1
|
Yook S, Alper HS. Recent advances in genetic engineering and chemical production in yeast species. FEMS Yeast Res 2025; 25:foaf009. [PMID: 40082732 PMCID: PMC11963765 DOI: 10.1093/femsyr/foaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025] Open
Abstract
Yeasts have emerged as well-suited microbial cell factory for the sustainable production of biofuels, organic acids, terpenoids, and specialty chemicals. This ability is bolstered by advances in genetic engineering tools, including CRISPR-Cas systems and modular cloning in both conventional (Saccharomyces cerevisiae) and non-conventional (Yarrowia lipolytica, Rhodotorula toruloides, Candida krusei) yeasts. Additionally, genome-scale metabolic models and machine learning approaches have accelerated efforts to create a broad range of compounds that help reduce dependency on fossil fuels, mitigate climate change, and offer sustainable alternatives to petrochemical-derived counterparts. In this review, we highlight the cutting-edge genetic tools driving yeast metabolic engineering and then explore the diverse applications of yeast-based platforms for producing value-added products. Collectively, this review underscores the pivotal role of yeast biotechnology in efforts to build a sustainable bioeconomy.
Collapse
Affiliation(s)
- Sangdo Yook
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, United States
| |
Collapse
|
2
|
Nawab S, Zhang Y, Ullah MW, Lodhi AF, Shah SB, Rahman MU, Yong YC. Microbial host engineering for sustainable isobutanol production from renewable resources. Appl Microbiol Biotechnol 2024; 108:33. [PMID: 38175234 DOI: 10.1007/s00253-023-12821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Due to the limited resources and environmental problems associated with fossil fuels, there is a growing interest in utilizing renewable resources for the production of biofuels through microbial fermentation. Isobutanol is a promising biofuel that could potentially replace gasoline. However, its production efficiency is currently limited by the use of naturally isolated microorganisms. These naturally isolated microorganisms often encounter problems such as a limited range of substrates, low tolerance to solvents or inhibitors, feedback inhibition, and an imbalanced redox state. This makes it difficult to improve their production efficiency through traditional process optimization methods. Fortunately, recent advancements in genetic engineering technologies have made it possible to enhance microbial hosts for the increased production of isobutanol from renewable resources. This review provides a summary of the strategies and synthetic biology approaches that have been employed in the past few years to improve naturally isolated or non-natural microbial hosts for the enhanced production of isobutanol by utilizing different renewable resources. Furthermore, it also discusses the challenges that are faced by engineered microbial hosts and presents future perspectives to enhancing isobutanol production. KEY POINTS: • Promising potential of isobutanol to replace gasoline • Engineering of native and non-native microbial host for isobutanol production • Challenges and opportunities for enhanced isobutanol production.
Collapse
Affiliation(s)
- Said Nawab
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - YaFei Zhang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Adil Farooq Lodhi
- Department of Microbiology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Syed Bilal Shah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
3
|
Martínez VS, Rodriguez K, McCubbin T, Tong J, Mahler S, Shave E, Baker K, Munro TP, Marcellin E. Amino acid degradation pathway inhibitory by-products trigger apoptosis in CHO cells. Biotechnol J 2024; 19:e2300338. [PMID: 38375561 DOI: 10.1002/biot.202300338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 02/21/2024]
Abstract
Chinese hamster ovary (CHO) cells are widely used to produce complex biopharmaceuticals. Improving their productivity is necessary to fulfill the growing demand for such products. One way to enhance productivity is by cultivating cells at high densities, but inhibitory by-products, such as metabolite derivatives from amino acid degradation, can hinder achieving high cell densities. This research examines the impact of these inhibitory by-products on high-density cultures. We cultured X1 and X2 CHO cell lines in a small-scale semi-perfusion system and introduced a mix of inhibitory by-products on day 10. The X1 and X2 cell lines were chosen for their varied responses to the by-products; X2 was susceptible, while X1 survived. Proteomics revealed that the X2 cell line presented changes in the proteins linked to apoptosis regulation, cell building block synthesis, cell growth, DNA repair, and energy metabolism. We later used the AB cell line, an apoptosis-resistant cell line, to validate the results. AB behaved similar to X1 under stress. We confirmed the activation of apoptosis in X2 using a caspase assay. This research provides insights into the mechanisms of cell death triggered by inhibitory by-products and can guide the optimization of CHO cell culture for biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Verónica S Martínez
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Karen Rodriguez
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Timothy McCubbin
- Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, St Lucia, Queensland, Australia
| | - Junjie Tong
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Stephen Mahler
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Evan Shave
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- Patheon, by Thermo Fisher Scientific, Woolloongabba, Queensland, Australia
| | - Kym Baker
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- Patheon, by Thermo Fisher Scientific, Woolloongabba, Queensland, Australia
| | - Trent P Munro
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- National Biologics Facility, The University of Queensland, St Lucia, Queensland, Australia
| | - Esteban Marcellin
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
4
|
Yatabe F, Seike T, Okahashi N, Ishii J, Matsuda F. Improvement of ethanol and 2,3-butanediol production in Saccharomyces cerevisiae by ATP wasting. Microb Cell Fact 2023; 22:204. [PMID: 37807050 PMCID: PMC10560415 DOI: 10.1186/s12934-023-02221-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND "ATP wasting" has been observed in 13C metabolic flux analyses of Saccharomyces cerevisiae, a yeast strain commonly used to produce ethanol. Some strains of S. cerevisiae, such as the sake strain Kyokai 7, consume approximately two-fold as much ATP as laboratory strains. Increased ATP consumption may be linked to the production of ethanol, which helps regenerate ATP. RESULTS This study was conducted to enhance ethanol and 2,3-butanediol (2,3-BDO) production in the S. cerevisiae strains, ethanol-producing strain BY318 and 2,3-BDO-producing strain YHI030, by expressing the fructose-1,6-bisphosphatase (FBPase) and ATP synthase (ATPase) genes to induce ATP dissipation. The introduction of a futile cycle for ATP consumption in the pathway was achieved by expressing various FBPase and ATPase genes from Escherichia coli and S. cerevisiae in the yeast strains. The production of ethanol and 2,3-BDO was evaluated using high-performance liquid chromatography and gas chromatography, and fermentation tests were performed on synthetic media under aerobic conditions in batch culture. The results showed that in the BY318-opt_ecoFBPase (expressing opt_ecoFBPase) and BY318-ATPase (expressing ATPase) strains, specific glucose consumption was increased by 30% and 42%, respectively, and the ethanol production rate was increased by 24% and 45%, respectively. In contrast, the YHI030-opt_ecoFBPase (expressing opt_ecoFBPase) and YHI030-ATPase (expressing ATPase) strains showed increased 2,3-BDO yields of 26% and 18%, respectively, and the specific production rate of 2,3-BDO was increased by 36%. Metabolomic analysis confirmed the introduction of the futile cycle. CONCLUSION ATP wasting may be an effective strategy for improving the fermentative biosynthetic capacity of S. cerevisiae, and increased ATP consumption may be a useful tool in some alcohol-producing strains.
Collapse
Affiliation(s)
- Futa Yatabe
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taisuke Seike
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nobuyuki Okahashi
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University Shimadzu, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun Ishii
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Fumio Matsuda
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University Shimadzu, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
5
|
Xie H, Kjellström J, Lindblad P. Sustainable production of photosynthetic isobutanol and 3-methyl-1-butanol in the cyanobacterium Synechocystis sp. PCC 6803. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:134. [PMID: 37684613 PMCID: PMC10492371 DOI: 10.1186/s13068-023-02385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Cyanobacteria are emerging as green cell factories for sustainable biofuel and chemical production, due to their photosynthetic ability to use solar energy, carbon dioxide and water in a direct process. The model cyanobacterial strain Synechocystis sp. PCC 6803 has been engineered for the isobutanol and 3-methyl-1-butanol production by introducing a synthetic 2-keto acid pathway. However, the achieved productions still remained low. In the present study, diverse metabolic engineering strategies were implemented in Synechocystis sp. PCC 6803 for further enhanced photosynthetic isobutanol and 3-methyl-1-butanol production. RESULTS Long-term cultivation was performed on two selected strains resulting in maximum cumulative isobutanol and 3-methyl-1-butanol titers of 1247 mg L-1 and 389 mg L-1, on day 58 and day 48, respectively. Novel Synechocystis strain integrated with a native 2-keto acid pathway was generated and showed a production of 98 mg isobutanol L-1 in short-term screening experiments. Enhanced isobutanol and 3-methyl-1-butanol production was observed when increasing the kivdS286T copy number from three to four. Isobutanol and 3-methyl-1-butanol production was effectively improved when overexpressing selected genes of the central carbon metabolism. Identified genes are potential metabolic engineering targets to further enhance productivity of pyruvate-derived bioproducts in cyanobacteria. CONCLUSIONS Enhanced isobutanol and 3-methyl-1-butanol production was successfully achieved in Synechocystis sp. PCC 6803 strains through diverse metabolic engineering strategies. The maximum cumulative isobutanol and 3-methyl-1-butanol titers, 1247 mg L-1 and 389 mg L-1, respectively, represent the current highest value reported. The significantly enhanced isobutanol and 3-methyl-1-butanol production in this study further pave the way for an industrial application of photosynthetic cyanobacteria-based biofuel and chemical synthesis from CO2.
Collapse
Affiliation(s)
- Hao Xie
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Jarl Kjellström
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
6
|
Carranza-Saavedra D, Torres-Bacete J, Blázquez B, Sánchez Henao CP, Zapata Montoya JE, Nogales J. System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock. Front Bioeng Biotechnol 2023; 11:1176445. [PMID: 37152640 PMCID: PMC10158823 DOI: 10.3389/fbioe.2023.1176445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Replacing traditional substrates in industrial bioprocesses to advance the sustainable production of chemicals is an urgent need in the context of the circular economy. However, since the limited degradability of non-conventional carbon sources often returns lower yields, effective exploitation of such substrates requires a multi-layer optimization which includes not only the provision of a suitable feedstock but the use of highly robust and metabolically versatile microbial biocatalysts. We tackled this challenge by means of systems metabolic engineering and validated Escherichia coli W as a promising cell factory for the production of the key building block chemical 2-ketoisovalerate (2-KIV) using whey as carbon source, a widely available and low-cost agro-industrial waste. First, we assessed the growth performance of Escherichia coli W on mono and disaccharides and demonstrated that using whey as carbon source enhances it significantly. Second, we searched the available literature and used metabolic modeling approaches to scrutinize the metabolic space of E. coli and explore its potential for overproduction of 2-KIV identifying as basic strategies the block of pyruvate depletion and the modulation of NAD/NADP ratio. We then used our model predictions to construct a suitable microbial chassis capable of overproducing 2-KIV with minimal genetic perturbations, i.e., deleting the pyruvate dehydrogenase and malate dehydrogenase. Finally, we used modular cloning to construct a synthetic 2-KIV pathway that was not sensitive to negative feedback, which effectively resulted in a rerouting of pyruvate towards 2-KIV. The resulting strain shows titers of up to 3.22 ± 0.07 g/L of 2-KIV and 1.40 ± 0.04 g/L of L-valine in 24 h using whey in batch cultures. Additionally, we obtained yields of up to 0.81 g 2-KIV/g substrate. The optimal microbial chassis we present here has minimal genetic modifications and is free of nutritional autotrophies to deliver high 2-KIV production rates using whey as a non-conventional substrate.
Collapse
Affiliation(s)
- Darwin Carranza-Saavedra
- Faculty of Pharmaceutical and Food Sciences, Nutrition and Food Technology Group, University of Antioquia, Medellín, Colombia
- Department of Systems Biology, National Centre for Biotechnology (CSIC), Systems Biotechnology Group, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
| | - Jesús Torres-Bacete
- Department of Systems Biology, National Centre for Biotechnology (CSIC), Systems Biotechnology Group, Madrid, Spain
| | - Blas Blázquez
- Department of Systems Biology, National Centre for Biotechnology (CSIC), Systems Biotechnology Group, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
| | - Claudia Patricia Sánchez Henao
- Faculty of Pharmaceutical and Food Sciences, Nutrition and Food Technology Group, University of Antioquia, Medellín, Colombia
| | - José Edgar Zapata Montoya
- Faculty of Pharmaceutical and Food Sciences, Nutrition and Food Technology Group, University of Antioquia, Medellín, Colombia
| | - Juan Nogales
- Department of Systems Biology, National Centre for Biotechnology (CSIC), Systems Biotechnology Group, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
| |
Collapse
|
7
|
Xie H, Lindblad P. Expressing 2-keto acid pathway enzymes significantly increases photosynthetic isobutanol production. Microb Cell Fact 2022; 21:17. [PMID: 35105340 PMCID: PMC8805274 DOI: 10.1186/s12934-022-01738-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/03/2022] [Indexed: 11/20/2022] Open
Abstract
Background Cyanobacteria, photosynthetic microorganisms, are promising green cell factories for chemical production, including biofuels. Isobutanol, a four-carbon alcohol, is considered as a superior candidate as a biofuel for its high energy density with suitable chemical and physical characteristics. The unicellular cyanobacterium Synechocystis PCC 6803 has been successfully engineered for photosynthetic isobutanol production from CO2 and solar energy in a direct process. Results Heterologous expression of α-ketoisovalerate decarboxylase (KivdS286T) is sufficient for isobutanol synthesis via the 2-keto acid pathway in Synechocystis. With additional expression of acetolactate synthase (AlsS), acetohydroxy-acid isomeroreductase (IlvC), dihydroxy-acid dehydratase (IlvD), and alcohol dehydrogenase (Slr1192OP), the Synechocystis strain HX42, with a functional 2-keto acid pathway, showed enhanced isobutanol production reaching 98 mg L−1 in short-term screening experiments. Through modulating kivdS286T copy numbers as well as the composition of the 5′-region, a final Synechocystis strain HX47 with three copies of kivdS286T showed a significantly improved isobutanol production of 144 mg L−1, an 177% increase compared to the previously reported best producing strain under identical conditions. Conclusions This work demonstrates the feasibility to express heterologous genes with a combination of self-replicating plasmid-based system and genome-based system in Synechocystis cells. Obtained isobutanol-producing Synechocystis strains form the base for further investigation of continuous, long-term-photosynthetic isobutanol production from solar energy and carbon dioxide. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01738-z.
Collapse
Affiliation(s)
- Hao Xie
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden.
| |
Collapse
|
8
|
Lakshmi NM, Binod P, Sindhu R, Awasthi MK, Pandey A. Microbial engineering for the production of isobutanol: current status and future directions. Bioengineered 2021; 12:12308-12321. [PMID: 34927549 PMCID: PMC8809953 DOI: 10.1080/21655979.2021.1978189] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fermentation-derived alcohols have gained much attention as an alternate fuel due to its minimal effects on atmosphere. Besides its application as biofuel it is also used as raw material for coating resins, deicing fluid, additives in polishes, etc. Among the liquid alcohol type of fuels, isobutanol has more advantage than ethanol. Isobutanol production is reported in native yeast strains, but the production titer is very low which is about 200 mg/L. In order to improve the production, several genetic and metabolic engineering approaches have been carried out. Genetically engineered organism has been reported to produce maximum of 50 g/L of isobutanol which is far more than the native strain without any modification. In bacteria mostly last two steps in Ehrlich pathway, catalyzed by enzymes ketoisovalerate decarboxylase and alcohol dehydrogenase, are heterologously expressed to improve the production. Native Saccharomyces cerevisiae can produce isobutanol in negligible amount since it possesses the pathway for its production through valine degradation pathway. Further modifications in the existing pathways made the improvement in isobutanol production in many microbial strains. Fermentation using cost-effective lignocellulosic biomass and an efficient downstream process can yield isobutanol in environment friendly and sustainable manner. The present review describes the various genetic and metabolic engineering practices adopted to improve the isobutanol production in microbial strains and its downstream processing.
Collapse
Affiliation(s)
- Nair M Lakshmi
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (Csir-niist), Thiruvananthapuram Kerala, India.,Academy of Scientific and Innovative Research (Acsir), Ghaziabad, Uttar Pradesh India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (Csir-niist), Thiruvananthapuram Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (Csir-niist), Thiruvananthapuram Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, North West a & F University, Yangling, Shaanxi China
| | - Ashok Pandey
- Centre for Innovation and Translational Research CSIR-Indian Institute of Toxicology Research (Csir-iitr), Lucknow India.,Centre for Energy and Environmental Sustainability, Lucknow Uttar Pradesh, India
| |
Collapse
|
9
|
Co-Production of Isobutanol and Ethanol from Prairie Grain Starch Using Engineered Saccharomyces cerevisiae. FERMENTATION 2021. [DOI: 10.3390/fermentation7030150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Isobutanol is an important and valuable platform chemical and an appealing biofuel that is compatible with contemporary combustion engines and existing fuel distribution infrastructure. The present study aimed to compare the potential of triticale, wheat and barley starch as feedstock for isobutanol production using an engineered strain of Saccharomyces cerevisiae. A simultaneous saccharification and fermentation (SSF) approach showed that all three starches were viable feedstock for co-production of isobutanol and ethanol and could produce titres similar to that produced using purified sugar as feedstock. A fed-batch process using triticale starch yielded 0.006 g isobutanol and 0.28 g ethanol/g starch. Additionally, it is demonstrated that Fusarium graminearum infected grain starch contaminated with mycotoxin can be used as an effective feedstock for isobutanol and ethanol co-production. These findings demonstrate the potential for triticale as a purpose grown energy crop and show that mycotoxin-contaminated grain starch can be used as feedstock for isobutanol biosynthesis, thus adding value to a grain that would otherwise be of limited use.
Collapse
|
10
|
Lee JW, Lee YG, Jin YS, Rao CV. Metabolic engineering of non-pathogenic microorganisms for 2,3-butanediol production. Appl Microbiol Biotechnol 2021; 105:5751-5767. [PMID: 34287658 DOI: 10.1007/s00253-021-11436-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
2,3-Butanediol (2,3-BDO) is a promising commodity chemical with various industrial applications. While petroleum-based chemical processes currently dominate the industrial production of 2,3-BDO, fermentation-based production of 2,3-BDO provides an attractive alternative to chemical-based processes with regards to economic and environmental sustainability. The achievement of high 2,3-BDO titer, yield, and productivity in microbial fermentation is a prerequisite for the production of 2,3-BDO at large scales. Also, enantiopure production of 2,3-BDO production is desirable because 2,3-BDO stereoisomers have unique physicochemical properties. Pursuant to these goals, many metabolic engineering strategies to improve 2,3-BDO production from inexpensive sugars by Klebsiella oxytoca, Bacillus species, and Saccharomyces cerevisiae have been developed. This review summarizes the recent advances in metabolic engineering of non-pathogenic microorganisms to enable efficient and enantiopure production of 2,3-BDO. KEY POINTS: • K. oxytoca, Bacillus species, and S. cerevisiae have been engineered to achieve efficient 2,3-BDO production. • Metabolic engineering of non-pathogenic microorganisms enabled enantiopure production of 2,3-BDO. • Cost-effective 2,3-BDO production can be feasible by using renewable biomass.
Collapse
Affiliation(s)
- Jae Won Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ye-Gi Lee
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Christopher V Rao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
11
|
Yoo JI, Sohn YJ, Son J, Jo SY, Pyo J, Park SK, Choi JI, Joo JC, Kim HT, Park SJ. Recent advances in the microbial production of C4 alcohols by metabolically engineered microorganisms. Biotechnol J 2021; 17:e2000451. [PMID: 33984183 DOI: 10.1002/biot.202000451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The heavy global dependence on petroleum-based industries has led to serious environmental problems, including climate change and global warming. As a result, there have been calls for a paradigm shift towards the use of biorefineries, which employ natural and engineered microorganisms that can utilize various carbon sources from renewable resources as host strains for the carbon-neutral production of target products. PURPOSE AND SCOPE C4 alcohols are versatile chemicals that can be used directly as biofuels and bulk chemicals and in the production of value-added materials such as plastics, cosmetics, and pharmaceuticals. C4 alcohols can be effectively produced by microorganisms using DCEO biotechnology (tools to design, construct, evaluate, and optimize) and metabolic engineering strategies. SUMMARY OF NEW SYNTHESIS AND CONCLUSIONS In this review, we summarize the production strategies and various synthetic tools available for the production of C4 alcohols and discuss the potential development of microbial cell factories, including the optimization of fermentation processes, that offer cost competitiveness and potential industrial commercialization.
Collapse
Affiliation(s)
- Jee In Yoo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jiwon Pyo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Su Kyeong Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Engineering, Interdisciplinary Program of Bioenergy and Biomaterials, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyenggi-do, Republic of Korea
| | - Hee Taek Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Su Y, Shao W, Zhang A, Zhang W. Improving isobutanol tolerance and titers through EMS mutagenesis in Saccharomyces cerevisiae. FEMS Yeast Res 2021; 21:6147039. [PMID: 33620449 DOI: 10.1093/femsyr/foab012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/20/2021] [Indexed: 11/14/2022] Open
Abstract
Improving yeast tolerance toward isobutanol is a critical issue enabling high-titer industrial production. Here, we used EMS mutagenesis to screen Saccharomyces cerevisiae with greater tolerance toward isobutanol. By this method, we obtained EMS39 with high-viability in medium containing 16 g/L isobutanol. Then, we metabolically engineered isobutanol synthesis in EMS39. About 2μ plasmids carrying PGK1p-ILV2, PGK1p-ILV3 and TDH3p-cox4-ARO10 were used to over-express ILV2, ILV3 and ARO10 genes, respectively, in EMS39 and wild type W303-1A. And the resulting strains were designated as EMS39-20 and W303-1A-20. Our results showed that EMS39-20 increased isobutanol titers by 49.9% compared to W303-1A-20. Whole genome resequencing analysis of EMS39 showed that more than 59 genes had mutations in their open reading frames or regulatory regions. These 59 genes are enriched mainly into cell growth, basal transcription factors, cell integrity signaling, translation initiation and elongation, ribosome assembly and function, oxidative stress response, etc. Additionally, transcriptomic analysis of EMS39-20 was carried out. Finally, reverse engineering tests showed that overexpression of CWP2 and SRP4039 could improve tolerance of S.cerevisiae toward isobutanol. In conclusion, EMS mutagenesis could be used to increase yeast tolerance toward isobutanol. Our study supplied new insights into mechanisms of tolerance toward isobutanol and enhancing isobutanol production in S. cerevisiae.
Collapse
Affiliation(s)
- Yide Su
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, Tianjin 300130, PR China
| | - Wenju Shao
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, Tianjin 300130, PR China
| | - Aili Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, Tianjin 300130, PR China
| | - Weiwei Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, Tianjin 300130, PR China
| |
Collapse
|
13
|
Acedos MG, de la Torre I, Santos VE, García-Ochoa F, García JL, Galán B. Modulating redox metabolism to improve isobutanol production in Shimwellia blattae. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:8. [PMID: 33407735 PMCID: PMC7789792 DOI: 10.1186/s13068-020-01862-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/17/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Isobutanol is a candidate to replace gasoline from fossil resources. This higher alcohol can be produced from sugars using genetically modified microorganisms. Shimwellia blattae (p424IbPSO) is a robust strain resistant to high concentration of isobutanol that can achieve a high production rate of this alcohol. Nevertheless, this strain, like most strains developed for isobutanol production, has some limitations in its metabolic pathway. Isobutanol production under anaerobic conditions leads to a depletion of NADPH, which is necessary for two enzymes in the metabolic pathway. In this work, two independent approaches have been studied to mitigate the co-substrates imbalance: (i) using a NADH-dependent alcohol dehydrogenase to reduce the NADPH dependence of the pathway and (ii) using a transhydrogenase to increase NADPH level. RESULTS The addition of the NADH-dependent alcohol dehydrogenase from Lactococcus lactis (AdhA) to S. blattae (p424IbPSO) resulted in a 19.3% higher isobutanol production. The recombinant strain S. blattae (p424IbPSO, pIZpntAB) harboring the PntAB transhydrogenase produced 39.0% more isobutanol than the original strain, reaching 5.98 g L-1 of isobutanol. In both strains, we observed a significant decrease in the yields of by-products such as lactic acid or ethanol. CONCLUSIONS The isobutanol biosynthesis pathway in S. blattae (p424IbPSO) uses the endogenous NADPH-dependent alcohol dehydrogenase YqhD to complete the pathway. The addition of NADH-dependent AdhA leads to a reduction in the consumption of NADPH that is a bottleneck of the pathway. The higher consumption of NADH by AdhA reduces the availability of NADH required for the transformation of pyruvate into lactic acid and ethanol. On the other hand, the expression of PntAB from E. coli increases the availability of NADPH for IlvC and YqhD and at the same time reduces the availability of NADH and thus, the production of lactic acid and ethanol. In this work it is shown how the expression of AdhA and PntAB enzymes in Shimwellia blattae increases yield from 11.9% to 14.4% and 16.4%, respectively.
Collapse
Affiliation(s)
- Miguel G Acedos
- Chemical and Materials Engineering Department, Chemical Sciences School, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Isabel de la Torre
- Chemical and Materials Engineering Department, Chemical Sciences School, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Victoria E Santos
- Chemical and Materials Engineering Department, Chemical Sciences School, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Félix García-Ochoa
- Chemical and Materials Engineering Department, Chemical Sciences School, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - José L García
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Beatriz Galán
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain.
| |
Collapse
|
14
|
Wang YP, Sun ZG, Zhang CY, Zhang QZ, Guo XW, Xiao DG. Comparative transcriptome analysis reveals the key regulatory genes for higher alcohol formation by yeast at different α-amino nitrogen concentrations. Food Microbiol 2020; 95:103713. [PMID: 33397627 DOI: 10.1016/j.fm.2020.103713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Higher alcohols are important flavor substance in alcoholic beverages. The content of α-amino nitrogen (α-AN) in the fermentation system affects the formation of higher alcohols by Saccharomyces cerevisiae. In this study, the effect of α-AN concentration on the higher alcohol productivity of yeast was explored, and the mechanism of this effect was investigated through metabolite and transcription sequence analyses. We screened 12 most likely genes and constructed the recombinant strain to evaluate the effect of each gene on high alcohol formation. Results showed that the AGP1, GDH1, and THR6 genes were important regulators of higher alcohol metabolism in S. cerevisiae. This study provided knowledge about the metabolic pathways of higher alcohols and gave an important reference for the breeding of S. cerevisiae with low-yield higher alcohols to deal with the fermentation system with different α-AN concentrations in the brewing industry.
Collapse
Affiliation(s)
- Ya-Ping Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, 300457, PR China; Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | | | - Cui-Ying Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, 300457, PR China; Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Qiao-Zhen Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, 300457, PR China; Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Xue-Wu Guo
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, 300457, PR China; Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Dong-Guang Xiao
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, 300457, PR China; Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| |
Collapse
|
15
|
Anti-Contamination Strategies for Yeast Fermentations. Microorganisms 2020; 8:microorganisms8020274. [PMID: 32085437 PMCID: PMC7074673 DOI: 10.3390/microorganisms8020274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/10/2020] [Accepted: 02/16/2020] [Indexed: 01/07/2023] Open
Abstract
Yeasts are very useful microorganisms that are used in many industrial fermentation processes such as food and alcohol production. Microbial contamination of such processes is inevitable, since most of the fermentation substrates are not sterile. Contamination can cause a reduction of the final product concentration and render industrial yeast strains unable to be reused. Alternative approaches to controlling contamination, including the use of antibiotics, have been developed and proposed as solutions. However, more efficient and industry-friendly approaches are needed for use in industrial applications. This review covers: (i) general information about industrial uses of yeast fermentation, (ii) microbial contamination and its effects on yeast fermentation, and (iii) currently used and suggested approaches/strategies for controlling microbial contamination at the industrial and/or laboratory scale.
Collapse
|
16
|
Kurylenko OO, Ruchala J, Dmytruk KV, Abbas CA, Sibirny AA. Multinuclear Yeast
Magnusiomyces (Dipodascus, Endomyces) magnusii
is a Promising Isobutanol Producer. Biotechnol J 2020; 15:e1900490. [DOI: 10.1002/biot.201900490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/28/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Olena O. Kurylenko
- Department of Molecular Genetics and BiotechnologyInstitute of Cell BiologyNAS of Ukraine Lviv 79005 Ukraine
| | - Justyna Ruchala
- Department of Molecular Genetics and BiotechnologyInstitute of Cell BiologyNAS of Ukraine Lviv 79005 Ukraine
- Department of Microbiology and BiotechnologyUniversity of Rzeszow Rzeszow 35‐601 Poland
| | - Kostyantyn V. Dmytruk
- Department of Molecular Genetics and BiotechnologyInstitute of Cell BiologyNAS of Ukraine Lviv 79005 Ukraine
| | | | - Andriy A. Sibirny
- Department of Molecular Genetics and BiotechnologyInstitute of Cell BiologyNAS of Ukraine Lviv 79005 Ukraine
- Department of Microbiology and BiotechnologyUniversity of Rzeszow Rzeszow 35‐601 Poland
| |
Collapse
|
17
|
Li P, Li T, Zhang CY, Xiao DG. Effect of ILV2 deletion and ILV3 or/and ILV5 overexpression in Saccharomyces uvarum on diacetyl and higher alcohols metabolism during wine fermentation. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-019-03422-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Park SH, Hahn JS. Development of an efficient cytosolic isobutanol production pathway in Saccharomyces cerevisiae by optimizing copy numbers and expression of the pathway genes based on the toxic effect of α-acetolactate. Sci Rep 2019; 9:3996. [PMID: 30850698 PMCID: PMC6408573 DOI: 10.1038/s41598-019-40631-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/18/2019] [Indexed: 11/09/2022] Open
Abstract
Isobutanol production in Saccharomyces cerevisiae is limited by subcellular compartmentalization of the pathway enzymes. In this study, we improved isobutanol production in S. cerevisiae by constructing an artificial cytosolic isobutanol biosynthetic pathway consisting of AlsS, α-acetolactate synthase from Bacillus subtilis, and two endogenous mitochondrial enzymes, ketol-acid reductoisomerase (Ilv5) and dihydroxy-acid dehydratase (Ilv3), targeted to the cytosol. B. subtilis AlsS was more active than Ilv2ΔN54, an endogenous α-acetolactate synthase targeted to the cytosol. However, overexpression of alsS led to a growth inhibition, which was alleviated by overexpressing ILV5ΔN48 and ILV3ΔN19, encoding the downstream enzymes targeted to the cytosol. Therefore, accumulation of the intermediate α-acetolactate might be toxic to the cells. Based on these findings, we improved isobutanol production by expressing alsS under the control of a copper-inducible CUP1 promoter, and by increasing translational efficiency of the ILV5ΔN48 and ILV3ΔN19 genes by adding Kozak sequence. Furthermore, strains with multi-copy integration of alsS into the delta-sequences were screened based on growth inhibition upon copper-dependent induction of alsS. Next, the ILV5ΔN48 and ILV3ΔN19 genes were integrated into the rDNA sites of the alsS-integrated strain, and the strains with multi-copy integration were screened based on the growth recovery. After optimizing the induction conditions of alsS, the final engineered strain JHY43D24 produced 263.2 mg/L isobutanol, exhibiting about 3.3-fold increase in production compared to a control strain constitutively expressing ILV2ΔN54, ILV5ΔN48, and ILV3ΔN19 on plasmids.
Collapse
Affiliation(s)
- Seong-Hee Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
19
|
Lee KM, Kim SK, Lee YG, Park KH, Seo JH. Elimination of biosynthetic pathways for l-valine and l-isoleucine in mitochondria enhances isobutanol production in engineered Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2018; 268:271-277. [PMID: 30081287 DOI: 10.1016/j.biortech.2018.07.150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 05/26/2023]
Abstract
Saccharomyces cerevisiae has a natural ability to produce higher alcohols, making it a promising candidate for production of isobutanol. However, the several pathways competing with isobutanol biosynthesis lead to production of substantial amounts of l-valine and l-isoleucine in mitochondria and isobutyrate, l-leucine, and ethanol in cytosol. To increase flux to isobutanol by removing by-product formation, the genes associated with formation of l-valine (BAT1), l-isoleucine (ILV1), isobutyrate (ALD6), l-leucine (LEU1), and ethanol (ADH1) were disrupted to construct the S. cerevisiae WΔGBIALA1_2vec strain. This strain showed 8.9 and 8.6 folds increases in isobutanol concentration and yield, respectively, relative the corresponding values of the background strain on glucose medium. In a bioreactor fermentation with a gas trapping system, the WΔGBIALA1_2vec strain produced 662 mg/L isobutanol concentration with a yield of 6.71 mgisobutanol/gglucose. With elimination of the competing pathways, the WΔGBIALA1_2vec strain would serve as a platform strain for isobutanol production.
Collapse
Affiliation(s)
- Kyung-Muk Lee
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Ye-Gi Lee
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung-Hye Park
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Ho Seo
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
20
|
Jing P, Cao X, Lu X, Zong H, Zhuge B. Modification of an engineered Escherichia coli by a combined strategy of deleting branch pathway, fine-tuning xylose isomerase expression, and substituting decarboxylase to improve 1,2,4-butanetriol production. J Biosci Bioeng 2018; 126:547-552. [DOI: 10.1016/j.jbiosc.2018.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/10/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022]
|
21
|
Jung HM, Lee JY, Lee JH, Oh MK. Improved production of isobutanol in pervaporation-coupled bioreactor using sugarcane bagasse hydrolysate in engineered Enterobacter aerogenes. BIORESOURCE TECHNOLOGY 2018; 259:373-380. [PMID: 29579689 DOI: 10.1016/j.biortech.2018.03.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
A process of isobutanol production from sugarcane bagasse hydrolysates in Enterobacter aerogenes was developed here with a pervaporation-integrated procedure. Isobutanol pathway was overexpressed in a mutant strain with eliminated byproduct-forming enzymes (LdhA, BudA, and PflB). A glucose-and-xylose-coconsuming ptsG mutant was constructed for effective utilization of lignocellulosic biomass. Toxic effects of isobutanol were alleviated by in situ recovery via a pervaporation procedure. Compared to single-batch fermentation, cell growth and isobutanol titer were improved by 60% and 100%, respectively, in the pervaporation-integrated fermentation process. A lab-made cross-linked polydimethylsiloxane membrane was cast on polyvinylidene fluoride and used in the pervaporation process. The membrane-penetrating condensate contained 55-226 g m-2 h-1 isobutanol with 6-25 g L-1 ethanol after separation. This study offers improved fermentative production of isobutanol from lignocellulosic biomass with a pervaporation procedure.
Collapse
Affiliation(s)
- Hwi-Min Jung
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Ju Yeon Lee
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Jung-Hyun Lee
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
22
|
Acedos MG, Ramon A, de la Morena S, Santos VE, Garcia-Ochoa F. Isobutanol production by a recombinant biocatalyst Shimwellia blattae (p424IbPSO): Study of the operational conditions. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Siripong W, Wolf P, Kusumoputri TP, Downes JJ, Kocharin K, Tanapongpipat S, Runguphan W. Metabolic engineering of Pichia pastoris for production of isobutanol and isobutyl acetate. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:1. [PMID: 29321810 PMCID: PMC5757298 DOI: 10.1186/s13068-017-1003-x] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/21/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Interests in renewable fuels have exploded in recent years as the serious effects of global climate change become apparent. Microbial production of high-energy fuels by economically efficient bioprocesses has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we engineered Pichia pastoris, an industrial workhorse in heterologous enzyme production, to produce the biofuel isobutanol from two renewable carbon sources, glucose and glycerol. Our strategy exploited the yeast's amino acid biosynthetic pathway and diverted the amino acid intermediates to the 2-keto acid degradation pathway for higher alcohol production. To further demonstrate the versatility of our yeast platform, we incorporated a broad-substrate-range alcohol-O-acyltransferase to generate a variety of volatile esters, including isobutyl acetate ester and isopentyl acetate ester. RESULTS The engineered strain overexpressing the keto-acid degradation pathway was able to produce 284 mg/L of isobutanol when supplemented with 2-ketoisovalerate. To improve the production of isobutanol and eliminate the need to supplement the production media with the expensive 2-ketoisovalerate intermediate, we overexpressed a portion of the amino acid l-valine biosynthetic pathway in the engineered strain. While heterologous expression of the pathway genes from the yeast Saccharomyces cerevisiae did not lead to improvement in isobutanol production in the engineered P. pastoris, overexpression of the endogenous l-valine biosynthetic pathway genes led to a strain that is able to produce 0.89 g/L of isobutanol. Fine-tuning the expression of bottleneck enzymes by employing an episomal plasmid-based expression system further improved the production titer of isobutanol to 2.22 g/L, a 43-fold improvement from the levels observed in the original strain. Finally, heterologous expression of a broad-substrate-range alcohol-O-acyltransferase led to the production of isobutyl acetate ester and isopentyl acetate ester at 51 and 24 mg/L, respectively. CONCLUSIONS In this study, we engineered high-level production of the biofuel isobutanol and the corresponding acetate ester by P. pastoris from readily available carbon sources. We envision that our work will provide an economic route to this important class of compounds and establish P. pastoris as a versatile production platform for fuels and chemicals.
Collapse
Affiliation(s)
- Wiparat Siripong
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120 Thailand
| | - Philipp Wolf
- Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Theodora Puspowangi Kusumoputri
- Atma Jaya University, Jl. Jend. Sudirman No.51, RT.5/RW.4, Karet Semanggi, Setia Budi, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta, 12930 Indonesia
| | | | - Kanokarn Kocharin
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120 Thailand
| | - Sutipa Tanapongpipat
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120 Thailand
| | - Weerawat Runguphan
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120 Thailand
| |
Collapse
|
24
|
Kim SJ, Sim HJ, Kim JW, Lee YG, Park YC, Seo JH. Enhanced production of 2,3-butanediol from xylose by combinatorial engineering of xylose metabolic pathway and cofactor regeneration in pyruvate decarboxylase-deficient Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2017; 245:1551-1557. [PMID: 28651874 DOI: 10.1016/j.biortech.2017.06.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to produce 2,3-butanediol (2,3-BDO) from xylose efficiently by modulation of the xylose metabolic pathway in engineered Saccharomyces cerevisiae. Expression of the Scheffersomyces stipitis transaldolase and NADH-preferring xylose reductase in S. cerevisiae improved xylose consumption rate by a 2.1-fold and 2,3-BDO productivity by a 1.8-fold. Expression of the Lactococcus lactis noxE gene encoding NADH oxidase also increased 2,3-BDO yield by decreasing glycerol accumulation. Additionally, the disadvantage of C2-dependent growth of pyruvate decarboxylase-deficient (Pdc-) S. cerevisiae was overcome by expression of the Candida tropicalis PDC1 gene. A fed-batch fermentation of the BD5X-TXmNP strain resulted in 96.8g/L 2,3-BDO and 0.58g/L-h productivity from xylose, which were 15.6- and 2-fold increases compared with the corresponding values of the BD5X strain. It was concluded that facilitation of the xylose metabolic pathway, oxidation of NADH and relief of C2-dependency synergistically triggered 2,3-BDO production from xylose in Pdc-S. cerevisiae.
Collapse
Affiliation(s)
- Soo-Jung Kim
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea; Department of Bio and Fermentation Convergence Technology and BK21 Plus Program, Kookmin University, Seoul 03084, Republic of Korea
| | - Hee-Jin Sim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Woo Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Ye-Gi Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong-Cheol Park
- Department of Bio and Fermentation Convergence Technology and BK21 Plus Program, Kookmin University, Seoul 03084, Republic of Korea
| | - Jin-Ho Seo
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
25
|
Feng R, Li J, Zhang A. Improving isobutanol titers in Saccharomyces cerevisiae with over-expressing NADPH-specific glucose-6-phosphate dehydrogenase (Zwf1). ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1304-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
26
|
Li J, Feng R, Wen Z, Zhang A. Overexpression of ARO10 in pdc5Δmutant resulted in higher isobutanol titers in Saccharomyces cerevisiae. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-017-0028-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Morita K, Nomura Y, Ishii J, Matsuda F, Kondo A, Shimizu H. Heterologous expression of bacterial phosphoenol pyruvate carboxylase and Entner-Doudoroff pathway in Saccharomyces cerevisiae for improvement of isobutanol production. J Biosci Bioeng 2017; 124:263-270. [PMID: 28539187 DOI: 10.1016/j.jbiosc.2017.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/07/2017] [Indexed: 11/30/2022]
Abstract
Bacterial phosphoenol pyruvate carboxylase (PPC) and enzymes in the Entner-Doudoroff (ED) pathway were heterologously expressed in Saccharomyces cerevisiae to improve the NADPH supply required for the bio-production of chemicals such as isobutanol. The heterologous expression of PPC from Synechocystis sp. PCC6803 increased in the isobutabol titer 1.45-fold (93.2±1.6 mg/L) in metabolically engineered S. cerevisiae strains producing isobutanol. This result suggested that the pyruvate and NADPH supply for isobutanol biosynthesis was activated by PPC overexpression. On the other hand, the expression of two enzymes organizing the ED pathway (6-phosphogluconate dehydratase [6PGD] and 2-dehydro-3-deoxy-phosphogluconate aldolase [KDPGA]) had no effect to isobutabol bio-production. Further analysis, however, revealed that additional expression of 6PGD and KDPGA improved the growth rate of S. cerevisiae strain BY4742 gnd1Δ. A 13C-labeling experiment using [1-13C] glucose also suggested that metabolic flow levels in the ED pathway increased slightly with the additional expression. These results showed that the ED pathway was successfully constructed in S. cerevisiae, even though activity of the pathway was too weak to improve isobutanol biosynthesis.
Collapse
Affiliation(s)
- Keisuke Morita
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yuta Nomura
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Jun Ishii
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan.
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Akihiko Kondo
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan.
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
28
|
Chen X, Gao C, Guo L, Hu G, Luo Q, Liu J, Nielsen J, Chen J, Liu L. DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals. Chem Rev 2017; 118:4-72. [DOI: 10.1021/acs.chemrev.6b00804] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiulai Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liang Guo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qiuling Luo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jens Nielsen
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark
| | - Jian Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
29
|
Tran TNT, Breuer RJ, Avanasi Narasimhan R, Parreiras LS, Zhang Y, Sato TK, Durrett TP. Metabolic engineering of Saccharomyces cerevisiae to produce a reduced viscosity oil from lignocellulose. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:69. [PMID: 28331545 PMCID: PMC5359884 DOI: 10.1186/s13068-017-0751-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/09/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Acetyl-triacylglycerols (acetyl-TAGs) are unusual triacylglycerol (TAG) molecules that contain an sn-3 acetate group. Compared to typical triacylglycerol molecules (here referred to as long chain TAGs; lcTAGs), acetyl-TAGs possess reduced viscosity and improved cold temperature properties, which may allow direct use as a drop-in diesel fuel. Their different chemical and physical properties also make acetyl-TAGs useful for other applications such as lubricants and plasticizers. Acetyl-TAGs can be synthesized by EaDAcT, a diacylglycerol acetyltransferase enzyme originally isolated from Euonymus alatus (Burning Bush). The heterologous expression of EaDAcT in different organisms, including Saccharomyces cerevisiae, resulted in the accumulation of acetyl-TAGs in storage lipids. Microbial conversion of lignocellulose into acetyl-TAGs could allow biorefinery production of versatile molecules for biofuel and bioproducts. RESULTS In order to produce acetyl-TAGs from abundant lignocellulose feedstocks, we expressed EaDAcT in S. cerevisiae previously engineered to utilize xylose as a carbon source. The resulting strains were capable of producing acetyl-TAGs when grown on different media. The highest levels of acetyl-TAG production were observed with growth on synthetic lab media containing glucose or xylose. Importantly, acetyl-TAGs were also synthesized by this strain in ammonia fiber expansion (AFEX)-pretreated corn stover hydrolysate (ACSH) at higher volumetric titers than previously published strains. The deletion of the four endogenous enzymes known to contribute to lcTAG production increased the proportion of acetyl-TAGs in the total storage lipids beyond that in existing strains, which will make purification of these useful lipids easier. Surprisingly, the strains containing the four deletions were still capable of synthesizing lcTAG, suggesting that the particular strain used in this study possesses additional undetermined diacylglycerol acyltransferase activity. Additionally, the carbon source used for growth influenced the accumulation of these residual lcTAGs, with higher levels in strains cultured on xylose containing media. CONCLUSION Our results demonstrate that S. cerevisiae can be metabolically engineered to produce acetyl-TAGs when grown on different carbon sources, including hydrolysate derived from lignocellulose. Deletion of four endogenous acyltransferases enabled a higher purity of acetyl-TAGs to be achieved, but lcTAGs were still synthesized. Longer incubation times also decreased the levels of acetyl-TAGs produced. Therefore, additional work is needed to further manipulate acetyl-TAG production in this strain of S. cerevisiae, including the identification of other TAG biosynthetic and lipolytic enzymes and a better understanding of the regulation of the synthesis and degradation of storage lipids.
Collapse
Affiliation(s)
- Tam N. T. Tran
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506 USA
| | - Rebecca J. Breuer
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726 USA
| | | | - Lucas S. Parreiras
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726 USA
| | - Yaoping Zhang
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726 USA
| | - Trey K. Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726 USA
| | - Timothy P. Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506 USA
| |
Collapse
|
30
|
Kim SJ, Kim JW, Lee YG, Park YC, Seo JH. Metabolic engineering of Saccharomyces cerevisiae for 2,3-butanediol production. Appl Microbiol Biotechnol 2017; 101:2241-2250. [DOI: 10.1007/s00253-017-8172-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 01/04/2023]
|
31
|
Engineering the leucine biosynthetic pathway for isoamyl alcohol overproduction in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2017; 44:107-117. [DOI: 10.1007/s10295-016-1855-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/30/2016] [Indexed: 10/20/2022]
Abstract
Abstract
Isoamyl alcohol can be used not only as a biofuel, but also as a precursor for various chemicals. Saccharomyces cerevisiae inherently produces a small amount of isoamyl alcohol via the leucine degradation pathway, but the yield is very low. In the current study, several strategies were devised to overproduce isoamyl alcohol in budding yeast. The engineered yeast cells with the cytosolic isoamyl alcohol biosynthetic pathway produced significantly higher amounts of isobutanol over isoamyl alcohol, suggesting that the majority of the metabolic flux was diverted to the isobutanol biosynthesis due to the broad substrate specificity of Ehrlich pathway enzymes. To channel the key intermediate 2-ketosiovalerate (KIV) towards α-IPM biosynthesis, we introduced an artificial protein scaffold to pull dihydroxyacid dehydratase and α-IPM synthase into the close proximity, and the resulting strain yielded more than twofold improvement of isoamyl alcohol. The best isoamyl alcohol producer yielded 522.76 ± 38.88 mg/L isoamyl alcohol, together with 540.30 ± 48.26 mg/L isobutanol and 82.56 ± 8.22 mg/L 2-methyl-1-butanol. To our best knowledge, our work represents the first study to bypass the native compartmentalized α-IPM biosynthesis pathway for the isoamyl alcohol overproduction in budding yeast. More importantly, artificial protein scaffold based on the feature of quaternary structure of enzymes would be useful in improving the catalytic efficiency and the product specificity of other enzymatic reactions.
Collapse
|
32
|
Metabolic engineering of Corynebacterium crenatium for enhancing production of higher alcohols. Sci Rep 2016; 6:39543. [PMID: 27996038 PMCID: PMC5172369 DOI: 10.1038/srep39543] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/24/2016] [Indexed: 12/19/2022] Open
Abstract
Biosynthesis approaches for the production of higher alcohols as a source of alternative fossil fuels have garnered increasing interest recently. However, there is little information available in the literature about using undirected whole-cell mutagenesis (UWCM) in vivo to improve higher alcohols production. In this study, for the first time, we approached this question from two aspects: first preferentially improving the capacity of expression host, and subsequently optimizing metabolic pathways using multiple genetic mutations to shift metabolic flux toward the biosynthetic pathway of target products to convert intermediate 2-keto acid compounds into diversified C4~C5 higher alcohols using UWCM in vivo, with the aim of improving the production. The results demonstrated the production of higher alcohols including isobutanol, 2-methyl-1-butanol, 3-methyl-1-butanol from glucose and duckweed under simultaneous saccharification and fermentation (SSF) scheme were higher based on the two aspects compared with only the use of wild-type stain as expression host. These findings showed that the improvement via UWCM in vivo in the two aspects for expression host and metabolic flux can facilitate the increase of higher alcohols production before using gene editing technology. Our work demonstrates that a multi-faceted approach for the engineering of novel synthetic pathways in microorganisms for improving biofuel production is feasible.
Collapse
|
33
|
Wong SS, Mi L, Liao JC. Microbial Production of Butanols. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807833.ch19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sio Si Wong
- University of California; Department of Chemical and Biomolecular Engineering; 420 Westwood Plaza, 5531Boelter Hall Los Angeles CA 90095 USA
| | - Luo Mi
- University of California; Department of Chemical and Biomolecular Engineering; 420 Westwood Plaza, 5531Boelter Hall Los Angeles CA 90095 USA
| | - James C. Liao
- University of California; Department of Chemical and Biomolecular Engineering; 420 Westwood Plaza, 5531Boelter Hall Los Angeles CA 90095 USA
| |
Collapse
|
34
|
Increasing isobutanol yield by double-gene deletion of PDC6 and LPD1 in Saccharomyces cerevisiae. Chin J Chem Eng 2016. [DOI: 10.1016/j.cjche.2016.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Improvement of isobutanol production in Saccharomyces cerevisiae by increasing mitochondrial import of pyruvate through mitochondrial pyruvate carrier. Appl Microbiol Biotechnol 2016; 100:7591-8. [DOI: 10.1007/s00253-016-7636-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/17/2016] [Accepted: 05/14/2016] [Indexed: 12/31/2022]
|
36
|
|
37
|
Molecular cloning and expression of Enterobacter aerogenes α-acetolactate decarboxylase in pyruvate decarboxylase-deficient Saccharomyces cerevisiae for efficient 2,3-butanediol production. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Chen CT, Liao JC. Frontiers in microbial 1-butanol and isobutanol production. FEMS Microbiol Lett 2016; 363:fnw020. [PMID: 26832641 DOI: 10.1093/femsle/fnw020] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2016] [Indexed: 12/14/2022] Open
Abstract
The heavy dependence on petroleum-derived fuel has raised concerns about energy sustainability and climate change, which have prompted researchers to explore fuel production from renewable sources. 1-Butanol and isobutanol are promising biofuels that have favorable properties and can also serve as solvents or chemical feedstocks. Microbial production of these alcohols provides great opportunities to access a wide spectrum of renewable resources. In recent years, research has improved the native 1-butanol production and has engineered isobutanol production in various organisms to explore metabolic diversity and a broad range of substrates. This review focuses on progress in metabolic engineering for the production of these two compounds using various resources.
Collapse
Affiliation(s)
- Chang-Ting Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - James C Liao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
39
|
Kuroda K, Ueda M. Cellular and molecular engineering of yeastSaccharomyces cerevisiaefor advanced biobutanol production. FEMS Microbiol Lett 2015; 363:fnv247. [DOI: 10.1093/femsle/fnv247] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 11/12/2022] Open
|
40
|
Felpeto-Santero C, Rojas A, Tortajada M, Galán B, Ramón D, García JL. Engineering alternative isobutanol production platforms. AMB Express 2015; 5:119. [PMID: 26054735 PMCID: PMC4456594 DOI: 10.1186/s13568-015-0119-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 01/22/2023] Open
Abstract
A synthetic inducible operon (IbPSO) expressing alsS, ilvC, ilvD and kivD genes encoding a pathway capable to transform pyruvate into 2-isobutyraldehyde has been designed and two recombinant plasmids named pIZIbPSO and p424IbPSO were constructed. The IbPSO containing plasmids can generate in a single transformation event new recombinant isobutanol producer strains and are useful for testing as suitable hosts wild type bacteria in different culture media. In this way we found that Shimwellia blattae (p424IbPSO) was able to produce in flasks up to 6 g l(-1) of isobutanol using glucose as carbon source. Moreover, for the first time, we have demonstrated that isobutanol can be produced from sucrose using Escherichia coli W (ATCC9367) transformed with pIZIbPSO. These robust recombinant strains were also able to produce isobutanol from a raw carbon source like hydrolysed lignocellulosic biomass.
Collapse
Affiliation(s)
- Carmen Felpeto-Santero
- />Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Antonia Rojas
- />Biopolis S.L., Parc Científic Universitat de Valencia, Paterna, Spain
| | - Marta Tortajada
- />Biopolis S.L., Parc Científic Universitat de Valencia, Paterna, Spain
| | - Beatriz Galán
- />Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Daniel Ramón
- />Biopolis S.L., Parc Científic Universitat de Valencia, Paterna, Spain
| | - José L García
- />Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| |
Collapse
|
41
|
Milne N, van Maris AJA, Pronk JT, Daran JM. Comparative assessment of native and heterologous 2-oxo acid decarboxylases for application in isobutanol production by Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:204. [PMID: 26628917 PMCID: PMC4665922 DOI: 10.1186/s13068-015-0374-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Decarboxylation of α-ketoisovalerate to isobutyraldehyde is a key reaction in metabolic engineering of Saccharomyces cerevisiae for isobutanol production with published studies relying on overexpression of either the native ARO10 gene or of the Lactococcus lactis kivD decarboxylase gene resulting in low enzymatic activities. Here, we compare relevant properties for isobutanol production of Aro10, KivD and an additional, less studied, L. lactis decarboxylase KdcA. RESULTS To eliminate interference by native decarboxylases, each 2-oxo acid decarboxylase was overexpressed in a 'decarboxylase-negative' (pdc1Δ pdc5Δ pdc6Δ aro10Δ) S. cerevisiae background. Kinetic analyses in cell extracts revealed a superior V max/K m ratio of KdcA for α-ketoisovalerate and a wide range of linear and branched-chain 2-oxo acids. However, KdcA also showed the highest activity with pyruvate which, in engineered strains, can contribute to formation of ethanol as a by-product. Removal of native decarboxylase genes eliminated growth on valine as sole nitrogen source and subsequent complementation of this growth impairment by expression of each decarboxylase indicated that based on the increased growth rate, the in vivo activity of KdcA with α-ketoisovalerate was higher than that of KivD and Aro10. Moreover, during oxygen-limited incubation in the presence of glucose, strains expressing kdcA or kivD showed a ca. twofold higher in vivo rate of conversion of α-ketoisovalerate into isobutanol than an ARO10-expressing strain. Finally, cell extracts from cultures grown on different nitrogen sources revealed increased activity of constitutively expressed KdcA after growth on both valine and phenylalanine, while KivD and Aro10 activity was only increased after growth on phenylalanine suggesting a difference in the regulation of these enzymes. CONCLUSIONS This study illustrates important differences in substrate specificity, enzyme kinetics and functional expression between different decarboxylases in the context of isobutanol production and identifies KdcA as a promising alternative decarboxylase not only for isobutanol production but also for other branched-chain and linear alcohols.
Collapse
Affiliation(s)
- N. Milne
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - A. J. A. van Maris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - J. T. Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - J. M. Daran
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
42
|
Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers. Curr Opin Biotechnol 2015; 33:1-7. [DOI: 10.1016/j.copbio.2014.09.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/09/2014] [Accepted: 09/17/2014] [Indexed: 11/22/2022]
|
43
|
Spakowicz DJ, Strobel SA. Biosynthesis of hydrocarbons and volatile organic compounds by fungi: bioengineering potential. Appl Microbiol Biotechnol 2015; 99:4943-51. [PMID: 25957494 DOI: 10.1007/s00253-015-6641-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/22/2015] [Accepted: 04/29/2015] [Indexed: 01/05/2023]
Abstract
Recent advances in the biological production of fuels have relied on the optimization of pathways involving genes from diverse organisms. Several recent articles have highlighted the potential to expand the pool of useful genes by looking to filamentous fungi. This review highlights the enzymes and organisms used for the production of a variety of fuel types and commodity chemicals with a focus on the usefulness and promise of those from filamentous fungi.
Collapse
Affiliation(s)
- Daniel J Spakowicz
- Department of Molecular Biophysics and Biochemistry, Yale University, 260/266 Whitney Avenue, PO Box 208114, New Haven, CT, 06520-8114, USA
| | | |
Collapse
|
44
|
Miller DM, Gulbis JM. Engineering protocells: prospects for self-assembly and nanoscale production-lines. Life (Basel) 2015; 5:1019-53. [PMID: 25815781 PMCID: PMC4500129 DOI: 10.3390/life5021019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/09/2015] [Accepted: 03/16/2015] [Indexed: 11/16/2022] Open
Abstract
The increasing ease of producing nucleic acids and proteins to specification offers potential for design and fabrication of artificial synthetic "organisms" with a myriad of possible capabilities. The prospects for these synthetic organisms are significant, with potential applications in diverse fields including synthesis of pharmaceuticals, sources of renewable fuel and environmental cleanup. Until now, artificial cell technology has been largely restricted to the modification and metabolic engineering of living unicellular organisms. This review discusses emerging possibilities for developing synthetic protocell "machines" assembled entirely from individual biological components. We describe a host of recent technological advances that could potentially be harnessed in design and construction of synthetic protocells, some of which have already been utilized toward these ends. More elaborate designs include options for building self-assembling machines by incorporating cellular transport and assembly machinery. We also discuss production in miniature, using microfluidic production lines. While there are still many unknowns in the design, engineering and optimization of protocells, current technologies are now tantalizingly close to the capabilities required to build the first prototype protocells with potential real-world applications.
Collapse
Affiliation(s)
- David M Miller
- The Walter and Eliza Hall Institute of Medical Research, Parkville VIC 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville VIC 3052, Australia.
| | - Jacqueline M Gulbis
- The Walter and Eliza Hall Institute of Medical Research, Parkville VIC 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville VIC 3052, Australia.
| |
Collapse
|
45
|
Yuan J, Ching CB. Combinatorial assembly of large biochemical pathways into yeast chromosomes for improved production of value-added compounds. ACS Synth Biol 2015; 4:23-31. [PMID: 24847678 DOI: 10.1021/sb500079f] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Saccharomyces cerevisiae as a eukaryotic organism is particularly suitable as microbial cell factory because it has interesting features such as membrane environments for supporting membrane-associated enzymes and its capability for post-translational modifications of enzymes from plants. However, S. cerevisiae does not readily express polycistronic transcriptional units, which represents a significant challenge for constructing large biochemical pathways in budding yeast. In the present study, we developed a novel approach for rapid construction of large biochemical pathways into yeast chromosomes. Our approach takes advantage of antibiotic selection for combinatorial assembly of large pathways into the δ-sites of retrotransposon elements of yeast chromosomes. As proof-of-principle, a five-gene isobutanol pathway and an eight-gene mevalonate pathway were successfully assembled into yeast chromosomes in one-step fashion. To our knowledge, this is the first report to exploit δ-integration coupled with antibiotic selection for rapid assembly of large biochemical pathways in budding yeast. We envision our new approach could serve as a generalized technique for large pathway construction in yeast-a method that would be of significant interest to the synthetic biology community.
Collapse
Affiliation(s)
- Jifeng Yuan
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Synthetic
Biology Research Consortium, National University of Singapore, 28 Medical
Drive, Singapore 117456, Singapore
| | - Chi Bun Ching
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Synthetic
Biology Research Consortium, National University of Singapore, 28 Medical
Drive, Singapore 117456, Singapore
- Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| |
Collapse
|
46
|
Tsai CS, Kwak S, Turner TL, Jin YS. Yeast synthetic biology toolbox and applications for biofuel production. FEMS Yeast Res 2015; 15:1-15. [PMID: 25195615 DOI: 10.1111/1567-1364.12206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/16/2014] [Accepted: 08/31/2014] [Indexed: 01/04/2023] Open
Abstract
Yeasts are efficient biofuel producers with numerous advantages outcompeting bacterial counterparts. While most synthetic biology tools have been developed and customized for bacteria especially for Escherichia coli, yeast synthetic biological tools have been exploited for improving yeast to produce fuels and chemicals from renewable biomass. Here we review the current status of synthetic biological tools and their applications for biofuel production, focusing on the model strain Saccharomyces cerevisiae We describe assembly techniques that have been developed for constructing genes, pathways, and genomes in yeast. Moreover, we discuss synthetic parts for allowing precise control of gene expression at both transcriptional and translational levels. Applications of these synthetic biological approaches have led to identification of effective gene targets that are responsible for desirable traits, such as cellulosic sugar utilization, advanced biofuel production, and enhanced tolerance against toxic products for biofuel production from renewable biomass. Although an array of synthetic biology tools and devices are available, we observed some gaps existing in tool development to achieve industrial utilization. Looking forward, future tool development should focus on industrial cultivation conditions utilizing industrial strains.
Collapse
Affiliation(s)
- Ching-Sung Tsai
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Suryang Kwak
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Timothy L Turner
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yong-Su Jin
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA .,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
47
|
Park SH, Kim S, Hahn JS. Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol. Appl Microbiol Biotechnol 2014; 98:9139-47. [DOI: 10.1007/s00253-014-6081-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/19/2014] [Accepted: 09/09/2014] [Indexed: 11/28/2022]
|
48
|
Ghiaci P, Norbeck J, Larsson C. 2-Butanol and butanone production in Saccharomyces cerevisiae through combination of a B12 dependent dehydratase and a secondary alcohol dehydrogenase using a TEV-based expression system. PLoS One 2014; 9:e102774. [PMID: 25054226 PMCID: PMC4108354 DOI: 10.1371/journal.pone.0102774] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/24/2014] [Indexed: 01/30/2023] Open
Abstract
2-Butanol and its chemical precursor butanone (methyl ethyl ketone – MEK) are chemicals with potential uses as biofuels and biocommodity chemicals. In order to produce 2-butanol, we have demonstrated the utility of using a TEV-protease based expression system to achieve equimolar expression of the individual subunits of the two protein complexes involved in the B12-dependent dehydratase step (from the pdu-operon of Lactobacillus reuterii), which catalyze the conversion of meso-2,3-butanediol to butanone. We have furthermore identified a NADH dependent secondary alcohol dehydrogenase (Sadh from Gordonia sp.) able to catalyze the subsequent conversion of butanone to 2-butanol. A final concentration of 4±0.2 mg/L 2-butanol and 2±0.1 mg/L of butanone was found. A key factor for the production of 2-butanol was the availability of NADH, which was achieved by growing cells lacking the GPD1 and GPD2 isogenes under anaerobic conditions.
Collapse
Affiliation(s)
- Payam Ghiaci
- Department of Chemical and Biological Engineering, System and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
| | - Joakim Norbeck
- Department of Chemical and Biological Engineering, System and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
| | - Christer Larsson
- Department of Chemical and Biological Engineering, System and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
49
|
Pathway and protein engineering approaches to produce novel and commodity small molecules. Curr Opin Biotechnol 2013; 24:1137-43. [DOI: 10.1016/j.copbio.2013.02.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/07/2013] [Accepted: 02/20/2013] [Indexed: 11/19/2022]
|
50
|
Erratum to: Production of isobutanol from crude glycerol by a genetically-engineered Klebsiella pneumoniae strain. Biotechnol Lett 2013. [DOI: 10.1007/s10529-013-1383-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|