1
|
Aja JA, Llorin LD, Lim KRQ, Teodosio JJ, Sioson EJ, Dy RL, Arcilla CA, Dalisay DS, Lazaro JEH. Genome mining reveals the biosynthetic potential of a novel Lysinibacillus zambalensis sp. nov., isolated from a hyperalkaline spring. Arch Microbiol 2025; 207:109. [PMID: 40169433 PMCID: PMC11961540 DOI: 10.1007/s00203-025-04316-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/26/2025] [Accepted: 03/22/2025] [Indexed: 04/03/2025]
Abstract
A novel bacterium, designated as strain M3T, was isolated from a hyperalkaline spring in the Philippines and identified as a new species within the genus Lysinibacillus through 16 S rRNA gene sequence and genomic analyses. Although strain M3T shared a high 16 S rRNA gene sequence similarity (> 98.7%) with many Lysinibacillus species, the digital DNA-DNA hybridization and orthologous average nucleotide identity values between strain M3T and its closet relative, Lysinibacillus xylanilyticus DSM 23,493T, were 41.2% and 90.6%, respectively-both below the established threshold for prokaryotic species delineation. Genome mining of the 5.3 Mbp-draft genome of strain M3T revealed eight biosynthetic gene clusters, which shared little sequence similarity with characterized clusters, suggesting the potential for encoding novel specialized metabolites. The cells of strain M3T were Gram-stain-positive, aerobic, rod-shaped, non-motile, and capable of endospore formation. Optimum growth was observed at 30 °C, pH 8.0, and 0.5% (w/v) NaCl. The major respiratory quinone was menaquinone-7, and the predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, and two unknown phospholipids. Its fatty acid profile showed an elevated level of iso-C15:0, and the peptidoglycan type was determined to be A4α (L-Lys-D-Asp). This study contributes to the growing database and understanding of the genus and aims to help drive future research on the bioactive potential of the genus. Lysinibacillus zambalensis sp. nov. is proposed with strain M3T as the type strain (= TISTR 10640T = BIOTECH 10973T).
Collapse
Affiliation(s)
- Joyce Amarachi Aja
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Lawrence Dave Llorin
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Kenji Rowel Q Lim
- Center for Cardiovascular Research, Division of Cardiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Jade Joshua Teodosio
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
| | - Erwin John Sioson
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
- Philippine Nuclear Research Institute, Quezon City, Philippines
| | - Ron L Dy
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Carlo A Arcilla
- Philippine Nuclear Research Institute, Quezon City, Philippines
- National Institute of Geological Sciences, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Doralyn S Dalisay
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
- Department of Biology, University of San Agustin, Iloilo City, Philippines
| | - Jose Enrico Hizon Lazaro
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines.
| |
Collapse
|
2
|
Guéneau V, Plateau-Gonthier J, Arnaud L, Piard JC, Castex M, Briandet R. Positive biofilms to guide surface microbial ecology in livestock buildings. Biofilm 2022; 4:100075. [PMID: 35494622 PMCID: PMC9039864 DOI: 10.1016/j.bioflm.2022.100075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 12/12/2022] Open
Abstract
The increase in human consumption of animal proteins implies changes in the management of meat production. This is followed by increasingly restrictive regulations on antimicrobial products such as chemical biocides and antibiotics, used in particular to control pathogens that can spread zoonotic diseases. Aligned with the One Health concept, alternative biological solutions are under development and are starting to be used in animal production. Beneficial bacteria able to form positive biofilms and guide surface microbial ecology to limit microbial pathogen settlement are promising tools that could complement existing biosecurity practices to maintain the hygiene of livestock buildings. Although the benefits of positive biofilms have already been documented, the associated fundamental mechanisms and the rationale of the microbial composition of these new products are still sparce. This review provides an overview of the envisioned modes of action of positive biofilms used on livestock building surfaces and the resulting criteria for the selection of the appropriate microorganisms for this specific application. Limits and advantages of this biosecurity approach are discussed as well as the impact of such practices along the food chain, from farm to fork.
Collapse
Affiliation(s)
- Virgile Guéneau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Lallemand SAS, 31702, Blagnac, France
| | | | | | - Jean-Christophe Piard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
3
|
Kamala Jayanthi PD, Vyas M. Exploring the Transient Microbe Population on Citrus Butterfly Wings. Microbiol Spectr 2022; 10:e0205521. [PMID: 35856677 PMCID: PMC9431565 DOI: 10.1128/spectrum.02055-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/22/2022] [Indexed: 11/23/2022] Open
Abstract
Microbes carve out dwelling niches in unusual environments. Insects, in general, have been hosts to microbes in different ways. Some insects incorporate microbes as endosymbionts that help with metabolic functions, while some vector pathogenic microbes that cause serious plant and animal diseases, including humans. Microbes isolated from insect sources have been beneficial and a huge information repository. The fascinating and evolutionarily successful insect community has survived mass extinctions as a result of their unique biological traits. Wings have been one of the most important factors contributing to the evolutionary success of insects. In the current study, wings of Papilio polytes, a citrus butterfly, were investigated for the presence of ecologically significant microbes within hours of eclosing under aseptic conditions. Scanning electron microscopy (SEM) revealed the presence of bacteria dwelling in crevices created by a specific arrangement of scales on the butterfly wing. A total of 38 bacterial isolates were obtained from the patched wings of the citrus butterfly, and Bacillus spp. were predominant among them. We probed the occurrence of these microbes to assess their significance to the insect. Many of the isolates displayed antibacterial, antifungal, and biosurfactant properties. Interestingly, one of the isolates displayed entomopathogenic potential toward the notorious agricultural pest mealybug. All the wing isolates were seen to cluster together consistently in a phylogenetic analysis, except for one isolate of Bacillus zhangzhouensis (Papilio polytes isolate [Pp] no. 28), suggesting they are distinct strains. IMPORTANCE This is a first study reporting the presence of culturable microbes on an unusual ecological niche such as butterfly wings. Our findings also establish that microbes inhabit these niches before the butterfly has contact with the environment. The findings in this report have opened up a new area of research which will not only help understand the microbiome of insect wings but might prove beneficial in other specialized studies.
Collapse
Affiliation(s)
- P. D. Kamala Jayanthi
- Division of Crop Protection, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| | - Meenal Vyas
- Division of Crop Protection, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Satapute P, Jogaiah S. A biogenic microbial biosurfactin that degrades difenoconazole fungicide with potential antimicrobial and oil displacement properties. CHEMOSPHERE 2022; 286:131694. [PMID: 34346344 DOI: 10.1016/j.chemosphere.2021.131694] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/15/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Surfactin is a bacterial lipopeptide and an influential biosurfactant mainly known for excellent surfactant ability. The amphiphilic nature of surfactin helps it to sustain under hydrophobic and hydrophilic conditions. In this investigation, a bacterium strain (BTKU3) that produces biosurfactant were isolated from oil-contaminated soil. Based on the blue agar plate (Bap) assay, the BTKU3 strain was found to be promising for biosurfactant production. This strain was later identified as a Lysinibacillus sp. by 16S rRNA sequencing. The characteristics of extracted bacterial surfactin were evidenced by FTIR with the presence of amine, C-H, CO, CC, esters, thiocarbonyl and asymmetric aliphatic C-H stretch molecular structural groups. Further, the extracted bacterial biosurfactant material was subjected to Liquid Chromatography-Mass Spectroscopy (LCMS), and it was identified and confirmed as surfactin with an elution time of 3.1 min and m/z value of 1034. The emulsification and oil displacement tests further proved the surfactin ability with 83% of coconut oil emulsion index and 80 % oil displacement ability with diesel, respectively. Lysinibacillus sp. BTKU3 strain also proved its efficacy in the degradation of difenoconazole by utilizing a capacity of 9.1 μg ml-1. Thus, it is inferred that the Lysinibacillus sp. BTKU3 strain plays a significant role in the production of surfactin, which positively acts as an antimicrobial agent and reduces contaminants in polluted sites.
Collapse
Affiliation(s)
- Praveen Satapute
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, 580003, India.
| |
Collapse
|
5
|
Rosland NA, Ikhsan N, Min CC, Yusoff FM, Karim M. Influence of Symbiotic Probiont Strains on the Growth of Amphora and Chlorella and Its Potential Protections Against Vibrio spp. in Artemia. Curr Microbiol 2021; 78:3901-3912. [PMID: 34522979 DOI: 10.1007/s00284-021-02642-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
The emerging aquaculture industry is in need of non-antibiotic-based disease control approaches to minimize the risk of antibiotic-resistant bacteria. Bacterial infections mainly caused by Vibrio spp. have caused mass mortalities of fish especially during the larval stages. The objectives of this study were to verify the potential of symbiotic probiont strains, isolated from microalgae (Amphora, Chlorella, and Spirulina) for suppressing the growth of Vibrio spp. and at the same time ascertain their abilities to enhance microalgal biomass by mutualistic interactions through microalgae-bacteria symbiosis. In addition, in vivo studies on Artemia bioencapsulated with probiont strains (single strain and mix strains) and microalgae were evaluated. The selected potential probionts were identified as Lysinibacillus fusiformis strain A-1 (LFA-1), Bacillus sp. strain A-2 (BA-2), Lysinibacillus fusiformis strain Cl-3 (LFCl-3), and Bacillus pocheonensis strain S-2 (BPS-2) using 16s rRNA. The cell densities of Amphora culture supplemented with BA-2 and Chlorella culture supplemented with LFCl-3 were higher than those of the controls. Artemia bioencapsulated with mix strains (LFA-1 + BA-2 + LFCl-3 + BPS-2) and Amphora demonstrated the highest survival rate compared to the controls, after being challenged with V. harveyi (60 ± 4%) and V. parahaemolyticus (78 ± 2%). Our study postulated that BA-2 and LFCl-3 were found to be good promoting bacteria for microalgal growth and microalgae serve as a vector to transport probiotic into Artemia. Moreover, mixture of potential probionts is beneficial for Artemia supplementation in conferring protection to Artemia nauplii against pathogenic Vibrios.
Collapse
Affiliation(s)
- Natasya-Ain Rosland
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Natrah Ikhsan
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Chong C Min
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Fatimah M Yusoff
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,International Institute of Aquaculture and Aquatic Sciences (I-AQUAS) UPM, Jalan Kemang Indah 6 Teluk Kemang, 70150, Batu 7Port Dickson, Negeri Sembilan, Malaysia
| | - Murni Karim
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia. .,International Institute of Aquaculture and Aquatic Sciences (I-AQUAS) UPM, Jalan Kemang Indah 6 Teluk Kemang, 70150, Batu 7Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
6
|
Lamprea Pineda PA, Demeestere K, Toledo M, Van Langenhove H, Walgraeve C. Enhanced removal of hydrophobic volatile organic compounds in biofilters and biotrickling filters: A review on the use of surfactants and the addition of hydrophilic compounds. CHEMOSPHERE 2021; 279:130757. [PMID: 34134429 DOI: 10.1016/j.chemosphere.2021.130757] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
The use of biological reactors to remove volatile organic compounds (VOCs) from waste gas streams has proven to be a cost-effective and sustainable technique. However, hydrophobic VOCs exhibit low removal, mainly due to their limited bioavailability for the microorganisms. Different strategies to enhance their removal in bio(trickling)filters have been developed with promising results. In this review, two strategies, i.e. the use of surfactants and hydrophilic compounds, for enhancing the removal of hydrophobic VOCs in bio(trickling)filters are discussed. The complexity of the processes and mechanisms behind both strategies are addressed to fully understand and exploit their potential and rapid implementation at full-scale. Mass transfer and biological aspects are discussed for each strategy, and an in-depth comparison between studies carried out over the last two decades has been performed. This review identifies additional strategies to further improve the application of (bio)surfactants and/or hydrophilic VOCs, and it provides recommendations for future studies in this field.
Collapse
Affiliation(s)
- Paula Alejandra Lamprea Pineda
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium.
| | - Kristof Demeestere
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium.
| | - Manuel Toledo
- Department of Inorganic Chemistry and Chemical Engineering, Faculty of Science, University of Cordoba (Campus Universitario de Rabanales), Carretera N-IV, Km 396, Marie Curie Building, 14071, Cordoba, Spain.
| | - Herman Van Langenhove
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium.
| | - Christophe Walgraeve
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium.
| |
Collapse
|
7
|
Paraszkiewicz K, Moryl M, Płaza G, Bhagat D, K Satpute S, Bernat P. Surfactants of microbial origin as antibiofilm agents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:401-420. [PMID: 31509014 DOI: 10.1080/09603123.2019.1664729] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
The microbial world provides new energy sources and many various 'green' chemicals. One type of chemicals produced by microorganisms is the biosurfactant group. Biosurfactants are universal molecules, exhibiting surface properties often accompanied by desired biological activity. Biosurfactants are considered to be environmentally 'friendly' due to their low toxicity and biodegradable nature. These compounds have unique features and therefore they can find potential applications in many different industries, ranging from biotechnology to environmental remediation technologies. Antibacterial and antifungal activities make them relevant for applications as inhibitory agents against microbial biofilm. This review covers the current knowledge and the recent advances in the field of biosurfactants as antibiofilm agents.
Collapse
Affiliation(s)
- Katarzyna Paraszkiewicz
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Magdalena Moryl
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Grażyna Płaza
- Institute of Production Engineering, Faculty of Organization and Management, Silesian University of Technology, Zabrze, Poland
| | - Diksha Bhagat
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Surekha K Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| |
Collapse
|
8
|
John WC, Ogbonna IO, Gberikon GM, Iheukwumere CC. Evaluation of biosurfactant production potential of Lysinibacillus fusiformis MK559526 isolated from automobile-mechanic-workshop soil. Braz J Microbiol 2021; 52:663-674. [PMID: 33462721 DOI: 10.1007/s42770-021-00432-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Biosurfactants are amphipathic biological compounds with surface active potential and are produced by many microorganisms. Biosurfactant production by Lysinibacillus fusiformis MK559526 isolated from automobile-mechanic-shop soil was investigated with a view to assessing its potential for production and potential for optimization. MATERIALS AND METHODS Effects of carbon and nitrogen sources, pH, temperature and incubation periods on biosurfactant production were evaluated with a view to optimizing the processes. Fourier Transform Infra-Red absorption peaks and Gas chromatography mass spectrometry were used to determine the functional groups of the chemical make-up and the chemical profile of the biosurfactant respectively. RESULTS Lysinibacillus fusiformis surfactant had emulsification index of 65.15 ± 0.35 %, oil displacement of 2.7 ± 0.26 mm, zone of haemolysis of 7.3 ± 0.16 mm and a positive drop collapse test. Optimized culture conditions for biosurfactant production: temperature, 35 ºC; pH, 7.0; starch solution, 40 g/L and urea, 1.5 g/L showed a reduction in surface tension to 28.46 ± 1.11 mN/m and increased emulsification index to 93.80 ± 0.41 %. Maximum biosurfactant production of 2.92 ± 0.04 g/L was obtained after 72 h. The biosurfactant contained peptides and fatty acids. The predominant fatty acid was 9-Octadecenoic acid (80.80%). CONCLUSIONS The above results showing high emulsification potential and remarkable reduction in the surface tension are good biosurfactant attributes. Consequently, Lysinibacillus fusiformis MK559526 is a good candidate for biosurfactant production.
Collapse
Affiliation(s)
- Walter Chinaka John
- Department of Science Laboratory Technology, Federal College of Forestry, Jos, Nigeria
| | | | - Grace M Gberikon
- Department of Microbiology, Federal University of Agriculture, Makurdi, Nigeria
| | | |
Collapse
|
9
|
Li SW, Huang YX, Liu MY. Transcriptome profiling reveals the molecular processes for survival of Lysinibacillus fusiformis strain 15-4 in petroleum environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110250. [PMID: 32028154 DOI: 10.1016/j.ecoenv.2020.110250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
A bacterial strain designated Lysinibacillus fusiformis 15-4 was isolated from oil-free soil on the Qinghai-Tibet Plateau, which can grow well utilizing petroleum hydrocarbons as a carbon source at a lower temperature. To deeply characterize the molecular adaptations and metabolic processes of this strain when grown in a petroleum-containing environment, transcriptome analysis was performed. A total of 4664 genes and the expression of 3969 genes were observed in strain 15-4. When the strain was grown in petroleum-containing medium, 2192 genes were significantly regulated, of which 1312 (60%) were upregulated and 880 (40%) were downregulated. This strain degraded and adapted to petroleum via modulation of diverse molecular processes, including improvements in transporter activity, oxidoreductase/dehydrogenase activity, two-component system/signal transduction, transcriptional regulation, fatty acid catabolism, amino acid metabolism, and environmental stress responses. Many strain-specific genes were involved in the oxidation of hydrocarbon compounds, such as several luciferase family alkane monooxygenase genes, flavin-utilizing monooxygenase family genes, and flavoprotein-like family alkanesulfonate monooxygenase genes. Several cold shock protein genes were also induced suggesting adaptation to cold environments and the potential for petroleum degradation at low temperatures. The results obtained in this study may broaden our understanding of molecular adaptation of bacteria to hydrocarbon-containing environments and may provide valuable data for further study of L. fusiformis.
Collapse
Affiliation(s)
- Shi-Weng Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 730070, PR China.
| | - Yi-Xuan Huang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 730070, PR China
| | - Meng-Yuan Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 730070, PR China
| |
Collapse
|
10
|
Rezaei M, Moussavi G, Naddafi K, Johnson MS. Enhanced biodegradation of styrene vapors in the biotrickling filter inoculated with biosurfactant-generating bacteria under H 2O 2 stimulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135325. [PMID: 31839317 DOI: 10.1016/j.scitotenv.2019.135325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Biotrickling filters (BTFs) applied to hydrophobic volatile organic compounds (VOCs) suffer from limited mass transfer. Phase transfer kinetic and equilibrium effects limit the biodegradation of hydrophobic VOCs especially at high concentrations. This study evaluates two strategies for overcoming the problem. First, a natural process was used to enhance the aqueous availability of styrene, a hydrophobic VOC model, by inoculating the BTF with a mixture of biosurfactant-generating bacteria. This method achieved a maximum elimination capacity (ECmax) of 139 g m-3h-1 in the BTF at an empty bed residence time (EBRT) of 60s. The highest concentrations of the biosurfactants surfactin and rhamnolipid were 205 and 86 mg L-1, respectively, in this step. Sequencing 16S rRNA confirmed the presence of biosurfactant-producing bacteria capable of biodegrading styrene in the BTF including Bacillus sonorensis, Bacillus subtilis, Lysinibacillus sphaericus, Lysinibacillus fusiformis, Alcaligenes feacalis, Arthrobacter creatinolyticus, and Kocuria rosea. Second, the effect of adding H2O2 to the recycle liquid on the BTF performance was determined. The biodegradation and mineralization of styrene in the BTF operated at a loading rate of 266 g m-3h-1 and H2O2/styrene molar ratio of 0.05 with EBRT as short as 15 s were 94% and 53%, respectively, with the EC of 250 g m-3h-1. High concentrations of antioxidant enzymes (peroxidase and catalase: 56 and 7 U gbiomass-1, respectively) were produced and biosurfactant generation was increased in this step, contributing to enhanced styrene biodegradation and mineralization. The styrene biodegradation and mineralization values in the BTF in the last day operated under similar conditions but without H2O2 were 11.4% and 5.3%, respectively. The bacterial population had no considerable change in the BTF after adding H2O2. Accordingly, stimulating the BTF inoculated with biosurfactant-generating bacteria with H2O2 is a promising strategy for improving the biodegradation of hydrophobic VOCs.
Collapse
Affiliation(s)
- Mohsen Rezaei
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Gholamreza Moussavi
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Kazem Naddafi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Matthew S Johnson
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
11
|
Zhu Z, Wang Z, Li S, Yuan X. Antimicrobial strategies for urinary catheters. J Biomed Mater Res A 2018; 107:445-467. [PMID: 30468560 DOI: 10.1002/jbm.a.36561] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/03/2018] [Accepted: 10/04/2018] [Indexed: 01/12/2023]
Abstract
Over 75% of hospital-acquired or nosocomial urinary tract infections are initiated by urinary catheters, which are used during the treatment of 16% of hospitalized patients. Taking the United States as an example, the costs of catheter-associated urinary tract infections (CAUTI) are in excess of $451 million dollars/year. The biofilm formation by pathogenic microbes that protects pathogens from host immune defense and antimicrobial agents is the leading cause for CAUTI. Thus, tremendous efforts have been devoted to antimicrobial coating for urinary catheters in the past few decades, and it has been demonstrated to be one of the most direct and efficient strategies to reduce infections. In this article, we briefly summarize the current methods for preparation of antimicrobial coatings based on different stages in the biofilm formation, highlight recent progress in the urinary catheter coating material design and selection, discuss approaches to improving their long-term antimicrobial efficacy, biocompatibility, multidrug resistance and recurrent infections, and finally outline future requirements and prospects in antimicrobial coating material design. The scope of the works surveyed is confined to antimicrobial urinary catheters. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 445-467, 2019.
Collapse
Affiliation(s)
- Zhiling Zhu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Ziping Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang, Shandong 262700, China
| | - Siheng Li
- Department of Chemistry, University of Houston, Houston, Texas 77204, USA
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|
12
|
Jyothi JS, Putty K, Reddy YN, Dhanalakshmi K, Umair MAH. Antagonistic effect of ursolic acid on Staphylococcal biofilms. Vet World 2018; 11:1440-1444. [PMID: 30532499 PMCID: PMC6247876 DOI: 10.14202/vetworld.2018.1440-1444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 09/05/2018] [Indexed: 11/16/2022] Open
Abstract
Aim The present study was carried out to study the effect of ursolic acid (UA) as a potential anti-biofilm agent in dispersing the biofilm generated by Staphylococcus aureus isolated from milk samples of crossbred dairy cows on the day of drying. Further, in the S. aureus isolates, the presence of intracellular adherence gene locus involved in biofilm production (icaD) was investigated. Materials and Methods A total of 50 S. aureus strains were isolated over a period of 3 months from 200 milk samples collected from crossbred dairy cows on the day of drying. These isolates were subjected for biofilm detection by Congo red agar (CRA), microtiter plate assay (MTP), and polymerase chain reaction specific for icaD gene. The antagonistic effect of biofilm formation by UA was studied using different concentrations (30 µg/ml and 60 µg/ml) of UA and compared with the control group. Results Among the 50 S. aureus subjected for biofilm detection, 34 and 40 isolates were detected as biofilm agents by CRA and MTP methods, respectively. The in vitro studies on the effect of UA in inhibiting biofilm formation by S. aureus using MTP assay showed 71.5% and 48.6% inhibition at UA concentrations of 60 µg/ml and 30 µg/ml, respectively, with a significant difference (p<0.05) between the treated and untreated isolates, which was further evident by scanning electron microscopy. Interestingly, the isolates that were tested to be resistant through Antibiotic Sensitivity Test to commonly used antibiotics were found to be sensitive to all the tested antibiotics following UA treatment at both the tested concentrations. Furthermore, molecular detection of icaD gene for biofilm detection revealed that all the isolates that were positive by MTP had icaD gene. Conclusion Increased incidence of biofilm agents in dairy infections must be considered as an alarming situation. UA treatment significantly enhanced the sensitivity of the microbial pathogens to commonly used antibiotics. Hence, attention must be paid toward implementation of new strategies such as therapeutic regimes with a combination of antibiotic and anti-biofilm agents for effective treatment of infections in dairy farms.
Collapse
Affiliation(s)
- J Shiva Jyothi
- Departments of Veterinary Microbiology, and Veterinary Biotechnology, College of Veterinary Science, P. V. Narsimha Rao Telangana Veterinary University, Rajendra Nagar, Hyderabad, Telangana, India
| | - Kalyani Putty
- Departments of Veterinary Microbiology, and Veterinary Biotechnology, College of Veterinary Science, P. V. Narsimha Rao Telangana Veterinary University, Rajendra Nagar, Hyderabad, Telangana, India
| | - Y Narasimha Reddy
- Departments of Veterinary Microbiology, and Veterinary Biotechnology, College of Veterinary Science, P. V. Narsimha Rao Telangana Veterinary University, Rajendra Nagar, Hyderabad, Telangana, India
| | - K Dhanalakshmi
- Departments of Veterinary Microbiology, and Veterinary Biotechnology, College of Veterinary Science, P. V. Narsimha Rao Telangana Veterinary University, Rajendra Nagar, Hyderabad, Telangana, India
| | - M A Hannan Umair
- Departments of Veterinary Microbiology, and Veterinary Biotechnology, College of Veterinary Science, P. V. Narsimha Rao Telangana Veterinary University, Rajendra Nagar, Hyderabad, Telangana, India
| |
Collapse
|
13
|
Cyclic lipopeptide biosurfactant from Bacillus tequilensis exhibits multifarious activity. 3 Biotech 2018; 8:261. [PMID: 29780683 DOI: 10.1007/s13205-018-1288-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 05/08/2018] [Indexed: 10/16/2022] Open
Abstract
Bacillus tequilensis strain CH had been previously shown to produce a biosurfactant. In this study, chemical structure of the purified biosurfactant was determined by using high performance liquid chromatography and liquid chromatography-mass spectroscopy as a 10 amino acid cyclic lipopeptide (CL). The cyclic lipopeptide was found to be active against Anopheles culicifacies larvae with a LC50 of 110 µg/ml in 2 days. 1 ppm cadmium (Cd) which had a profound mutagenic effect on the cell division of onion (Allium cepa) root tip cell resulting in abnormal metaphase, abnormal anaphase and nuclei elongation was partially reversed in the presence of 0.1 mg/ml of CL (52% cells dividing normally and 8% with abnormal division) and was comparable to control experiment where no Cd was present. Thus, the CL described in this report may have applications in eliminating larvae from water repository systems and in reversing the effects of cadmium pollution.
Collapse
|
14
|
Aleksic I, Petkovic M, Jovanovic M, Milivojevic D, Vasiljevic B, Nikodinovic-Runic J, Senerovic L. Anti-biofilm Properties of Bacterial Di-Rhamnolipids and Their Semi-Synthetic Amide Derivatives. Front Microbiol 2017; 8:2454. [PMID: 29276509 PMCID: PMC5727045 DOI: 10.3389/fmicb.2017.02454] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/27/2017] [Indexed: 12/23/2022] Open
Abstract
A new strain, namely Lysinibacillus sp. BV152.1 was isolated from the rhizosphere of ground ivy (Glechoma hederacea L.) producing metabolites with potent ability to inhibit biofilm formation of an important human pathogens Pseudomonas aeruginosa PAO1, Staphylococcus aureus, and Serratia marcescens. Structural characterization revealed di-rhamnolipids mixture containing rhamnose (Rha)-Rha-C10-C10, Rha-Rha-C8-C10, and Rha-Rha-C10-C12 in the ratio 7:2:1 as the active principle. Purified di-rhamnolipids, as well as commercially available di-rhamnolipids (Rha-Rha-C10-C10, 93%) were used as the substrate for the chemical derivatization for the first time, yielding three semi-synthetic amide derivatives, benzyl-, piperidine-, and morpholine. A comparative study of the anti-biofilm, antibacterial and cytotoxic properties revealed that di-Rha from Lysinibacillus sp. BV152.1 were more potent in biofilm inhibition, both cell adhesion and biofilm maturation, than commercial di-rhamnolipids inhibiting 50% of P. aeruginosa PAO1 biofilm formation at 50 μg mL-1 and 75 μg mL-1, respectively. None of the di-rhamnolipids exhibited antimicrobial properties at concentrations of up to 500 μg mL-1. Amide derivatization improved inhibition of biofilm formation and dispersion activities of di-rhamnolipids from both sources, with morpholine derivative being the most active causing more than 80% biofilm inhibition at concentrations 100 μg mL-1. Semi-synthetic amide derivatives showed increased antibacterial activity against S. aureus, and also showed higher cytotoxicity. Therefore, described di-rhamnolipids are potent anti-biofilm agents and the described approach can be seen as viable approach in reaching new rhamnolipid based derivatives with tailored biological properties.
Collapse
Affiliation(s)
- Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milos Petkovic
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Milos Jovanovic
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Dusan Milivojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Branka Vasiljevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Lidija Senerovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
15
|
Giri SS, Sen SS, Jun JW, Sukumaran V, Park SC. Role of Bacillus licheniformis VS16-Derived Biosurfactant in Mediating Immune Responses in Carp Rohu and its Application to the Food Industry. Front Microbiol 2017; 8:514. [PMID: 28400765 PMCID: PMC5368236 DOI: 10.3389/fmicb.2017.00514] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/13/2017] [Indexed: 01/31/2023] Open
Abstract
Multifarious applications of Bacillus licheniformis VS16-derived biosurfactant were explored. Labeo rohita fingerlings were injected intraperitoneally with 0.1 mL of phosphate-buffered saline (PBS) containing purified biosurfactant at 0 (control), 55 (S55), 110 (S110), 220 (S220), or 330 (S330) μg mL-1 concentrations. Various immunological parameters and the expression of immune-related genes were measured at 7, 14, and 21 days post-administration (dpa). At 21 dpa, fish were challenged with Aeromonas hydrophila and mortality was recorded for 14 days. Immune parameters such as lysozyme levels (39.29 ± 2.14 U mL-1), alternative complement pathway (61.21 ± 2.38 U mL-1), and phagocytic activities (33.37 ± 1.2%) were maximum (P < 0.05) in the S220 group at 14 dpa; but immunoglobulin levels (11.07 ± 0.83 mg mL-1) were highest in the S220 group at 7 dpa, compared to that in controls. Activities of digestive enzymes (amylase, protease, and lipase) were higher (P < 0.05) in the S220 and S330 groups than in the control group. Regarding cytokine gene expression, pro-inflammatory cytokines (TNF-α and IL-1β) were down-regulated (P < 0.05) in the S220 and S330 groups. Expression of IL-10, TGF-β, and IKB-α were up-regulated in the S220 and S330 groups at 14 dpa, with the highest levels in the S220 group. The expression of NF-κB p65 and IKK-β were down-regulated in treatment groups, and were lowest (P < 0.05) in the S220 group. The highest post-challenge survival rate (72.7%) was recorded in S220 group. Further, the potential of this substance to inhibit biofilm formation, and heavy metal removal from vegetables were also evaluated. Biosurfactant was effective in inhibiting biofilm formation up to 54.71 ± 1.27%. Moreover, it efficiently removed cadmium (Cd) from tested vegetables such as carrot, radish, ginger, and potato, with the highest removal efficiency (60.98 ± 1.29%) recorded in ginger contaminated with Cd. Collectively, these results suggest that isolated biosurfactant could be used in the aquaculture industry, in addition to its potential application to the food industry.
Collapse
Affiliation(s)
- Sib Sankar Giri
- Department of Biotechnology, Periyar Maniammai UniversityThanjavur, India; Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoul, South Korea
| | - Shib Sankar Sen
- School of Life Sciences, Jawaharlal Nehru University New Delhi, India
| | - Jin Woo Jun
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University Seoul, South Korea
| | - V Sukumaran
- Department of Biotechnology, Periyar Maniammai University Thanjavur, India
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University Seoul, South Korea
| |
Collapse
|
16
|
Thompson VC, Adamson PJ, Dilag J, Uswatte Uswatte Liyanage DB, Srikantharajah K, Blok A, Ellis AV, Gordon DL, Köper I. Biocompatible anti-microbial coatings for urinary catheters. RSC Adv 2016. [DOI: 10.1039/c6ra07678e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Using a simple dip-coating mechanism, urinary catheters have been coated with poly(2-methacryloyloxyethyl)trimethylammonium chloride (pMTAC) using activator regenerated by electron transfer (ARGET)–atom transfer radical polymerization (ATRP).
Collapse
Affiliation(s)
- Vanessa C. Thompson
- Flinders Centre for NanoScale Science and Technology, and School of Chemical and Physical Sciences
- Flinders University
- Bedford Park
- Australia
| | - Penelope J. Adamson
- Department of Microbiology and Infectious Diseases
- Flinders University
- Flinders Medical Centre
- Bedford Park
- Australia
| | - Jessirie Dilag
- Flinders Centre for NanoScale Science and Technology, and School of Chemical and Physical Sciences
- Flinders University
- Bedford Park
- Australia
| | | | - Kagithiri Srikantharajah
- Flinders Centre for NanoScale Science and Technology, and School of Chemical and Physical Sciences
- Flinders University
- Bedford Park
- Australia
- University of Applied Sciences Kaiserslautern
| | - Andrew Blok
- Flinders Centre for NanoScale Science and Technology, and School of Chemical and Physical Sciences
- Flinders University
- Bedford Park
- Australia
| | - Amanda V. Ellis
- Flinders Centre for NanoScale Science and Technology, and School of Chemical and Physical Sciences
- Flinders University
- Bedford Park
- Australia
| | - David L. Gordon
- Department of Microbiology and Infectious Diseases
- Flinders University
- Flinders Medical Centre
- Bedford Park
- Australia
| | - Ingo Köper
- Flinders Centre for NanoScale Science and Technology, and School of Chemical and Physical Sciences
- Flinders University
- Bedford Park
- Australia
| |
Collapse
|
17
|
Sadekuzzaman M, Yang S, Mizan M, Ha S. Current and Recent Advanced Strategies for Combating Biofilms. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12144] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- M. Sadekuzzaman
- School of Food Science and Technology; Chung-Ang Univ; 72-1 Nae-Ri Daedeok-Myun, Anseong Gyunggido 456-756 South Korea Dept. of Livestock Services, People's Republic of Bangladesh
| | - S. Yang
- Chung-Ang Univ; 72-1 Nae-Ri Daedeok-Myun, Anseong Gyunggido 456-756 South Korea
| | - M.F.R. Mizan
- Chung-Ang Univ; 72-1 Nae-Ri Daedeok-Myun, Anseong Gyunggido 456-756 South Korea
| | - S.D. Ha
- Chung-Ang Univ; 72-1 Nae-Ri Daedeok-Myun, Anseong Gyunggido 456-756 South Korea
| |
Collapse
|
18
|
Kiran GS, Ninawe AS, Lipton AN, Pandian V, Selvin J. Rhamnolipid biosurfactants: evolutionary implications, applications and future prospects from untapped marine resource. Crit Rev Biotechnol 2015; 36:399-415. [PMID: 25641324 DOI: 10.3109/07388551.2014.979758] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rhamnolipid-biosurfactants are known to be produced by the genus Pseudomonas, however recent literature reported that rhamnolipids (RLs) are distributed among diverse microbial genera. To integrate the evolutionary implications of rhamnosyl transferase among various groups of microorganisms, a comprehensive comparative motif analysis was performed amongst bacterial producers. Findings on new RL-producing microorganism is helpful from a biotechnological perspective and to replace infective P. aeruginosa strains which ultimately ensure industrially safe production of RLs. Halotolerant biosurfactants are required for efficient bioremediation of marine oil spills. An insight on the exploitation of marine microbes as the potential source of RL biosurfactants is highlighted in the present review. An economic production process, solid-state fermentation using agro-industrial and industrial waste would increase the scope of biosurfactants commercialization. Potential and prospective applications of RL-biosurfactants including hydrocarbon bioremediation, heavy metal removal, antibiofilm activity/biofilm disruption and greener synthesis of nanoparticles are highlighted in this review.
Collapse
Affiliation(s)
- George Seghal Kiran
- a Department of Food Science and Technology , Pondicherry University , Puducherry , India
| | | | - Anuj Nishanth Lipton
- c Microbial Genomics Research Unit, Department of Microbiology , Pondicherry University , Puducherry , India , and
| | | | - Joseph Selvin
- c Microbial Genomics Research Unit, Department of Microbiology , Pondicherry University , Puducherry , India , and
| |
Collapse
|
19
|
Schluter J, Nadell CD, Bassler BL, Foster KR. Adhesion as a weapon in microbial competition. THE ISME JOURNAL 2015; 9:139-49. [PMID: 25290505 PMCID: PMC4268496 DOI: 10.1038/ismej.2014.174] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/17/2014] [Accepted: 08/11/2014] [Indexed: 01/09/2023]
Abstract
Microbes attach to surfaces and form dense communities known as biofilms, which are central to how microbes live and influence humans. The key defining feature of biofilms is adhesion, whereby cells attach to one another and to surfaces, via attachment factors and extracellular polymers. While adhesion is known to be important for the initial stages of biofilm formation, its function within biofilm communities has not been studied. Here we utilise an individual-based model of microbial groups to study the evolution of adhesion. While adhering to a surface can enable cells to remain in a biofilm, consideration of within-biofilm competition reveals a potential cost to adhesion: immobility. Highly adhesive cells that are resistant to movement face being buried and starved at the base of the biofilm. However, we find that when growth occurs at the base of a biofilm, adhesion allows cells to capture substratum territory and force less adhesive, competing cells out of the system. This process may be particularly important when cells grow on a host epithelial surface. We test the predictions of our model using the enteric pathogen Vibrio cholerae, which produces an extracellular matrix important for biofilm formation. Flow cell experiments indicate that matrix-secreting cells are highly adhesive and form expanding clusters that remove non-secreting cells from the population, as predicted by our simulations. Our study shows how simple physical properties, such as adhesion, can be critical to understanding evolution and competition within microbial communities.
Collapse
Affiliation(s)
- Jonas Schluter
- Department of Zoology, University of Oxford, Oxford, UK
- Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, UK
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa, Japan
| | - Carey D Nadell
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford, UK
- Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Fracchia L, J. Banat J, Cavallo M, Ceresa C, M. Banat I. Potential therapeutic applications of microbial surface-active compounds. AIMS BIOENGINEERING 2015. [DOI: 10.3934/bioeng.2015.3.144] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
21
|
Manchola L, Dussán J. Lysinibacillus sphaericusandGeobacillussp Biodegradation of Petroleum Hydrocarbons and Biosurfactant Production. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/rem.21416] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
22
|
Roi IY, Klimenko NA, Zdorovenko GM, Goncharuk VV. Phylogenetic diversity of aqueous microorganisms separated after the advanced tertiary of tap water. J WATER CHEM TECHNO+ 2014. [DOI: 10.3103/s1063455x14040067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Pradhan AK, Pradhan N, Mohapatra P, Kundu CN, Panda PK, Mishra BK. Cytotoxic Effect of Microbial Biosurfactants Against Human Embryonic Kidney Cancerous Cell: HEK-293 and Their Possible Role in Apoptosis. Appl Biochem Biotechnol 2014; 174:1850-8. [DOI: 10.1007/s12010-014-1168-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/15/2014] [Indexed: 01/14/2023]
|