnsonii under different environmental conditions. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191275. [PMID: 31903210 PMCID: PMC6936282 DOI: 10.1098/rsos.191275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/04/2019] [Indexed: 05/21/2023]
Abstract
A denitrifying strain ZY04 with a high nitrite-accumulating rate was isolated and purified from activated sludge in a laboratory-scale A2/O reactor. The strain was characterized and identified as Acinetobacter johnsonii by 16S rDNA phylogenetic analysis. The sequences of the key functional genes (napA, nirB, nirD) involved in partial denitrification were amplified via polymerase chain reaction, which provided a basis for exploring gene expression. The effects of different environmental factors (C/N ratio, pH and temperature) on the partial denitrification performance and transcriptional levels of the functional genes during the logarithmic growth phase were investigated by batch experiments. The results showed that the partial denitrification performance was optimal when the C/N ratio was 5, the pH value was 6-8 and the temperature was 25°C. The gene expression during the logarithmic growth phase indicated the good performance of partial denitrification under different environmental conditions. All three functional genes exhibited the highest expression levels at 25°C. The results of inhibitory kinetics analysis revealed that three biokinetic models (Aiba, Edwards and Andrews) simulated the growth pattern of strain ZY04 inhibited by a single substrate (nitrate or sodium acetate) well. In the double-substrate inhibitory model, five models of nine combinations successfully fitted the growth characteristics of the strain affected by the double substrate of nitrate and sodium acetate. The relevant semi-saturation parameters and substrate inhibition parameters were obtained, and the correlation coefficient (R 2) reached 98%.
Collapse
Affiliation(s)
| | | | | | | | - Jun Li
- The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| |
Collapse
|
6
|
Holmes DE, Dang Y, Smith JA. Nitrogen cycling during wastewater treatment. ADVANCES IN APPLIED MICROBIOLOGY 2019; 106:113-192. [PMID: 30798802 DOI: 10.1016/bs.aambs.2018.10.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many wastewater treatment plants in the world do not remove reactive nitrogen from wastewater prior to release into the environment. Excess reactive nitrogen not only has a negative impact on human health, it also contributes to air and water pollution, and can cause complex ecosystems to collapse. In order to avoid the deleterious effects of excess reactive nitrogen in the environment, tertiary wastewater treatment practices that ensure the removal of reactive nitrogen species need to be implemented. Many wastewater treatment facilities rely on chemicals for tertiary treatment, however, biological nitrogen removal practices are much more environmentally friendly and cost effective. Therefore, interest in biological treatment is increasing. Biological approaches take advantage of specific groups of microorganisms involved in nitrogen cycling to remove reactive nitrogen from reactor systems by converting ammonia to nitrogen gas. Organisms known to be involved in this process include autotrophic ammonia-oxidizing bacteria, heterotrophic ammonia-oxidizing bacteria, ammonia-oxidizing archaea, anaerobic ammonia oxidizing bacteria (anammox), nitrite-oxidizing bacteria, complete ammonia oxidizers, and dissimilatory nitrate reducing microorganisms. For example, in nitrifying-denitrifying reactors, ammonia- and nitrite-oxidizing bacteria convert ammonia to nitrate and then denitrifying microorganisms reduce nitrate to nonreactive dinitrogen gas. Other nitrogen removal systems (anammox reactors) take advantage of anammox bacteria to convert ammonia to nitrogen gas using NO as an oxidant. A number of promising new biological treatment technologies are emerging and it is hoped that as the cost of these practices goes down more wastewater treatment plants will start to include a tertiary treatment step.
Collapse
|
7
|
Zheng Z, Zhang D, Li W, Qin W, Huang X, Lv L. Substrates removal and growth kinetic characteristics of a heterotrophic nitrifying-aerobic denitrifying bacterium, Acinetobacter harbinensis HITLi7 T at 2 °C. BIORESOURCE TECHNOLOGY 2018; 259:286-293. [PMID: 29573607 DOI: 10.1016/j.biortech.2018.03.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
In order to investigate the heterotrophic nitrification and aerobic denitrification ability of Acinetobacter harbinensis HITLi7T at 2 °C, both the growth parameters and substrates utilization characteristics were tested and appropriated kinetic models were obtained in this study. Under the initial concentration of 5 mg/L, the maximum NH4+-N and NO3--N degradation rates were 0.076 mg NH4+-N/L/h and 0.029 mg NO3--N/L/h, respectively. At the simultaneous presence of 2.5 mg/L NH4+-N and NO3--N, the maximum nitrate removal rate increased to 0.054 mg NO3--N/L/h (1.86 folds), while a slight decrease was observed in NH4+-N removal. Two double-substrate models, Contois-Contois (1) for NH4+-N and TOC, Monod-Contois (2) for NO3--N and TOC matched well with the experimental data. The kinetic parameters were determined as μmax1 = 0.095 h-1, BA1 = 0.012 mg/L, BT1 = 0.784 g TOC/g biomass (R12 = 0.9997), and μmax2 = 0.032 h-1, KN2 = 0.375 mg/L, BT2 = 1.108 g TOC/g biomass (R22 = 0.9731) by multiple regression equation.
Collapse
Affiliation(s)
- Zejia Zheng
- School of Environment, Harbin Institute of Technology, Harbin, China
| | - Duoying Zhang
- School of Civil Engineering, Heilongjiang University, Harbin, China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China; School of Environment, Harbin Institute of Technology, Harbin, China.
| | - Wen Qin
- School of Environment, Harbin Institute of Technology, Harbin, China
| | - Xiaofei Huang
- School of Environment, Harbin Institute of Technology, Harbin, China
| | - Longyi Lv
- School of Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
8
|
First report of a cross-kingdom pathogenic bacterium, Achromobacter xylosoxidans isolated from stipe-rot Coprinus comatus. Microbiol Res 2017; 207:249-255. [PMID: 29458861 DOI: 10.1016/j.micres.2017.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/04/2017] [Accepted: 12/16/2017] [Indexed: 11/21/2022]
Abstract
Coprinus comatus is an edible mushroom widely cultivated in China as a delicious food. Various diseases have occurred on C. comatus with the cultivated area increasing. In this study, the pathogenic bacterium JTG-B1, identified as Achromobacter xylosoxidans by 16S rDNA and nrdA gene sequencing, was isolated from edible mushroom Coprinus comatus with serious rot disease on its stipe. A. xylosoxidans has been confirmed as an important opportunistic human pathogenic bacterium and has been isolated from respiratory samples from cystic fibrosis. It is widely distributed in the environment. Here, we first report that fungi can also serve as a host for A. xylosoxidans. We confirmed that it can cross-kingdom infect between animals (mice) and fungi (C. comatus). The results of pathogenicity tests, physiological, biochemical and genotyping analysis of A. xylosoxidans from different hosts suggested that different strain of A. xylosoxidans may have pathogenicity differentiation. A. xylosoxidans not only is pathogenic to C. comatus but also may threaten human health.
Collapse
|
9
|
Medhi K, Singhal A, Chauhan DK, Thakur IS. Investigating the nitrification and denitrification kinetics under aerobic and anaerobic conditions by Paracoccus denitrificans ISTOD1. BIORESOURCE TECHNOLOGY 2017; 242:334-343. [PMID: 28347619 DOI: 10.1016/j.biortech.2017.03.084] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 06/06/2023]
Abstract
Municipal wastewater contains multiple nitrogen contaminants such as ammonia, nitrate and nitrite. Two heterotrophic nitrifier and aerobic denitrifiers, bacterial isolates ISTOD1 and ISTVD1 were isolated from domestic wastewater. On the basis of removal efficiency of ammonia, nitrate and nitrite under both aerobic and anaerobic conditions, ISTOD1 was selected and identified as Paracoccus denitrificans. Aerobically, NH4+-N had maximum specific nitrogen removal rate (Rxi) of 7.6g/gDCW/h and anaerobically, NO3-N showed Rxi of 2.5*10-1g/g DCW/h. Monod equation described the bioprocess kinetic coefficients, µmax and Ks, obtained by regression. Error functions were calculated to validate the Monod equation experimental data. Aerobic NO3-N showed the highest YW of 0.372mg DCW/mg NO3-N among the five conditions. ISTOD1 serves as a potential candidate for treating nitrogen rich wastewater using simultaneous nitrification and aerobic denitrification. It can be used in bioaugmentation studies under varied condition.
Collapse
|
10
|
Tsujino S, Uematsu C, Dohra H, Fujiwara T. Pyruvic oxime dioxygenase from heterotrophic nitrifier Alcaligenes faecalis is a nonheme Fe (II)-dependent enzyme homologous to class II aldolase. Sci Rep 2017; 7:39991. [PMID: 28059164 PMCID: PMC5216522 DOI: 10.1038/srep39991] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/30/2016] [Indexed: 11/09/2022] Open
Abstract
Pyruvic oxime dioxygenase (POD), a key enzyme in heterotrophic nitrification, was purified from Alcaligenes faecalis, and the molecular and catalytic characteristics were reexamined. POD was purified as the homotetramer of the subunit whose molecular weight was 30,000. The deduced amino acid sequence of POD was homologous with a class II aldolase that has been regarded as the Zn(II)-dependent enzyme catalyzing aldol reactions. The recombinant protein showed weak POD activity, and was activated by reconstitution with Fe(II). Affinity and catalytic constants were estimated at 470 μM and 4.69 sec-1, respectively. The POD was inactivated by EDTA to remove bound divalent metal cations. A reconstitution experiment demonstrated that Fe(II), not Zn(II), is essential for POD activity and that Mn(II) could partially fulfill the function of Fe(II). A mutant POD with replacement of His183, corresponding to one of three Zn(II)-binding ligands in the class II aldolase, by Asn was purified as a homotetrameric protein but showed no catalytic activities. Those results suggest that the POD is homologous to class II aldolase having non-heme Fe(II) as a catalytic center instead of Zn(II). A possible mechanism of the POD reaction is discussed on the basis of that of a known Fe(II)-dependent dioxygenase.
Collapse
Affiliation(s)
- Shuhei Tsujino
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Chisato Uematsu
- Department of Biological Sciences, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
| | - Hideo Dohra
- Instrumental Research Support Office, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Taketomo Fujiwara
- Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
11
|
Zeng J, Lou K, Zhang CJ, Wang JT, Hu HW, Shen JP, Zhang LM, Han LL, Zhang T, Lin Q, Chalk PM, He JZ. Primary Succession of Nitrogen Cycling Microbial Communities Along the Deglaciated Forelands of Tianshan Mountain, China. Front Microbiol 2016; 7:1353. [PMID: 27625641 PMCID: PMC5003921 DOI: 10.3389/fmicb.2016.01353] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 08/16/2016] [Indexed: 12/04/2022] Open
Abstract
Structural succession and its driving factors for nitrogen (N) cycling microbial communities during the early stages of soil development (0–44 years) were studied along a chronosequence in the glacial forelands of the Tianshan Mountain No.1 glacier in the arid and semi-arid region of central Asia. We assessed the abundance and population of functional genes affiliated with N-fixation (nifH), nitrification (bacterial and archaeal amoA), and denitrification (nirK/S and nosZ) in a glacier foreland using molecular methods. The abundance of functional genes significantly increased with soil development. N cycling community compositions were also significantly shifted within 44 years and were structured by successional age. Cyanobacterial nifH gene sequences were the most dominant N fixing bacteria and its relative abundance increased from 56.8–93.2% along the chronosequence. Ammonia-oxidizing communities shifted from the Nitrososphaera cluster (AOA-amoA) and the Nitrosospira cluster ME (AOB-aomA) in younger soils (0 and 5 years) to communities dominated by soil and sediment 1 (AOA-amoA) and Nitrosospira Cluster 2 Related (AOB-aomA) in older soils (≥17 years). Most of the denitrifers closest relatives were potential aerobic denitrifying bacteria, and some other types of denitrifying bacteria (like autotrophic nitrate-reducing, sulfide-oxidizing bacteria and denitrifying phosphorus removing bacteria) were also detected in all soil samples. The regression analysis showed that N cycling microbial communities were dominant in younger soils (0–5 years) and significantly correlated with soil total carbon, while communities that were most abundant in older soils were significantly correlated with soil total nitrogen. These results suggested that the shift of soil C and N contents during the glacial retreat significantly influenced the abundance, composition and diversity of N cycling microbial communities.
Collapse
Affiliation(s)
- Jun Zeng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, China; College of Resources and Environment, University of Chinese Academy of SciencesBeijing, China; Institute of Applied Microbiology, Xinjiang Academy of Agricultural SciencesUrumqi, China
| | - Kai Lou
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences Urumqi, China
| | - Cui-Jing Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, China; College of Resources and Environment, University of Chinese Academy of SciencesBeijing, China
| | - Jun-Tao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing, China
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne VIC, Australia
| | - Ju-Pei Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing, China
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, China; College of Resources and Environment, University of Chinese Academy of SciencesBeijing, China
| | - Li-Li Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing, China
| | - Tao Zhang
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences Urumqi, China
| | - Qin Lin
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences Urumqi, China
| | - Phillip M Chalk
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, China; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, MelbourneVIC, Australia
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, China; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
12
|
Ardiansyah A, Fotedar R. The abundance and diversity of heterotrophic bacteria as a function of harvesting frequency of duckweed (Lemna minor
L.) in recirculating aquaculture systems. Lett Appl Microbiol 2016; 63:53-9. [DOI: 10.1111/lam.12585] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 11/29/2022]
Affiliation(s)
- A. Ardiansyah
- Department of Environment and Agriculture; Curtin University; Perth WA Australia
- Agricultural Polytechnic State of Pangkep; Sulawesi Selatan Indonesia
| | - R. Fotedar
- Department of Environment and Agriculture; Curtin University; Perth WA Australia
| |
Collapse
|
13
|
Chen CY, Wang GH, Tseng IH, Chung YC. Analysis of bacterial diversity and efficiency of continuous removal of Victoria Blue R from wastewater by using packed-bed bioreactor. CHEMOSPHERE 2016; 145:17-24. [PMID: 26657084 DOI: 10.1016/j.chemosphere.2015.11.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/10/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
The characteristics of a packed-bed bioreactor (PBB) for continuously removing Victoria Blue R (VBR) from an aqueous solution were determined. The effects of various factors including liquid retention time (RT), VBR concentration, shock loading, and coexisting compounds on the VBR removal and bacterial community in a continuous system were investigated. The intermediates of degraded VBR and the acute toxicity of the effluent from PBB were analyzed. When the VBR concentration was lower than 400 mg/l for a two-day retention time (RT), 100% removal was achieved. During continuous operation, the efficiency initially varied with the VBR concentration and RT, but gradually increased in one to two days. Furthermore, the acute toxicity of the effluent reduced by a factor of 21.25-49.61, indicating that the PBB can be successfully operated under turbulent environmental conditions. VBR degradation involved stepwise demethylation and yielded partially dealkylated VBR species. Phylogenetic analysis showed that the dominant phylum in the PBB was Proteobacteria and that Aeromonas hydrophila dominated during the entire operating period. The characteristics of the identified species showed that the PBB is suitable for processes such as demethylation, aromatic ring opening, carbon oxidation, nitrification, and denitrification.
Collapse
Affiliation(s)
- Chih-Yu Chen
- Department of Tourism and Leisure, Hsing Wu University, Taipei, 244, Taiwan
| | - Guey-Horng Wang
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, China
| | - I-Hung Tseng
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, 115, Taiwan
| | - Ying-Chien Chung
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, 115, Taiwan.
| |
Collapse
|
14
|
Chen J, Zhao B, An Q, Wang X, Zhang YX. Kinetic characteristics and modelling of growth and substrate removal by Alcaligenes faecalis strain NR. Bioprocess Biosyst Eng 2016; 39:593-601. [DOI: 10.1007/s00449-016-1541-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/08/2016] [Indexed: 11/30/2022]
|
15
|
Dosta J, Vila J, Sancho I, Basset N, Grifoll M, Mata-Álvarez J. Two-step partial nitritation/Anammox process in granulation reactors: Start-up operation and microbial characterization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 164:196-205. [PMID: 26386756 DOI: 10.1016/j.jenvman.2015.08.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/29/2015] [Accepted: 08/15/2015] [Indexed: 06/05/2023]
Abstract
A two-stage Partial Nitritation (PN)/Anammox process was carried out at lab-scale conditions to treat reject water from a municipal WWTP. PN was achieved in a granular SBR obtaining an effluent with a NH4(+)-N/NO2(-)-N molar ratio around 1.0. The microbial characterization of this reactor revealed a predominance of Betaproteobacteria, with a member of Nitrosomonas as the main autotrophic ammonium oxidizing bacterium (AOB). Nitrite oxidizing bacteria (NOB) were under the detection limit of 16S rRNA gene pyrosequencing, indicating their effective inhibition. The effluent of the PN reactor was fed to an Anammox SBR where stable operation was achieved with a NH4(+)-N:NO2(-)-N:NO3(-)-N stoichiometry of 1:1.25:0.14. The deviation to the theoretical stoichiometry could be attributed to the presence of heterotrophic biomass in the Anammox reactor (mainly members of Chlorobi and Chloroflexi). Planctomycetes accounted for 7% of the global community, being members of Brocadia (1.4% of the total abundance) the main anaerobic ammonium oxidizer detected.
Collapse
Affiliation(s)
- J Dosta
- Department of Chemical Engineering, University of Barcelona, C/Martí i Franquès, No. 1, 6th Floor, 08028 Barcelona, Spain.
| | - J Vila
- Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain
| | - I Sancho
- Department of Chemical Engineering, University of Barcelona, C/Martí i Franquès, No. 1, 6th Floor, 08028 Barcelona, Spain
| | - N Basset
- Department of Chemical Engineering, University of Barcelona, C/Martí i Franquès, No. 1, 6th Floor, 08028 Barcelona, Spain
| | - M Grifoll
- Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain
| | - J Mata-Álvarez
- Department of Chemical Engineering, University of Barcelona, C/Martí i Franquès, No. 1, 6th Floor, 08028 Barcelona, Spain
| |
Collapse
|
16
|
Simultaneous heterotrophic nitrification and aerobic denitrification by Chryseobacterium sp. R31 isolated from abattoir wastewater. BIOMED RESEARCH INTERNATIONAL 2014; 2014:436056. [PMID: 24991552 PMCID: PMC4060765 DOI: 10.1155/2014/436056] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/29/2014] [Indexed: 11/26/2022]
Abstract
A heterotrophic carbon utilizing microbe (R31) capable of simultaneous nitrification and denitrification (SND) was isolated from wastewater of an Indian slaughterhouse. From an initial COD value of 583.0 mg/L, 95.54% was removed whilst, from a starting NH4+-N concentration of 55.7 mg/L, 95.87% was removed after 48 h contact. The concentrations of the intermediates hydroxylamine, nitrite, and nitrate were low, thus ensuring nitrogen removal. Aerobic denitrification occurring during ammonium removal by R31 was confirmed by utilization of both nitrate and nitrite as nitrogen substrates. Glucose and succinate were superior while acetate and citrate were poor substrates for nitrogen removal. Molecular phylogenetic identification, supported by chemotaxonomic and physiological properties, assigned R31 as a close relative of Chryseobacterium haifense. The NH4+-N utilization rate and growth of strain R31 were found to be higher at C/N = 10 in comparison to those achieved with C/N ratios of 5 and 20. Monod kinetic coefficients, half saturation concentration (Ks), maximum rate of substrate utilization (k), yield coefficient, (Y) and endogenous decay coefficient (Kd) indicated potential application of R31 in large-scale SND process. This is the first report on concomitant carbon oxidation, nitrification, and denitrification in the genus Chryseobacterium and the associated kinetic coefficients.
Collapse
|
17
|
Kundu P, Debsarkar A, Mukherjee S, Kumar S. Artificial neural network modelling in biological removal of organic carbon and nitrogen for the treatment of slaughterhouse wastewater in a batch reactor. ENVIRONMENTAL TECHNOLOGY 2014; 35:1296-1306. [PMID: 24701927 DOI: 10.1080/09593330.2013.866698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Wastewater containing high concentration of oxygen-demanding carbonaceous organics and nitrogenous materials (chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN)) as nutrients emanated from small- to large-scale slaughterhouse units cause depletion of dissolved oxygen in water bodies and attributes to the threat of eutrophication. Biological treatment of wastewater is a useful tool through ages for the treatment of wastewater owing to its cost-effectiveness, reliability along with its innocuous output features. This paper deals with the treatment of slaughter house wastewater by conducting a laboratory scale batch reactor with different input characterized samples, and the experimental results were explored for the formulation of feed-forward back-propagation artificial neural network (ANN) to predict the combined removal of COD and TKN. The ANN modelling was carried out using neural network tool box of MATLAB (version 7.0), with the Levenberg-Marquardt training algorithm. Various trials were examined for the training of the ANN model using the number of neurons in the hidden layer varying from 2 to 30. The mean square error function and regression analysis were also applied for performance analysis of the ANN model. All the input data were logged-in after carrying out detailed experiment in the laboratory with a view to examine the performance of the batch reactor for the treatment of slaughterhouse wastewater. The experimental results were used for testing and validating the ANN model.
Collapse
|
18
|
Sánchez O, Ferrera I, González JM, Mas J. Assessing bacterial diversity in a seawater-processing wastewater treatment plant by 454-pyrosequencing of the 16S rRNA and amoA genes. Microb Biotechnol 2013; 6:435-42. [PMID: 23574645 PMCID: PMC3917478 DOI: 10.1111/1751-7915.12052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 11/28/2022] Open
Abstract
The bacterial community composition of activated sludge from a wastewater treatment plant (Almería, Spain) with the particularity of using seawater was investigated by applying 454-pyrosequencing. The results showed that Deinococcus-Thermus, Proteobacteria, Chloroflexi and Bacteroidetes were the most abundant retrieved sequences, while other groups, such as Actinobacteria, Chlorobi, Deferribacteres, Firmicutes, Planctomycetes, Spirochaetes and Verrumicrobia were reported at lower proportions. Rarefaction analysis showed that very likely the diversity is higher than what could be described despite most of the unknown microorganisms probably correspond to rare diversity. Furthermore, the majority of taxa could not be classified at the genus level and likely represent novel members of these groups. Additionally, the nitrifiers in the sludge were characterized by pyrosequencing the amoA gene. In contrast, the nitrifying bacterial community, dominated by the genera Nitrosomonas, showed a low diversity and rarefaction curves exhibited saturation. These results suggest that only a few populations of low abundant but specialized bacteria are responsible for removal of ammonia in these saline wastewater systems.
Collapse
Affiliation(s)
- Olga Sánchez
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | | | | | | |
Collapse
|