1
|
Li F, Huang X, Wang S, Zhang H, Ma J, Ding Y, Ding D. Synergistic effects of hydrogen peroxide and phosphate on uranium(VI) immobilization: implications for the remediation of groundwater at decommissioned in situ leaching uranium mine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117132-117142. [PMID: 37864694 DOI: 10.1007/s11356-023-30468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
The processes of acid in situ leaching (ISL) uranium (U) mines cause the pollution of groundwater. Phosphate (PO43-) has the potential to immobilize U in groundwater through forming highly insoluble phosphate minerals, but the performance is highly restricted by low pH and high sulfate concentration. In this study, hydrogen peroxide (H2O2) and PO43- were synergistically used for immobilizing U based on the specific properties of groundwater from a decommissioned acid ISL U mine. The removal mechanisms of U and the stability of U on the formed minerals were elucidated by employing X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and kinetic experiments. Our results indicated that the removal of U by simultaneously adding H2O2 and PO43- was significantly higher than the removal of U by individually adding H2O2 or PO43-. The removal of U increased with increasing PO43- concentration from 20 to 200 mg L-1 while decreased with increasing H2O2 concentration from 0.003 to 0.3%. Specifically, the removal efficiency of U from groundwater reached 98% after the application of 0.003% H2O2 and 200 mg L-1 PO43-. Amorphous iron phosphate that preferentially formed at low H2O2 and high PO43- concentrations played a dominant role in U removal, while the formations of schwertmannite and crystalline iron phosphates may be also contributed to the removal of U. This was significantly different from the immobilization mechanism of U through the formation of uranyl phosphate minerals after adding phosphate. The kinetic experimental results suggested that the immobilized U had a good stability. Our research may provide a promising method for in situ remediating U-contaminated groundwater at the decommissioned acid ISL U mines.
Collapse
Affiliation(s)
- Feng Li
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Xixian Huang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Shasha Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Hui Zhang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Jianhong Ma
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Yang Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China.
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| |
Collapse
|
2
|
Response and Dynamic Change of Microbial Community during Bioremediation of Uranium Tailings by Bacillus sp. MINERALS 2021. [DOI: 10.3390/min11090967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bacillus sp. is widely used in the remediation of uranium-contaminated sites. However, little is known about the competitive process of microbial community in the environment during bioremediation. The bioremediation of uranium tailings using Bacillus sp. was explored, and the bacterial community was analyzed by high-throughput sequencing at different stages of remediation. Bacillus sp. reduced the leaching of uranium from uranium tailings. The lowest uranium concentration was 17.25 μg/L. Alpha diversity revealed that the abundance and diversity of microorganisms increased with the extension of the culture time. The microbial abundance and diversity were higher in the treatment group than in the control group. The dominant species at the phyla level were Firmicutes and Proteobacteria in the uranium tailings environment, whereas the phylum of Proteobacteria was significantly increased in the treatment group. Based on the genus level, the proportions of Arthrobacter, Rhodococcus and Paenarthrobacter decreased significantly, whereas those of Clostridium sp., Bacillus and Pseudomonas increased dramatically. Hence, the remediation of uranium contamination in the environment was due to the functional microorganisms, which gradually became the dominant strain in the treatment, such as Desulfotomaculum, Desulfosporporosinus, Anaerocolumna, Ruminiclostridium and Burkholderia. These findings provided a promising outlook of the potential for remediation strategies of soil contaminated by uranium. The dynamic characteristics of the microbial community are likely to provide a foundation for the bioremediation process in practice.
Collapse
|
3
|
Zeng T, Li L, Mo G, Wang G, Liu H, Xie S. Analysis of uranium removal capacity of anaerobic granular sludge bacterial communities under different initial pH conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5613-5622. [PMID: 30612368 DOI: 10.1007/s11356-018-4017-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
The bacterial community of an anaerobic granular sludge associated with uranium depletion was investigated following its exposure to uranium under different initial pH conditions (pH 4.5, 5.5, and 6.5). The highest uranium removal efficiency (98.1%) was obtained for the sample with an initial pH of 6.5, which also supported the highest bacterial community richness and diversity. Venn diagrams visualized the decrease in the number of genera present in both the inoculum and the uranium-exposed biomass as the initial pH decreased from 6.5 to 4.5. Compared with the inoculum, a significant increase in the abundances of the phyla Chloroflexi and Proteobacteria was observed following uranium exposure. At initial pH conditions of 6.5 to 4.5, the proportions of the taxa Anaerolineaceae, Chryseobacterium, Acinetobacter, Pseudomonas, and Sulfurovum increased significantly, likely contributing to the observed uranium removal. Uranium exposure induced a greater level of dynamic diversification of bacterial abundances than did the initial pH difference.
Collapse
Affiliation(s)
- Taotao Zeng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China.
| | - Licheng Li
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Guanhai Mo
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Guohua Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Haiyan Liu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Shuibo Xie
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China.
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|