1
|
Brahma D, Dutta D. Evaluating β-cryptoxanthin antioxidant properties against ROS-induced macromolecular damages and determining its photo-stability and in-vitro SPF. World J Microbiol Biotechnol 2023; 39:310. [PMID: 37715879 DOI: 10.1007/s11274-023-03747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/29/2023] [Indexed: 09/18/2023]
Abstract
Natural antioxidants have become vital to minimize macromolecular damage caused by Reactive Oxygen Species (ROS). This study investigated the antioxidant property of β-cryptoxanthin (β-CRX) extracted from Kocuria marina DAGII and its protective effect against macromolecular damages by generating ROS via two models: UV radiation and the Fenton reaction. β-cryptoxanthin exhibited the highest scavenging activity towards hydrogen peroxide radicals with an IC50 value of 38.30 ± 1.13 μg/ml, favoring the hydrogen atom transfer mechanism. The total antioxidant capacity value of 872.0101 ± 1.84 μg BHT/mg β-CRX indicated the cumulative ROS scavenging ability of β-cryptoxanthin. β-cryptoxanthin could protect against ROS-induced lipid peroxidation, protein oxidation, and DNA damage. The highest lipid peroxidation and protein oxidation inhibition values of β-cryptoxanthin against ROS were 99.371 ± 0.51% and 78.19 ± 0.15%, respectively. β-cryptoxanthin also showed a protective effect in maintaining DNA intactness against ROS-mediated DNA damage. Allium cepa test showed the non-genotoxic nature of β-cryptoxanthin and its protective effect against ROS genotoxic effects. A photo-stability study of β-cryptoxanthin toward UVA and UVB radiation showed a rapid bleaching result of UVB obeying pseudo-zero order kinetics with an average R2 value of 0.9897 and a higher k value (-6.3 × 10-11 ± 0.2 M/s) than UVA (k value -3.1 × 10-11 ± 0.17 M/s), signifying that UVB is more potent toward photo-degradation. The good SPF value of 23.1737 ± 0.15 showed the UV protection capability of β-cryptoxanthin. Thus, the present study suggests that β-cryptoxanthin could be a valuable antioxidant to protect against ROS-induced various macromolecular damages and act as a good UV protectant.
Collapse
Affiliation(s)
- Daiji Brahma
- Department of Biotechnology, National Institute of Technology, Durgapur, WB, 713209, India
| | - Debjani Dutta
- Department of Biotechnology, National Institute of Technology, Durgapur, WB, 713209, India.
| |
Collapse
|
2
|
Characterization of Dietzia maris AURCCBT01 from oil-contaminated soil for biodegradation of crude oil. 3 Biotech 2021; 11:291. [PMID: 34109094 DOI: 10.1007/s13205-021-02807-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/22/2021] [Indexed: 10/21/2022] Open
Abstract
A bacterial strain was isolated from an oil-contaminated site and on its' further characterization, exhibited the potential of synthesising metabolites and the ability to degrade crude oil. Its' morphological, biochemical and 16S rRNA analysis suggested that the bacterium belongs to Dietzia maris AURCCBT01. This strain rapidly grew in the medium supplemented with n-alkanes C14, C18, C20, C28 and C32 utilizing them as a sole carbon source and produced a maximum canthaxanthin pigment of 971.37 µg/L in the n-C14 supplemented medium and produced the lowest pigment yield of 389.48 µg/L in the n-C-32 supplemented medium. Moreover, the strain effectively degraded 91.87% of crude oil in 7 days. The emulsification activity of the strain was 25% with the highest cell surface hydrophobicity (70.26%) and it showed a decrease in surface tension, indicating that the biosurfactant production lowers the surface tension. This is the first report on the characterization of the strain, Dietzia maris AURCCBT01 and its' novelty of alkane degradation and simultaneous production of canthaxanthin pigment. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02807-7.
Collapse
|
3
|
Ram S, Tirkey SR, Kumar MA, Mishra S. Ameliorating process parameters for zeaxanthin yield in Arthrobacter gandavensis MTCC 25325. AMB Express 2020; 10:69. [PMID: 32297021 PMCID: PMC7158978 DOI: 10.1186/s13568-020-01008-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
The present study aims to escalate the production of prophylactic agent zeaxanthin using a screened potential bacterial isolate. For this purpose, a freshwater bacterium capable of producing zeaxanthin was isolated from Bor Talav, Bhavnagar. The 16S rRNA sequence confirmed the isolate as Arthrobacter gandavensis. The bacterium was also submitted to Microbial Type Culture Collection, CSIR-Institute of Microbial Technology, Chandigarh, India, with the accession number MTCC 25325. The chemo-metric tools were employed to optimise the influencing factors such as pH, temperature, inoculum size, agitation speed, carbon source and harvest time on zeaxanthin yield. Thereafter, six parameters were narrowed down to three factors and were optimised using the central composite design (CCD) matrix. Maximum zeaxanthin (1.51 mg/g) was derived when A. gandavensis MTCC 25325 was grown under pH 6.0, 1.5% (w/v) glucose and 10% (v/v) inoculum size. A high regression coefficient (R2= 0.92) of the developed model indicated the accurateness of the tested parameters. To the best of our knowledge, this is the first report on tailoring the process parameters using chemo-metric optimisation for escalating the zeaxanthin production by A. gandavensis MTCC 25325.
Collapse
|
4
|
Wang C, Xu H, Zhang Y, Wu S, Chen D, Qian G, Hu B, Fan J. Optimization of culture conditions for promoting heat-stable antifungal factor production level in Lysobacter enzymogenes. FEMS Microbiol Lett 2019; 366:5281430. [DOI: 10.1093/femsle/fnz007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/07/2019] [Indexed: 11/12/2022] Open
Abstract
ABSTRACT
Heat-stable antifungal factor (HSAF), which was first isolated from Lysobacter enzymogenes, exhibits inhibitory activities against a wide range of pathogens; however, a low level of HSAF was obtained from L. enzymogenes cultured in 0.1 × tryptic soy broth (TSB), an amount that does not satisfy HSAF application in disease control. In this study, the optimization of media components and environmental conditions were examined for improving the production of HSAF from L. enzymogenes OH11. The one factor at a time method was used to screen optimal nitrogen and carbon sources and inorganic salt. Then the orthogonal matrix method was used to determine the optimal concentration of the media components and environmental factors. The results showed that the maximum level of HSAF (23361 mAU·s) was achieved when OH11 cultured in the media of 0.7% (w/v) soybean powder, 0.5% (w/v) glucose and 0.08% CaCl2 at 200 rpm at 30°C for 60 h, which is much higher than that cultured in 0.1 × TSB. This opens up the possibility of HSAF or L. enzymogenes utilization for biological control of plant disease.
Collapse
Affiliation(s)
- Chunting Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Heng Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Suzhen Wu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dedong Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guoliang Qian
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Baishi Hu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaqin Fan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Mitra R, Dutta D. Growth profiling, kinetics and substrate utilization of low-cost dairy waste for production of β-cryptoxanthin by Kocuria marina DAGII. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172318. [PMID: 30109058 PMCID: PMC6083662 DOI: 10.1098/rsos.172318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
The dairy industry produces enormous amount of cheese whey containing the major milk nutrients, but this remains unutilized all over the globe. The present study investigates the production of β-cryptoxanthin (β-CRX) by Kocuria marina DAGII using cheese whey as substrate. Response surface methodology (RSM) and an artificial neural network (ANN) approach were implemented to obtain the maximum β-CRX yield. Significant factors, i.e. yeast extract, peptone, cheese whey and initial pH, were the input variables in both the optimizing studies, and β-CRX yield and biomass were taken as output variables. The ANN topology of 4-9-2 was found to be optimum when trained with a feed-forward back-propagation algorithm. Experimental values of β-CRX yield (17.14 mg l-1) and biomass (5.35 g l-1) were compared and ANN predicted values (16.99 mg l-1 and 5.33 g l-1, respectively) were found to be more accurate compared with RSM predicted values (16.95 mg l-1 and 5.23 g l-1, respectively). Detailed kinetic analysis of cellular growth, substrate consumption and product formation revealed that growth inhibition took place at substrate concentrations higher than 12% (v/v) of cheese whey. The Han and Levenspiel model was the best fitted substrate inhibition model that described the cell growth in cheese whey with an R2 and MSE of 0.9982% and 0.00477%, respectively. The potential importance of this study lies in the development, optimization and modelling of a suitable cheese whey supplemented medium for increased β-CRX production.
Collapse
Affiliation(s)
| | - Debjani Dutta
- Department of Biotechnology, National Institute of Technology Durgapur, M.G. Avenue, Durgapur 713209, West Bengal, India
| |
Collapse
|
6
|
Bera S, Dutta D. Encapsulation and release of a bacterial carotenoid from hydrogel matrix: Characterization, kinetics and antioxidant study. Eng Life Sci 2017; 17:739-748. [DOI: 10.1002/elsc.201600238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 01/20/2023] Open
Affiliation(s)
- Surojit Bera
- Department of Biotechnology; National Institute of Technology; Durgapur India
| | - Debjani Dutta
- Department of Biotechnology; National Institute of Technology; Durgapur India
| |
Collapse
|
7
|
Bera S, Sharma VP, Dutta S, Dutta D. Biological decolorization and detoxification of malachite green from aqueous solution by Dietzia maris NIT-D. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.07.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Mitra R, Chaudhuri S, Dutta D. Modelling the growth kinetics of Kocuria marina DAGII as a function of single and binary substrate during batch production of β-Cryptoxanthin. Bioprocess Biosyst Eng 2016; 40:99-113. [PMID: 27628580 DOI: 10.1007/s00449-016-1678-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/06/2016] [Indexed: 12/30/2022]
Abstract
In the present investigation, growth kinetics of Kocuria marina DAGII during batch production of β-Cryptoxanthin (β-CRX) was studied by considering the effect of glucose and maltose as a single and binary substrate. The importance of mixed substrate over single substrate has been emphasised in the present study. Different mathematical models namely, the Logistic model for cell growth, the Logistic mass balance equation for substrate consumption and the Luedeking-Piret model for β-CRX production were successfully implemented. Model-based analyses for the single substrate experiments suggested that the concentrations of glucose and maltose higher than 7.5 and 10.0 g/L, respectively, inhibited the growth and β-CRX production by K. marina DAGII. The Han and Levenspiel model and the Luong product inhibition model accurately described the cell growth in glucose and maltose substrate systems with a R 2 value of 0.9989 and 0.9998, respectively. The effect of glucose and maltose as binary substrate was further investigated. The binary substrate kinetics was well described using the sum-kinetics with interaction parameters model. The results of production kinetics revealed that the presence of binary substrate in the cultivation medium increased the biomass and β-CRX yield significantly. This study is a first time detailed investigation on kinetic behaviours of K. marina DAGII during β-CRX production. The parameters obtained in the study might be helpful for developing strategies for commercial production of β-CRX by K. marina DAGII.
Collapse
Affiliation(s)
- Ruchira Mitra
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Surabhi Chaudhuri
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Debjani Dutta
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
9
|
Saha N, Gupta SD. Biogenic Synthesis and Structural Characterization of Polyshaped Gold Nanoparticles Using Leaf Extract of Swertia chirata Along with Process Optimization by Response Surface Methodology (RSM). J CLUST SCI 2016. [DOI: 10.1007/s10876-016-1009-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Goswami G, Chaudhuri S, Dutta D. Studies on the stability of a carotenoid produced by a novel isolate using low cost agro-industrial residue and its application in different model systems. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Saha N, Samanta AK, Chaudhuri S, Dutta D. Characterization and antioxidant potential of a carotenoid from a newly isolated yeast. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0017-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
12
|
Lu S, Nie Y, Tang YQ, Xiong G, Wu XL. A critical combination of operating parameters can significantly increase the electrotransformation efficiency of a gram-positive Dietzia strain. J Microbiol Methods 2014; 103:144-51. [DOI: 10.1016/j.mimet.2014.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/22/2014] [Accepted: 05/22/2014] [Indexed: 12/21/2022]
|
13
|
Enhancing exopolysaccharide antioxidant formation and yield from Phellinus species through medium optimization studies. Carbohydr Polym 2014; 107:214-20. [DOI: 10.1016/j.carbpol.2014.02.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/21/2014] [Accepted: 02/22/2014] [Indexed: 11/22/2022]
|
14
|
Mafakheri S, Bárcena-Uribarri I, Abdali N, Jones AL, Sutcliffe IC, Benz R. Discovery of a cell wall porin in the mycolic-acid-containing actinomycete Dietzia maris DSM 43672. FEBS J 2014; 281:2030-41. [PMID: 24707935 DOI: 10.1111/febs.12758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/14/2014] [Accepted: 02/17/2014] [Indexed: 11/30/2022]
Abstract
The cell wall of the Gram-positive mycolic-acid-containing actinomycete Dietzia maris DSM 43672 was found to contain a pore-forming protein, as observed from reconstitution experiments with artificial lipid bilayer experiments in the presence of cell wall extracts. The cell wall porin was purified to homogeneity using different biochemical methods and had an apparent molecular mass of about 120 kDa on tricine-containing SDS/PAGE. The 120 kDa protein dissociated into subunits with a molecular mass of about 35 kDa when it was heated to 100 °C in 8 m urea. The 120 kDa protein, here named PorADm , formed ion-permeable channels in lipid bilayer membranes with a high single-channel conductance of about 5.8 nS in 1 m KCl. Asymmetric addition of PorADm to lipid bilayer membranes resulted in an asymmetric voltage dependence. Zero-current membrane potential measurements with different salt solutions suggested that the porin of D. maris is cation-selective because of negative charges localized at the channel mouth. Analysis of the single-channel conductance using non-electrolytes with known hydrodynamic radii indicated that the diameter of the cell wall channel is about 2 nm. The channel characteristics of the cell wall porin of D. maris are compared with those of other members of the mycolata. They share some common features because they are composed of small molecular mass subunits and form large and water-filled channels. The porin was subjected to protein analysis by mass spectrometry but its sequence had no significant homology to any known porin sequences.
Collapse
Affiliation(s)
- Samaneh Mafakheri
- School of Engineering and Science, Jacobs University Bremen, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Zhou X, Xie JR, Tao L, Xin ZJ, Zhao FW, Lu XH, Zhao MR, Wang L, Liang JP. The effect of microdosimetric 12C6+ heavy ion irradiation and Mg2+ on canthaxanthin production in a novel strain of Dietzia natronolimnaea. BMC Microbiol 2013; 13:213. [PMID: 24074304 PMCID: PMC3849488 DOI: 10.1186/1471-2180-13-213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 09/25/2013] [Indexed: 12/01/2022] Open
Abstract
Background Dietzia natronolimnaea is one of the most important bacterial bioresources for high efficiency canthaxanthin production. It produces the robust and stable pigment canthaxanthin, which is of special interest for the development of integrated biorefineries. Mutagenesis employing 12C6+ irradiation is a novel technique commonly used to improve microorganism productivity. This study presents a promising route to obtaining the highest feasible levels of biomass dry weight (BDW), and total canthaxanthin by using a microdosimetric model of 12C6+ irradiation mutation in combination with the optimization of nutrient medium components. Results This work characterized the rate of both lethal and non-lethal dose mutations for 12C6+ irradiation and the microdosimetric kinetic model using the model organism, D. natronolimnaea svgcc1.2736. Irradiation with 12C6+ ions resulted in enhanced production of canthaxanthin, and is therefore an effective method for strain improvement of D. natronolimnaea svgcc1.2736. Based on these results an optimal dose of 0.5–4.5 Gy, Linear energy transfer (LET) of 80 keV μm-1and energy of 60 MeV u-1 for 12C6+ irradiation are ideal for optimum and specific production of canthaxanthin in the bacterium. Second-order empirical calculations displaying high R-squared (0.996) values between the responses and independent variables were derived from validation experiments using response surface methodology. The highest canthaxanthin yield (8.14 mg) was obtained with an optimized growth medium containing 21.5 g L-1 D-glucose, 23.5 g L-1 mannose and 25 ppm Mg2+ in 1 L with an irradiation dose of 4.5 Gy. Conclusions The microdosimetric 12C6+ irradiation model was an effective mutagenic technique for the strain improvement of D. natronolimnaea svgcc1.2736 specifically for enhanced canthaxanthin production. At the very least, random mutagenesis methods using 12C6+ions can be used as a first step in a combined approach with long-term continuous fermentation processes. Central composite design-response surface methodologies (CCD-RSM) were carried out to optimize the conditions for canthaxanthin yield. It was discovered D-glucose, Mg2+ and mannose have significant influence on canthaxanthin biosynthesis and growth of the mutant strain.
Collapse
Affiliation(s)
- Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, Gansu 730000, P,R, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gharibzahedi SMT, Razavi SH, Mousavi M. Kinetic analysis and mathematical modeling of cell growth and canthaxanthin biosynthesis by Dietzia natronolimnaea HS-1 on waste molasses hydrolysate. RSC Adv 2013. [DOI: 10.1039/c3ra44663h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|