1
|
Direct utilization of peach wastes for enhancements of lignocellulolytic enzymes productions by Pleurotus eryngii under solid-state fermentation conditions. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Wang L, Ding X, Huang Q, Hu B, Liang L, Wang Q. Gllac7 Is Induced by Agricultural and Forestry Residues and Exhibits Allelic Expression Bias in Ganoderma lucidum. Front Microbiol 2022; 13:890686. [PMID: 35847055 PMCID: PMC9279560 DOI: 10.3389/fmicb.2022.890686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Ganoderma lucidum has a wide carbon spectrum, while the expression profile of key genes relevant to carbon metabolism on different carbon sources has been seldom studied. Here, the transcriptomes of G. lucidum mycelia cultured on each of 19 carbon sources were conducted. In comparison with glucose, 16 to 1,006 genes were upregulated and 7 to 1,865 genes were downregulated. Significant gene expression dynamics and induced activity were observed in laccase genes when using agricultural and forestry residues (AFRs) as solo carbon sources. Furthermore, study of laccase gene family in two haploids of G. lucidum GL0102 was conducted. Totally, 15 and 16 laccase genes were identified in GL0102_53 and GL0102_8, respectively, among which 15 pairs were allelic genes. Gene structures were conserved between allelic laccase genes, while sequence variations (most were SNPs) existed. Nine laccase genes rarely expressed on all the tested carbon sources, while the other seven genes showed high expression level on AFRs, especially Gllac2 and Gllac7, which showed 5- to 1,149-fold and 4- to 94-fold upregulation in mycelia cultured for 5 days, respectively. The expression of H53lac7 was consistently higher than that of H8lac7_1 on all the carbon sources except XM, exhibiting a case of allelic expression bias. A total of 47 SNPs and 3 insertions/deletions were observed between promoters of H53lac7 and H8lac7_1, which lead to differences in predicted binding sites of zinc fingers. These results provide scientific data for understanding the gene expression profile and regulatory role on different carbon sources and may support further functional research of laccase.
Collapse
Affiliation(s)
- Lining Wang
- Guangdong Engineering Laboratory of Biomass High-Value Utilization, Guangdong Plant Fiber Comprehensive Utilization Engineering Technology Research and Development Center, Guangzhou Key Laboratory of Biomass Comprehensive Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaoxia Ding
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qinghua Huang
- Guangdong Engineering Laboratory of Biomass High-Value Utilization, Guangdong Plant Fiber Comprehensive Utilization Engineering Technology Research and Development Center, Guangzhou Key Laboratory of Biomass Comprehensive Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Biao Hu
- Guangdong Engineering Laboratory of Biomass High-Value Utilization, Guangdong Plant Fiber Comprehensive Utilization Engineering Technology Research and Development Center, Guangzhou Key Laboratory of Biomass Comprehensive Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Lei Liang
- Guangdong Engineering Laboratory of Biomass High-Value Utilization, Guangdong Plant Fiber Comprehensive Utilization Engineering Technology Research and Development Center, Guangzhou Key Laboratory of Biomass Comprehensive Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingfu Wang
- Guangdong Engineering Laboratory of Biomass High-Value Utilization, Guangdong Plant Fiber Comprehensive Utilization Engineering Technology Research and Development Center, Guangzhou Key Laboratory of Biomass Comprehensive Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
3
|
Vipotnik Z, Michelin M, Tavares T. Development of a packed bed reactor for the removal of aromatic hydrocarbons from soil using laccase/mediator feeding system. Microbiol Res 2020; 245:126687. [PMID: 33421701 DOI: 10.1016/j.micres.2020.126687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/15/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022]
Abstract
Polyaromatic hydrocarbons (PAH) are persistent pollutants of great concern due to their potential toxicity, mutagenicity and carcinogenicity. A biotechnological approach to remove PAH from soil was evaluated in this work using a laccase mediator system. Initially, laccase was produced by fungal co-cultivation, using kiwi peels as substrate. The produced laccase was applied to PAH contaminated soil to evaluate its efficiency on enzymatic bioremediation. Results showed that laccase mediator system was effective in the degradation of pyrene, fluorene, chrysene and a lower extension anthracene. Mediators improved the PAH degradation and natural mediators (ferulic acid and p-coumaric acid) were as effective as the synthetic mediator ABTS. However, the process was not effective in the benzo[a]pyrene degradation, one of the most recalcitrant and toxic PAH. This low degradation rate could be related to the low activity of the laccase mediator system in an environment lacking water. To overcome this issue, a PAH contaminated soil degradation system was developed in packed bed reactor (PBR) fed with laccase/mediator. Continuous flow of laccase/mediator improved the PAH degradation, achieving 74.8 %, 71.9 %, 72.2 %, 81.8 % and 100 % degradation for fluorene, anthracene, phenanthrene, chrysene and pyrene, respectively. This system was able to degrade 96 % benzo[a]pyrene, which was 90 % higher than the degradation in batch system. Results indicated that the produced laccase as well as the fed-batch degradation system developed in PBR could be successfully applied in the degradation of soil PAH pollutants, with the advantage of achieving higher degradation rates than in simple batch, as well as being a faster and simpler process than microorganism bioremediation.
Collapse
Affiliation(s)
- Ziva Vipotnik
- Centre of Biological Engineering, University Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Michele Michelin
- Centre of Biological Engineering, University Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Teresa Tavares
- Centre of Biological Engineering, University Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
4
|
Rueda AM, López de los Santos Y, Vincent AT, Létourneau M, Hernández I, Sánchez CI, Molina V. D, Ospina SA, Veyrier FJ, Doucet N. Genome sequencing and functional characterization of a Dictyopanus pusillus fungal enzymatic extract offers a promising alternative for lignocellulose pretreatment of oil palm residues. PLoS One 2020; 15:e0227529. [PMID: 32730337 PMCID: PMC7392265 DOI: 10.1371/journal.pone.0227529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
The pretreatment of biomass remains a critical requirement for bio-renewable fuel production from lignocellulose. Although current processes primarily involve chemical and physical approaches, the biological breakdown of lignin using enzymes and microorganisms is quickly becoming an interesting eco-friendly alternative to classical processes. As a result, bioprospection of wild fungi from naturally occurring lignin-rich sources remains a suitable method to uncover and isolate new species exhibiting ligninolytic activity. In this study, wild species of white rot fungi were collected from Colombian forests based on their natural wood decay ability and high capacity to secrete oxidoreductases with high affinity for phenolic polymers such as lignin. Based on high activity obtained from solid-state fermentation using a lignocellulose source from oil palm as matrix, we describe the isolation and whole-genome sequencing of Dictyopanus pusillus, a wild basidiomycete fungus exhibiting ABTS oxidation as an indication of laccase activity. Functional characterization of a crude enzymatic extract identified laccase activity as the main enzymatic contributor to fungal extracts, an observation supported by the identification of 13 putative genes encoding for homologous laccases in the genome. To the best of our knowledge, this represents the first report of an enzymatic extract exhibiting laccase activity in the Dictyopanus genera, offering means to exploit this species and its enzymes for the delignification process of lignocellulosic by-products from oil palm.
Collapse
Affiliation(s)
- Andrés M. Rueda
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
- Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia
- Centro de Estudios e Investigaciones Ambientales, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Yossef López de los Santos
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
| | - Antony T. Vincent
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
| | - Myriam Létourneau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
| | - Inés Hernández
- Centro de Estudios e Investigaciones Ambientales, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Clara I. Sánchez
- Centro de Estudios e Investigaciones Ambientales, Universidad Industrial de Santander, Bucaramanga, Colombia
- Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Daniel Molina V.
- Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Sonia A. Ospina
- Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Frédéric J. Veyrier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
| | - Nicolas Doucet
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
- PROTEO, Québec Network for Research on Protein Function, Engineering, and Applications, Québec, Canada
| |
Collapse
|
5
|
Wang F, Xu L, Zhao L, Ding Z, Ma H, Terry N. Fungal Laccase Production from Lignocellulosic Agricultural Wastes by Solid-State Fermentation: A Review. Microorganisms 2019; 7:E665. [PMID: 31835316 PMCID: PMC6955899 DOI: 10.3390/microorganisms7120665] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 11/23/2022] Open
Abstract
Laccases are copper-containing oxidase enzymes found in many fungi. They have received increasing research attention because of their broad substrate specificity and applicability in industrial processes, such as pulp delignification, textile bleaching, phenolic removal, and biosensors. In comparison with traditional submerged fermentation (SF), solid-state fermentation (SSF) is a simpler technique for laccase production and has many advantages, including higher productivity, efficiency, and enzyme stability as well as reduced production costs and environmental pollution. Here, we review recent advances in laccase production technology, with focus on the following areas: (i) Characteristics and advantages of lignocellulosic agricultural wastes used as SSF substrates of laccase production, including detailed suggestions for the selection of lignocellulosic agricultural wastes; (ii) Comparison of fungal laccase production from lignocellulosic substrates by either SSF or SF; (iii) Fungal performance and strain screening in laccase production from lignocellulosic agricultural wastes by SSF; (iv) Applications of laccase production under SSF; and (v) Suggestions and avenues for future studies of laccase production by fungal SSF with lignocellulosic materials and its applications.
Collapse
Affiliation(s)
- Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (L.X.); (H.M.)
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Ling Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (L.X.); (H.M.)
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (L.X.); (H.M.)
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Norman Terry
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA;
| |
Collapse
|
6
|
Zhang J, Ke W, Chen H. Enhancing laccase production by white-rot fungus trametes hirsuta SSM-3 in co-culture with yeast sporidiobolus pararoseus SSM-8. Prep Biochem Biotechnol 2019; 50:10-17. [PMID: 31430215 DOI: 10.1080/10826068.2019.1655764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Due to wide application of laccase, many researchers have shown great interest in over production of white-rot fungi laccase by co-culture. In this study, a white-rot fungus Trametes hirsuta SSM-3, and a yeast Sporidiobolus pararoseus SSM-8 were isolated and identified from Mulberry fruit. The capacity of S. pararoseus to enhance laccase production was remarkable in T. hirsuta, yielding 31777 ± 742 U/L, about 9.9 times higher than the result from the monoculture. The stimulatory factor in the S. pararoseus cells might be temperature-sensitive. The laccase production was enhanced by oil-extract of S. pararoseus and β-carotene induction. The amylase activity was decreased rapidly when strain S. pararoseus SSM-8 was inoculated. The glucose deprivation was occurred both in the mono-culture and co-culture process, and S. pararoseus propagated slowly in co-culture all the time. Native-PAGE revealed an increase of laccase-1(lac-1) level and a laccase-3 (lac-3) in the co-culture. Therefore, it was concluded that competition for resources between the co-cultured microbes leaded to amylase decreasing and the enhanced production of laccase. This conclusion was helpful for the development of laccase fermentation industry because it provided an effective, simple and economic method to improve the yield of laccase.
Collapse
Affiliation(s)
- Jianfen Zhang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Wei Ke
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Hong Chen
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
7
|
Gupta A, Jana AK. Production of laccase by repeated batch semi-solid fermentation using wheat straw as substrate and support for fungal growth. Bioprocess Biosyst Eng 2018; 42:499-512. [DOI: 10.1007/s00449-018-2053-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022]
|
8
|
Gupta A, Jana AK. Effects of wheat straw solid contents in fermentation media on utilization of soluble/insoluble nutrient, fungal growth and laccase production. 3 Biotech 2018; 8:35. [PMID: 29291148 PMCID: PMC5745200 DOI: 10.1007/s13205-017-1054-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/17/2017] [Indexed: 11/24/2022] Open
Abstract
The objective of the work was to study the effect of agri-residue solid contents (2-20% w v-1) in fermentation medium on fungal growth, soluble and insoluble nutrient consumption and laccase production. Fungal strain Ganoderma lucidium and wheat straw substrate was screened for maximum laccase production. At low solid content submerged fermentation (SmF), fungus utilized mainly soluble nutrient and was unable to access the insoluble nutrient in media due to lack of contact with solid. At high solid content solid-state fermentation (SF), fungi grew on solid surface with dense and thin hyphae, utilized mainly insoluble nutrient. At medium solid content (8% w v-1) semi-solid fermentation (sSF), fungi grew on solid substrates with network of thick intercrossed hyphae, utilized both soluble and insoluble nutrients optimally resulting in highest fungal growth and laccase activity (~ 3.5 folds than in SmF and ~ 2.5 folds than in SF). Importance of soluble and insoluble nutrients was also established after isolation of their individual effects. Morphology of fungal growth (SEM), composition, thermal analysis (TGA/DTG) of substrates confirmed the results. sSF showed potential for the production of enzymes through utilization of agricultural residues as substrate.
Collapse
Affiliation(s)
- Antriksh Gupta
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology, G T Road Bye Pass, Jalandhar, 144011 Punjab India
| | - Asim Kumar Jana
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology, G T Road Bye Pass, Jalandhar, 144011 Punjab India
| |
Collapse
|
9
|
Ma S, Liu N, Jia H, Dai D, Zang J, Cao Z, Dong J. Expression, purification, and characterization of a novel laccase from Setosphaeria turcica in Eschericha coli. J Basic Microbiol 2017; 58:68-75. [PMID: 29112275 DOI: 10.1002/jobm.201700212] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/18/2017] [Accepted: 10/08/2017] [Indexed: 11/09/2022]
Abstract
Laccases are multicopper oxidases (E.C. 1.10.3.2) that catalyze the oxidation of many phenolic compounds. In this study, a novel laccase, Stlac4, from Setosphaeria turcica was cloned and expressed in Escherichia coli by insertion into the pET-30a expression plasmid. The recombinant laccase was purified and visualized on SDS-PAGE as a single band with an apparent molecular weight of 71.5 KDa, and confirmed by Western blot. The maximum activity of the purified laccase was 127.78 U · mg-1 , the optimum temperature and pH value were 60 °C and 4.0 respectively, measured by oxidation of 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS). Purified laccase activity under different metal ions and an inhibitor were tested, revealing that laccase activity increased by approximately 434.8% with Fe3+ , and 217.4% with Cu2+ at 10 mmol · L-1 concentrations, Mn2+ increased the laccase activity only at 5 mmol · L-1 , while Na+ increased activity at 1 mmol · L-1 but inhibited activity at 5 and 10 mmol · L-1 . SDS increased laccase activity at 1 mmol · L-1 , and inhibited activity at 5 and 10 mmol · L-1 .
Collapse
Affiliation(s)
- Shuangxin Ma
- The Key Laboratory of Hebei Province for Molecular Plant-Microbe Interaction, Agricultural University of Hebei, Baoding, Hebei, China
| | - Ning Liu
- The Key Laboratory of Hebei Province for Molecular Plant-Microbe Interaction, Agricultural University of Hebei, Baoding, Hebei, China
| | - Hui Jia
- The Key Laboratory of Hebei Province for Molecular Plant-Microbe Interaction, Agricultural University of Hebei, Baoding, Hebei, China
| | - Dongqing Dai
- The Key Laboratory of Hebei Province for Molecular Plant-Microbe Interaction, Agricultural University of Hebei, Baoding, Hebei, China
| | - Jinping Zang
- The Key Laboratory of Hebei Province for Molecular Plant-Microbe Interaction, Agricultural University of Hebei, Baoding, Hebei, China
| | - Zhiyan Cao
- The Key Laboratory of Hebei Province for Molecular Plant-Microbe Interaction, Agricultural University of Hebei, Baoding, Hebei, China
| | - Jingao Dong
- The Key Laboratory of Hebei Province for Molecular Plant-Microbe Interaction, Agricultural University of Hebei, Baoding, Hebei, China
| |
Collapse
|
10
|
Wang KF, Hu JH, Guo C, Liu CZ. Scale-up laccase production from Trametes versicolor stimulated by vanillic acid. Bioprocess Biosyst Eng 2016; 39:1041-9. [DOI: 10.1007/s00449-016-1582-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
|