1
|
Garg S, Behera S, Ruiz HA, Kumar S. A Review on Opportunities and Limitations of Membrane Bioreactor Configuration in Biofuel Production. Appl Biochem Biotechnol 2023; 195:5497-5540. [PMID: 35579743 DOI: 10.1007/s12010-022-03955-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/02/2022] [Indexed: 12/13/2022]
Abstract
Biofuels are a clean and renewable source of energy that has gained more attention in recent years; however, high energy input and processing cost during the production and recovery process restricted its progress. Membrane technology offers a range of energy-saving separation for product recovery and purification in biorefining along with biofuel production processes. Membrane separation techniques in combination with different biological processes increase cell concentration in the bioreactor, reduce product inhibition, decrease chemical consumption, reduce energy requirements, and further increase product concentration and productivity. Certain membrane bioreactors have evolved with the ability to deal with different biological production and separation processes to make them cost-effective, but there are certain limitations. The present review describes the advantages and limitations of membrane bioreactors to produce different biofuels with the ability to simplify upstream and downstream processes in terms of sustainability and economics.
Collapse
Affiliation(s)
- Shruti Garg
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India
- Department of Microbiology, Guru Nanak Dev University, Grand Trunk Road, Amritsar, Punjab, 143040, India
| | - Shuvashish Behera
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India.
- Department of Alcohol Technology and Biofuels, Vasantdada Sugar Institute, Manjari (Bk.), Pune, 412307, India.
| | - Hector A Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280, Saltillo, Coahuila, Mexico
| | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India.
| |
Collapse
|
2
|
Si Z, Wu H, Qin P, Van der Bruggen B. Polydimethylsiloxane based membranes for biofuels pervaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
3
|
Mutto A, Mahawer K, Shukla A, Gupta SK. Understanding butanol recovery and coupling effects in pervaporation of Acetone-Butanol-Ethanol (ABE) solutions: A modelling and experimental study. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Teke GM, Tai SL, Pott RWM. Extractive Fermentation Processes: Modes of Operation and Application. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- George M. Teke
- University of Stellenbosch Department of Process Engineering Stellenbosch South Africa
| | - Siew L. Tai
- University of Cape Town Department of Chemical Engineering Cape Town South Africa
| | - Robert W. M. Pott
- University of Stellenbosch Department of Process Engineering Stellenbosch South Africa
| |
Collapse
|
5
|
Process optimization of acetone-butanol-ethanol fermentation integrated with pervaporation for enhanced butanol production. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Iyyappan J, Bharathiraja B, Vaishnavi A, Prathiba S. Overview of Current Developments in Biobutanol Production Methods and Future Perspectives. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2290:3-21. [PMID: 34009579 DOI: 10.1007/978-1-0716-1323-8_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Renewable biobutanol production is receiving more attention toward substituting fossil-based nonrenewable fuels. Biobutanol is recognized as the top most biofuel with extraordinary properties as compared with gasoline. The demand for biobutanol production is increasing enormously due to application in various industries as chemical substituent. Biobutanol production technology has attracted many researchers toward implementation of replacing cost-effective substrate and easy method to recover from the fermentation broth. Sugarcane bagasse, algal biomass, crude glycerol, and lignocellulosic biomass are potential cost-effective substrates which could replace consistent glucose-based substrates. The advantages and limitations of these substrates have been discussed in this chapter. Moreover, finding the integrated biobutanol recovery methods is an important factor parameter in production of biobutanol. This chapter also concentrated on possibilities and drawbacks of obtainable integrated biobutanol recovery methods. Thus, successful process involving cost-effective substrate and biobutanol recovery methods could help to implementation of biobutanol production industry. Overall, this chapter has endeavored to increase the viability of industrial production of biobutanol.
Collapse
Affiliation(s)
- J Iyyappan
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India
| | - B Bharathiraja
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India.
| | - A Vaishnavi
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India
| | - S Prathiba
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India
| |
Collapse
|
7
|
Zhou Z, Luo Y, Peng S, Zhang Q, Li Z, Li H. Enhancement of Butanol Production in a Newly Selected Strain through Accelerating Phase Shift by Different Phases C/N Ratio Regulation from Puerariae Slag Hydrolysate. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Amarante RC, Donaldson AA. Pervaporation separation of ethanol and 2-ethylhexanol mixtures using cellulose acetate propionate and poly(1-vinylpyrrolidone-co-vinyl acetate) blend membranes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Rengasamy K, Ranaivoarisoa T, Bai W, Bose A. Magnetite nanoparticle anchored graphene cathode enhances microbial electrosynthesis of polyhydroxybutyrate by Rhodopseudomonas palustris TIE-1. NANOTECHNOLOGY 2021; 32:035103. [PMID: 33017807 DOI: 10.1088/1361-6528/abbe58] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microbial electrosynthesis (MES) is an emerging technology that can convert carbon dioxide (CO2) into value-added organic carbon compounds using electrons supplied from a cathode. However, MES is affected by low product formation due to limited extracellular electron uptake by microbes. Herein, a novel cathode was developed from chemically synthesized magnetite nanoparticles and reduced graphene oxide nanocomposite (rGO-MNPs). This nanocomposite was electrochemically deposited on carbon felt (CF/rGO-MNPs), and the modified material was used as a cathode for MES production. The bioplastic, polyhydroxybutyrate (PHB) produced by Rhodopseudomonas palustris TIE-1 (TIE-1), was measured from reactors with modified and unmodified cathodes. Results demonstrate that the magnetite nanoparticle anchored graphene cathode (CF/rGO-MNPs) exhibited higher PHB production (91.31 ± 0.9 mg l-1). This is ∼4.2 times higher than unmodified carbon felt (CF), and 20 times higher than previously reported using graphite. This modified cathode enhanced electron uptake to -11.7 ± 0.1 μA cm-2, ∼5 times higher than CF cathode (-2.3 ± 0.08 μA cm-2). The faradaic efficiency of the modified cathode was ∼2 times higher than the unmodified cathode. Electrochemical analysis and scanning electron microscopy suggest that rGO-MNPs facilitated electron uptake and improved PHB production by TIE-1. Overall, the nanocomposite (rGO-MNPs) cathode modification enhances MES efficiency.
Collapse
Affiliation(s)
- Karthikeyan Rengasamy
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, 63130, United States of America
| | - Tahina Ranaivoarisoa
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, 63130, United States of America
| | - Wei Bai
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, 63130, United States of America
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Arpita Bose
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, 63130, United States of America
| |
Collapse
|
10
|
Zhu H, Li X, Pan Y, Liu G, Wu H, Jiang M, Jin W. Fluorinated PDMS membrane with anti-biofouling property for in-situ biobutanol recovery from fermentation-pervaporation coupled process. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118225] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Zhu H, Liu G, Yuan J, Chen T, Xin F, Jiang M, Fan Y, Jin W. In-situ recovery of bio-butanol from glycerol fermentation using PDMS/ceramic composite membrane. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115811] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Azimi H, Tezel H, Thibault J. Optimization of the in situ recovery of butanol from ABE fermentation broth via membrane pervaporation. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Lv Z, Zhou J, Zhang Y, Zhou X, Xu N, Xin F, Ma J, Jiang M, Dong W. Techniques for enhancing the tolerance of industrial microbes to abiotic stresses: A review. Biotechnol Appl Biochem 2019; 67:73-81. [PMID: 31206805 DOI: 10.1002/bab.1794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022]
Abstract
The diversity of stress responses and survival strategies evolved by microorganism enables them to survive and reproduce in a multitude of harsh environments, whereas the discovery of the underlying resistance genes or mechanisms laid the foundation for the directional enhancement of microbial tolerance to abiotic stresses encountered in industrial applications. Many biological techniques have been developed for improving the stress resistance of industrial microorganisms, which greatly benefited the bacteria on which industrial production is based. This review introduces the main techniques for enhancing the resistance of microorganisms to abiotic stresses, including evolutionary engineering, metabolic engineering, and process engineering, developed in recent years. In addition, we also discuss problems that are still present in this area and offer directions for future research.
Collapse
Affiliation(s)
- Ziyao Lv
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China
| | - Yue Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China
| | - Xinhai Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China
| | - Ning Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China
| |
Collapse
|
14
|
Engineering Clostridium for improved solvent production: recent progress and perspective. Appl Microbiol Biotechnol 2019; 103:5549-5566. [DOI: 10.1007/s00253-019-09916-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 01/07/2023]
|
15
|
|
16
|
|
17
|
Weatherill JJ, Atashgahi S, Schneidewind U, Krause S, Ullah S, Cassidy N, Rivett MO. Natural attenuation of chlorinated ethenes in hyporheic zones: A review of key biogeochemical processes and in-situ transformation potential. WATER RESEARCH 2018; 128:362-382. [PMID: 29126033 DOI: 10.1016/j.watres.2017.10.059] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 10/12/2017] [Accepted: 10/28/2017] [Indexed: 06/07/2023]
Abstract
Chlorinated ethenes (CEs) are legacy contaminants whose chemical footprint is expected to persist in aquifers around the world for many decades to come. These organohalides have been reported in river systems with concerning prevalence and are thought to be significant chemical stressors in urban water ecosystems. The aquifer-river interface (known as the hyporheic zone) is a critical pathway for CE discharge to surface water bodies in groundwater baseflow. This pore water system may represent a natural bioreactor where anoxic and oxic biotransformation process act in synergy to reduce or even eliminate contaminant fluxes to surface water. Here, we critically review current process understanding of anaerobic CE respiration in the competitive framework of hyporheic zone biogeochemical cycling fuelled by in-situ fermentation of natural organic matter. We conceptualise anoxic-oxic interface development for metabolic and co-metabolic mineralisation by a range of aerobic bacteria with a focus on vinyl chloride degradation pathways. The superimposition of microbial metabolic processes occurring in sediment biofilms and bulk solute transport delivering reactants produces a scale dependence in contaminant transformation rates. Process interpretation is often confounded by the natural geological heterogeneity typical of most riverbed environments. We discuss insights from recent field experience of CE plumes discharging to surface water and present a range of practical monitoring technologies which address this inherent complexity at different spatial scales. Future research must address key dynamics which link supply of limiting reactants, residence times and microbial ecophysiology to better understand the natural attenuation capacity of hyporheic systems.
Collapse
Affiliation(s)
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Uwe Schneidewind
- Department of Engineering Geology and Hydrogeology, RWTH Aachen University, Aachen, Germany
| | - Stefan Krause
- School of Geography, Earth and Environmental Science, University of Birmingham, UK
| | - Sami Ullah
- School of Geography, Earth and Environmental Science, University of Birmingham, UK
| | | | - Michael O Rivett
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK; GroundH(2)O Plus Ltd., Quinton, Birmingham, UK
| |
Collapse
|
18
|
Outram V, Lalander CA, Lee JGM, Davies ET, Harvey AP. Applied in situ product recovery in ABE fermentation. Biotechnol Prog 2017; 33:563-579. [PMID: 28188696 PMCID: PMC5485034 DOI: 10.1002/btpr.2446] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 01/31/2017] [Indexed: 12/12/2022]
Abstract
The production of biobutanol is hindered by the product's toxicity to the bacteria, which limits the productivity of the process. In situ product recovery of butanol can improve the productivity by removing the source of inhibition. This paper reviews in situ product recovery techniques applied to the acetone butanol ethanol fermentation in a stirred tank reactor. Methods of in situ recovery include gas stripping, vacuum fermentation, pervaporation, liquid–liquid extraction, perstraction, and adsorption, all of which have been investigated for the acetone, butanol, and ethanol fermentation. All techniques have shown an improvement in substrate utilization, yield, productivity or both. Different fermentation modes favored different techniques. For batch processing gas stripping and pervaporation were most favorable, but in fed‐batch fermentations gas stripping and adsorption were most promising. During continuous processing perstraction appeared to offer the best improvement. The use of hybrid techniques can increase the final product concentration beyond that of single‐stage techniques. Therefore, the selection of an in situ product recovery technique would require comparable information on the energy demand and economics of the process. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:563–579, 2017
Collapse
Affiliation(s)
- Victoria Outram
- School of Chemical Engineering and Advanced Material, Newcastle University, Newcastle-upon-Tyne, U.K.,Green Biologics Ltd, 45A Western Avenue, Milton Park, Abingdon, Oxfordshire, U.K
| | - Carl-Axel Lalander
- Green Biologics Ltd, 45A Western Avenue, Milton Park, Abingdon, Oxfordshire, U.K
| | - Jonathan G M Lee
- School of Chemical Engineering and Advanced Material, Newcastle University, Newcastle-upon-Tyne, U.K
| | - E Timothy Davies
- Green Biologics Ltd, 45A Western Avenue, Milton Park, Abingdon, Oxfordshire, U.K
| | - Adam P Harvey
- School of Chemical Engineering and Advanced Material, Newcastle University, Newcastle-upon-Tyne, U.K
| |
Collapse
|
19
|
Malmierca S, Díez-Antolínez R, Paniagua AI, Martín M. Technoeconomic Study of Biobutanol AB Production. 1. Biomass Pretreatment and Hydrolysis. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b02943] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Santiago Malmierca
- Department
of Chemical Engineering, University of Salamanca, Plz. Caídos 1.5, 37008 Salamanca, Spain
- Center
of Biofuels and Bioproducts, Instituto Tecnológico Agrario de Castilla y León (ITACyL), 24358 Villarejo
de Órbigo, León, Spain
| | - Rebeca Díez-Antolínez
- Center
of Biofuels and Bioproducts, Instituto Tecnológico Agrario de Castilla y León (ITACyL), 24358 Villarejo
de Órbigo, León, Spain
| | - Ana Isabel Paniagua
- Center
of Biofuels and Bioproducts, Instituto Tecnológico Agrario de Castilla y León (ITACyL), 24358 Villarejo
de Órbigo, León, Spain
| | - Mariano Martín
- Department
of Chemical Engineering, University of Salamanca, Plz. Caídos 1.5, 37008 Salamanca, Spain
| |
Collapse
|
20
|
Cai D, Hu S, Miao Q, Chen C, Chen H, Zhang C, Li P, Qin P, Tan T. Two-stage pervaporation process for effective in situ removal acetone-butanol-ethanol from fermentation broth. BIORESOURCE TECHNOLOGY 2017; 224:380-388. [PMID: 27839857 DOI: 10.1016/j.biortech.2016.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
Two-stage pervaporation for ABE recovery from fermentation broth was studied to reduce the energy cost. The permeate after the first stage in situ pervaporation system was further used as the feedstock in the second stage of pervaporation unit using the same PDMS/PVDF membrane. A total 782.5g/L of ABE (304.56g/L of acetone, 451.98g/L of butanol and 25.97g/L of ethanol) was achieved in the second stage permeate, while the overall acetone, butanol and ethanol separation factors were: 70.7-89.73, 70.48-84.74 and 9.05-13.58, respectively. Furthermore, the theoretical evaporation energy requirement for ABE separation in the consolidate fermentation, which containing two-stage pervaporation and the following distillation process, was estimated less than ∼13.2MJ/kg-butanol. The required evaporation energy was only 36.7% of the energy content of butanol. The novel two-stage pervaporation process was effective in increasing ABE production and reducing energy consumption of the solvents separation system.
Collapse
Affiliation(s)
- Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Song Hu
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qi Miao
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Changjing Chen
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Huidong Chen
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; Center for Process Simulation & Optimization, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Changwei Zhang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ping Li
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
21
|
Outram V, Lalander CA, Lee JGM, Davis ET, Harvey AP. A comparison of the energy use of in situ product recovery techniques for the Acetone Butanol Ethanol fermentation. BIORESOURCE TECHNOLOGY 2016; 220:590-600. [PMID: 27619710 DOI: 10.1016/j.biortech.2016.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
The productivity of the Acetone Butanol Ethanol (ABE) fermentation can be significantly increased by application of various in situ product recovery (ISPR) techniques. There are numerous technically viable processes, but it is not clear which is the most economically viable in practice. There is little available information about the energy requirements and economics of ISPR for the ABE fermentation. This work compares various ISPR techniques based on UniSim process simulations of the ABE fermentation. The simulations provide information on the process energy and separation efficiency, which is fed into an economic assessment. Perstraction was the only technique to reduce the energy demand below that of a batch process, by approximately 5%. Perstraction also had the highest profit increase over a batch process, by 175%. However, perstraction is an immature technology, so would need significant development before being integrated to an industrial process.
Collapse
Affiliation(s)
- Victoria Outram
- School of Chemical Engineering and Advanced Material, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; Green Biologics Ltd., 45A Western Avenue, Milton Park, Abingdon, Oxfordshire, UK.
| | - Carl-Axel Lalander
- Green Biologics Ltd., 45A Western Avenue, Milton Park, Abingdon, Oxfordshire, UK
| | - Jonathan G M Lee
- School of Chemical Engineering and Advanced Material, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| | - E Timothy Davis
- Green Biologics Ltd., 45A Western Avenue, Milton Park, Abingdon, Oxfordshire, UK
| | - Adam P Harvey
- School of Chemical Engineering and Advanced Material, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| |
Collapse
|
22
|
Rom A, Friedl A. Investigation of pervaporation performance of POMS membrane during separation of butanol from water and the effect of added acetone and ethanol. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.06.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Kong X, He A, Zhao J, Wu H, Ma J, Wei C, Jin W, Jiang M. Efficient acetone–butanol–ethanol (ABE) production by a butanol-tolerant mutant of Clostridium beijerinckii in a fermentation–pervaporation coupled process. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Kondaveeti S, Min B. Bioelectrochemical reduction of volatile fatty acids in anaerobic digestion effluent for the production of biofuels. WATER RESEARCH 2015; 87:137-44. [PMID: 26402877 DOI: 10.1016/j.watres.2015.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/30/2015] [Accepted: 09/05/2015] [Indexed: 05/05/2023]
Abstract
This study proves for the first time the feasibility of biofuel production from anaerobic digestion effluent via bioelectrochemical cell operation at various applied cell voltages (1.0, 1.5 and 2.0 V). An increase in cell voltage from 1 to 2 V resulted in more reduction current generation (-0.48 to -0.78 mA) at a lowered cathode potential (-0.45 to -0.84 mV vs Ag/AgCl). Various alcohols were produced depending on applied cell voltages, and the main products were butanol, ethanol, and propanol. Hydrogen and methane production were also observed in the headspace of the cell. A large amount of lactic acid was unexpectedly formed at all conditions, which might be the primary cause of the limited biofuel production. The addition of neutral red (NR) to the system could increase the cathodic reduction current, and thus more biofuels were produced with an enhanced alcohol formation compared to without a mediator.
Collapse
Affiliation(s)
- Sanath Kondaveeti
- Department of Environmental Science and Engineering, Kyung Hee University, 1 Seocheon-dong, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University, 1 Seocheon-dong, Yongin-si, Gyeonggi-do 446-701, Republic of Korea.
| |
Collapse
|
25
|
He AY, Yin CY, Xu H, Kong XP, Xue JW, Zhu J, Jiang M, Wu H. Enhanced butanol production in a microbial electrolysis cell by Clostridium beijerinckii IB4. Bioprocess Biosyst Eng 2015; 39:245-54. [DOI: 10.1007/s00449-015-1508-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 11/18/2015] [Indexed: 11/28/2022]
|
26
|
Xie S, Qiu X, Yi C. Separation of a Biofuel: Recovery of Biobutanol by Salting-Out and Distillation. Chem Eng Technol 2015. [DOI: 10.1002/ceat.201500140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Staggs KW, Nielsen DR. Improving n-butanol production in batch and semi-continuous processes through integrated product recovery. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
28
|
Xue C, Liu F, Xu M, Zhao J, Chen L, Ren J, Bai F, Yang ST. A novelin situgas stripping-pervaporation process integrated with acetone-butanol-ethanol fermentation for hyper n-butanol production. Biotechnol Bioeng 2015; 113:120-9. [DOI: 10.1002/bit.25666] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/17/2015] [Accepted: 05/26/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Chuang Xue
- Department of Life Science and Biotechnology; Dalian University of Technology; Dalian 116024 China
| | - Fangfang Liu
- Department of Chemical and Biomolecular Engineering; The Ohio State University; Columbus Ohio 43210
| | - Mengmeng Xu
- Department of Chemical and Biomolecular Engineering; The Ohio State University; Columbus Ohio 43210
| | - Jingbo Zhao
- Department of Chemical and Biomolecular Engineering; The Ohio State University; Columbus Ohio 43210
| | - Lijie Chen
- Department of Life Science and Biotechnology; Dalian University of Technology; Dalian 116024 China
| | - Jiangang Ren
- Department of Life Science and Biotechnology; Dalian University of Technology; Dalian 116024 China
| | - Fengwu Bai
- Department of Life Science and Biotechnology; Dalian University of Technology; Dalian 116024 China
| | - Shang-Tian Yang
- Department of Chemical and Biomolecular Engineering; The Ohio State University; Columbus Ohio 43210
| |
Collapse
|
29
|
Sharif Rohani A, Mehrani P, Thibault J. Comparison of in-situ recovery methods of gas stripping, pervaporation, and vacuum separation by multi-objective optimization for producing biobutanol via fermentation process. CAN J CHEM ENG 2015. [DOI: 10.1002/cjce.22186] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Aida Sharif Rohani
- Department of Chemical and Biological Engineering; University of Ottawa; Ottawa Ontario K1N 6N5 Canada
| | - Poupak Mehrani
- Department of Chemical and Biological Engineering; University of Ottawa; Ottawa Ontario K1N 6N5 Canada
| | - Jules Thibault
- Department of Chemical and Biological Engineering; University of Ottawa; Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
30
|
Wu H, He AY, Kong XP, Jiang M, Chen XP, Zhu DW, Liu GP, Jin WQ. Acetone–butanol–ethanol production using pH control strategy and immobilized cells in an integrated fermentation–pervaporation process. Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
|
32
|
Xue C, Yang D, Du G, Chen L, Ren J, Bai F. Evaluation of hydrophobic micro-zeolite-mixed matrix membrane and integrated with acetone-butanol-ethanol fermentation for enhanced butanol production. BIOTECHNOLOGY FOR BIOFUELS 2015. [PMID: 26213571 PMCID: PMC4513751 DOI: 10.1186/s13068-015-0288-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Butanol is regarded as an advanced biofuel that can be derived from renewable biomass. However, the main challenge for microbial butanol production is low butanol titer, yield and productivity, leading to intensive energy consumption in product recovery. Various alternative separation technologies such as extraction, adsorption and gas stripping, etc., could be integrated with acetone-butanol-ethanol (ABE) fermentation with improving butanol productivity, but their butanol selectivities are not satisfactory. The membrane-based pervaporation technology is recently attracting increasing attention since it has potentially desirable butanol selectivity. RESULTS The performance of the zeolite-mixed polydimethylsiloxane (PDMS) membranes were evaluated to recover butanol from butanol/water binary solution as well as fermentation broth in the integrated ABE fermentation system. The separation factor and butanol titer in permeate of the zeolite-mixed PDMS membrane were up to 33.0 and 334.6 g/L at 80°C, respectively, which increased with increasing zeolite loading weight in the membrane as well as feed temperature. The enhanced butanol separation factor was attributed to the hydrophobic zeolites with large pore size providing selective routes preferable for butanol permeation. In fed-batch fermentation incorporated with pervaporation, 54.9 g/L ABE (34.5 g/L butanol, 17.0 g/L acetone and 3.4 g/L ethanol) were produced from 172.3 g/L glucose. The overall butanol productivity and yield increased by 16.0 and 11.1%, respectively, which was attributed to the alleviated butanol inhibition by pervaporation and reassimilation of acids for ABE production. The zeolite-mixed membrane produced a highly concentrated condensate containing 169.6 g/L butanol or 253.3 g/L ABE, which after phase separation easily gave the final product containing >600 g/L butanol. CONCLUSIONS Zeolite loading in the PDMS matrix was attributed to improving the pervaporative performance of the membrane, showing great potential to recover butanol with high purity. Therefore, this zeolite-mixed PDMS membrane had the potential to improve biobutanol production when integrating with ABE fermentation.
Collapse
Affiliation(s)
- Chuang Xue
- />School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian, 116024 China
| | - Decai Yang
- />School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian, 116024 China
| | - Guangqing Du
- />School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian, 116024 China
| | - Lijie Chen
- />School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian, 116024 China
| | - Jiangang Ren
- />School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian, 116024 China
| | - Fengwu Bai
- />School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian, 116024 China
- />School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
33
|
Van Hecke W, Kaur G, De Wever H. Advances in in-situ product recovery (ISPR) in whole cell biotechnology during the last decade. Biotechnol Adv 2014; 32:1245-1255. [DOI: 10.1016/j.biotechadv.2014.07.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 07/07/2014] [Accepted: 07/18/2014] [Indexed: 12/27/2022]
|
34
|
Xue C, Du GQ, Chen LJ, Ren JG, Bai FW. Evaluation of asymmetric polydimethylsiloxane-polyvinylidene fluoride composite membrane and incorporated with acetone-butanol-ethanol fermentation for butanol recovery. J Biotechnol 2014; 188:158-65. [DOI: 10.1016/j.jbiotec.2014.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 11/28/2022]
|
35
|
|
36
|
A carbon nanotube filled polydimethylsiloxane hybrid membrane for enhanced butanol recovery. Sci Rep 2014; 4:5925. [PMID: 25081019 PMCID: PMC4118185 DOI: 10.1038/srep05925] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/16/2014] [Indexed: 11/08/2022] Open
Abstract
The carbon nanotubes (CNTs) filled polydimethylsiloxane (PDMS) hybrid membrane was fabricated to evaluate its potential for butanol recovery from acetone-butanol-ethanol (ABE) fermentation broth. Compared with the homogeneous PDMS membrane, the CNTs filled into the PDMS membrane were beneficial for the improvement of butanol recovery in butanol flux and separation factor. The CNTs acting as sorption-active sites with super hydrophobicity could give an alternative route for mass transport through the inner tubes or along the smooth surface. The maximum total flux and butanol separation factor reached up to 244.3 g/m2·h and 32.9, respectively, when the PDMS membrane filled with 10 wt% CNTs was used to separate butanol from the butanol/water solution at 80°C. In addition, the butanol flux and separation factor increased dramatically as temperature increased from 30°C to 80°C in feed solution since the higher temperature produced more free volumes in polymer chains to facilitate butanol permeation. A similar increase was also observed when butanol titer in solution increased from 10 g/L to 25 g/L. Overall, the CNTs/PDMS hybrid membrane with higher butanol flux and selectivity should have good potential for pervaporation separation of butanol from ABE fermentation broth.
Collapse
|
37
|
Liu S, Liu G, Zhao X, Jin W. Hydrophobic-ZIF-71 filled PEBA mixed matrix membranes for recovery of biobutanol via pervaporation. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.06.025] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Schiel-Bengelsdorf B, Montoya J, Linder S, Dürre P. Butanol fermentation. ENVIRONMENTAL TECHNOLOGY 2013; 34:1691-1710. [PMID: 24350428 DOI: 10.1080/09593330.2013.827746] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review provides an overview on bacterial butanol production and recent developments concerning strain improvement, newly built butanol production plants, and the importance of alternative substrates, especially lignocellulosic hydrolysates. The butanol fermentation using solventogenic clostridial strains, particularly Clostridium acetobutylicum, is a very old industrial process (acetone-butanol-ethanol-ABE fermentation). The genome of this organism has been sequenced and analysed, leading to important improvements in rational strain construction. As the traditional ABE fermentation process is economically unfavourable, novel butanol production strains are being developed. In this review, some newly engineered solvent-producing Clostridium strains are described and strains of which sequences are available are compared with C. acetobutylicum. Furthermore, the past and present of commercial butanol fermentation are presented, including active plants and companies. Finally, the use of biomass as substrate for butanol production is discussed. Some advances concerning processing of biomass in a biorefinery are highlighted, which would allow lowering the price of the butanol fermentation process at industrial scale.
Collapse
Affiliation(s)
- Bettina Schiel-Bengelsdorf
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - José Montoya
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Sonja Linder
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| |
Collapse
|
39
|
Ong YT, Yee KF, Cheng YK, Tan SH. A Review on the Use and Stability of Supported Liquid Membranes in the Pervaporation Process. SEPARATION AND PURIFICATION REVIEWS 2013. [DOI: 10.1080/15422119.2012.716134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
40
|
de Vrije T, Budde M, van der Wal H, Claassen PAM, López-Contreras AM. "In situ" removal of isopropanol, butanol and ethanol from fermentation broth by gas stripping. BIORESOURCE TECHNOLOGY 2013; 137:153-159. [PMID: 23584415 DOI: 10.1016/j.biortech.2013.03.098] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 05/28/2023]
Abstract
In this study, the removal of IBE from aqueous solutions by gas stripping has been characterized. The effect of one or more components in the solution on the kinetics of the separation has been studied, both at 37°C and at 70°C. Gas stripping has been applied to batch, repeated batch and continuous cultures of Clostridium beijerinckii grown on a glucose/xylose mixed sugar substrate mimicking lignocellulosic hydrolysates, with the aim of finding optimal conditions for a stable IBE-producing culture with high productivity. An innovative repeated-batch process has been demonstrated in which the gas-stripping is performed at 70°C, resulting in a prolonged stable IBE culture.
Collapse
Affiliation(s)
- Truus de Vrije
- Food and Biobased Research Wageningen UR, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|