1
|
Xu S, Chu M, Zhang F, Zhao J, Zhang J, Cao Y, He G, Israr M, Zhao B, Ju J. Enhancement in the catalytic efficiency of D-amino acid oxidase from Glutamicibacter protophormiae by multiple amino acid substitutions. Enzyme Microb Technol 2023; 166:110224. [PMID: 36889103 DOI: 10.1016/j.enzmictec.2023.110224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/16/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
D-Amino acid oxidase (DAAO) is an imperative oxidoreductase that oxidizes D-amino acids to corresponding keto acids, producing ammonia and hydrogen peroxide. Previously, based on the sequence alignment of DAAO from Glutamicibacter protophormiae (GpDAAO-1) and (GpDAAO-2), 4 residues (E115, N119, T256, T286) at the surface regions of GpDAAO-2, were subjected to site-directed mutagenesis and achieved 4 single-point mutants with enhanced catalytic efficiency (kcat/Km) compared to parental GpDAAO-2. In the present study, to further enhance the catalytic efficiency of GpDAAO-2, a total of 11 (6 double, 4 triple, and 1 quadruple-point) mutants were prepared by the different combinations of 4 single-point mutants. All mutants and wild types were overexpressed, purified and enzymatically characterized. A triple-point mutant E115A/N119D/T286A exhibited the most significant improvement in catalytic efficiency as compared to wild-type GpDAAO-1 and GpDAAO-2. Structural modeling analysis elucidated that residue Y213 in loop region C209-Y219 might act as the active-site lid for controlling substrate access, the residue K256 substituted by threonine (K256T) might change the hydrogen bonding interaction between residue Y213 and the surrounding residues, and switch the conformation of the active-site lid from the closed state to the open state, resulting in the enhancement in substrate accessibility and catalytic efficiency.
Collapse
Affiliation(s)
- Shujing Xu
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Mengqiu Chu
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang 050024, China
| | - Fa Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Jiawei Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Jiaqi Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yuting Cao
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Guangzheng He
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Muhammad Israr
- Department of Biology, The University of Haripur, Haripur 22620, Pakistan.
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Jiansong Ju
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang 050024, China.
| |
Collapse
|
2
|
High-Level Expression of Nitrile Hydratase in Escherichia coli for 2-Amino-2,3-Dimethylbutyramide Synthesis. Processes (Basel) 2022. [DOI: 10.3390/pr10030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the synthesis of imidazolinone herbicides, 2-Amino-2,3-dimethylbutyramide (ADBA) is an important intermedium. In this study, the recombinant production of nitrile hydratase (NHase) in Escherichia coli for ADBA synthesis was explored. A local library containing recombinant NHases from various sources was screened using a colorimetric method. NHase from Pseudonocardia thermophila JCM3095 was selected, fused with a His-tag and one-step purified. The enzymatic properties of recombinant NHase were studied and indicated robust thermal stability and inhibition of cyanide ions due to substrate degradation. After systematic optimization of fermentation conditions, the OD600 (optical density at 600 nm), enzyme activity and specific activity of recombinant strain E. coli BL21(DE3)/pET-28a+NHase reached 19.4, 3.72 U/mL and 1.04 U/mg protein at 42 h, representing 5.86-, 26.6- and 4-fold increases, respectively. These results offered an efficient recombinant whole-cell biocatalyst for ADBA synthesis.
Collapse
|
3
|
Xu JM, Cao HT, Wang M, Ma BJ, Wang LY, Zhang K, Cheng F, Xue YP, Zheng YG. Development of a Combination Fermentation Strategy to Simultaneously Increase Biomass and Enzyme Activity of D-amino Acid Oxidase Expressed in Escherichia coli. Appl Biochem Biotechnol 2021; 193:2029-2042. [PMID: 33538962 DOI: 10.1007/s12010-021-03519-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
D-amino acid oxidase (DAAO) is widely used in the industrial preparation of L-amino acids, and cultivating Escherichia coli (E. coli) expressing DAAO for the biosynthesis of L-phosphinothricin (L-PPT) is very attractive. At present, the biomass production of DAAO by fermentation is still limited in large-scale industrial applications because the expression of DAAO during the fermentation process inhibits the growth of host cells, which limits higher cell density. In this study, the factors that inhibit the growth of bacterial cells during a 5-L fed-batch fermentation process were explored, and the fermentation process was optimized by co-expressing catalase (CAT), by balancing the biomass and the enzyme activity, and by adding exogenous D-alanine (D-Ala) to relieve the limitation of DAAO on the cells and optimize fermentation. Under optimal conditions, the DO-STAT feeding mode with DO controlled at 30% ± 5% and the addition of 27.5 g/L lactose mixed with 2 g/L D-Ala during induction at 28 °C resulted in the production of 26.03 g dry cell weight (DCW)/L biomass and 390.0 U/g DCW specific activity of DAAO; an increase of 78% and 84%, respectively, compared with the initial fermentation conditions. The fermentation strategy was successfully scale-up to a 5000-L fermenter.
Collapse
Affiliation(s)
- Jian-Miao Xu
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hui-Ting Cao
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ming Wang
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Bao-Jian Ma
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Liu-Yu Wang
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Kai Zhang
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Feng Cheng
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ya-Ping Xue
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China. .,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China. .,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
5
|
Zheng J, Yang T, Zhou J, Xu M, Zhang X, Rao Z, Yang S. Efficient production of d-amino acid oxidase in Escherichia coli by a trade-off between its expression and biomass using N-terminal modification. BIORESOURCE TECHNOLOGY 2017; 243:716-723. [PMID: 28711799 DOI: 10.1016/j.biortech.2017.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/01/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
Native d-amino acid oxidase (DAAO) that is expressed mostly as inclusion body and its toxicity for E. coli hamper efficient heterologous expression. In this study, the soluble expression of DAAO from Rhodosporidium toruloides (RtDAAO) was improved in E. coli through N-terminal modification, but the cell biomass was decreased. Then a trade-off between DAAO expression and biomass was achieved to obtain the highest volumetric activity of DAAO through regulated the number of N-terminus histidine residues. When variant 2H3G was fused with three N-terminus histidine residues, the volumetric activity was increased by 3.1 times and the biomass was not significant change compared with the wild type. Finally, the N-terminus disordered region of RtDAAO (HSQK) was replaced with HHHG and the variant enzyme activity reached 80.7U/mL (with a 40 percent of inactive DAAO reduced) in a 7.5L fermenter in 24h.
Collapse
Affiliation(s)
- Junxian Zheng
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Junping Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
| | - Shangtian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Du K, Sun J, Song X, Song C, Feng W. Enhancement of the solubility and stability of D-amino acid oxidase by fusion to an elastin like polypeptide. J Biotechnol 2015. [PMID: 26216181 DOI: 10.1016/j.jbiotec.2015.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
An elastin-like polypeptide (ELP) was fused to D-amino acid oxidases (DAAO). ELP-DAAO exhibited a better solubility in aqueous solutions than DAAO, and its enzymatic activity is about 1.6 times that of DAAO. The stability of the proteins was investigated by interacting with urea at various concentrations. The circular dichroism and fluorescence spectra were measured. The results demonstrated that that ELP-DAAO exhibited a much better stability than DAAO, and ELP-DAAO has retained the α-helix content with a high percentage even at a high urea concentration. The results of this work have demonstrated that the ELP tag can be utilized to purify DAAO, in the meantime the solubility and stability of the enzyme are improved.
Collapse
Affiliation(s)
- Kun Du
- Department of Biochemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian Sun
- Department of Biochemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoqiang Song
- Department of Biochemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Cuidan Song
- Department of Biochemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Feng
- Department of Biochemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|